
ParC |An Extension of C for Shared Memory Parallel Pro
essingYosi Ben-Asher�Department of Mathemati
s and Computer S
ien
eHaifa University31999 Haifa, IsraelDror G. Feitelson�IBM T.J. Watson Resear
h CenterP.O. Box 218Yorktown Heights, NY 10598Larry RudolphyInstitute of Computer S
ien
eThe Hebrew University of Jerusalem91904 Jerusalem, IsraelSummaryParC is an extension of the C programming language with blo
k-oriented parallel
onstru
tsthat allow the programmer to express �ne-grain parallelism in a shared-memory model. It issuitable for the expression of parallel shared-memory algorithms, and also
ondu
ive for theparallelization of sequential C programs. In addition, performan
e enhan
ing transformations
an be applied within the language, without resorting to low-level programming. The languagein
ludes
losed
onstru
ts to
reate parallelism, as well as instru
tions to
ause the terminationof parallel a
tivities and to enfor
e syn
hronization. The parallel
onstru
ts are used to de�nethe s
ope of shared variables, and also to delimit the sets of a
tivities that are in
uen
ed bytermination or syn
hronization instru
tions. The semanti
s of parallelism are dis
ussed, espe
iallyrelating to the dis
repan
y between the limited number of physi
al pro
essors and the potentiallymu
h larger number of parallel a
tivities in a program.Keywords: ParC language, Parallel Programming, Semanti
s of parallelism, For
ed termina-tion, Shared memory.

�Supported in part by an Eshkol Fellowship from the Ministry of S
ien
e and Te
hnology, IsraelySupported in part by a Kerin Amet grant and by Fran
e-Israel BSF Grant #33101

Introdu
tionAs part of a quest to make parallel programming an everyday a
tivity, we developed an easy to use andqui
k to learn parallel programming language, referred to as ParC. ParC is a blo
k-oriented, shared memory,parallel version of the popular C programming language. ParC presents the programmer with a model of ama
hine in whi
h there are many pro
essors exe
uting in parallel and with a

ess to both private and sharedvariables.While most of the ParC
onstru
ts have been proposed and used before, this is to the best of ourknowledge the �rst time that they are brought together in a
ohesive form. The result is a language thatallows parallelism to be expressed in a natural and simple manner. It is one of the few programming languagesdesigned to support a shared-memory model of
omputation, thus making programming easier and allowingusers to tap the vast base of PRAM algorithms. In addition, users
an
apitalize on their experien
e withC,
on
entrating �rst on writing a
orre
t sequential program and then on eÆ
ient parallelization using theParC extensions.In this paper we des
ribe the features and semanti
s of ParC. The rest of this se
tion explains themotivation for designing a new language, the e�e
t of the motivating for
es on the design, and the stru
tureof the software environment that surrounds it. The next se
tion des
ribes the parallel
onstru
ts ands
oping rules. The exa
t semanti
s of parallel
onstru
ts when there are more a
tivities than pro
essorshave been widely negle
ted in the literature. We dis
uss this issue and provide guidelines for a

eptableimplementations. We then des
ribe the innovative instru
tions for for
ed termination, whi
h are based onanalogies with C instru
tions that break out of a
onstru
t, followed by a dis
ussion of syn
hronizationme
hanisms. A dis
ussion of the programming methodology of ParC is then given and is followed by adis
ussion of our experien
es with ParC . A
omparison of ParC with other parallel programming languagesis delayed until the end of the paper, after we have des
ribed all of its features.Motivation and Design GuidelinesMany parallel programming languages (or language extensions) have been proposed and implemented inre
ent years [1, 2℄. These languages are based on di�erent philosophies and provide a wide spe
trum offeatures. ParC belongs to the family of those that provide expli
it parallelism, as opposed to fun
tionaland logi
 languages. In addition, it is
onservative rather than revolutionary, e.g. data
ow, and is basedon the well-known and widely used C language, making it ideal for wide a

eptan
e by the programming
ommunity [3℄. It supports the shared-memory model of
omputation, whi
h is widely believed to easeparallel programming and enhan
e user produ
tivity [4℄. These basi

hara
teristi
s re
e
t the belief thatsu
h a language is the best vehi
le for resear
h in parallel algorithms and their implementation on parallelar
hite
tures.The pra
ti
al usefulness of ParC stems from two sour
es. On the one hand, it is similar in
avor tothe pseudo-languages that are used by theoreti
ians for des
ribing parallel algorithms. Indeed, we havefound that most shared-memory parallel algorithms
an be dire
tly
oded in ParC. On the other hand,it is also
ondu
ive for the parallelization of sequential programs written in C. The language promotes anunderstanding of the problems inherent in parallel
ode, through the parallelization pro
ess, and allowsvarious approa
hes for their solution to be expressed and
ompared.The main feature of ParC is that the parallelism is in
orporated in the blo
k stru
ture of the language.This en
ourages the use of stru
tured program design, and also provides a high-level des
ription of theprogram stru
ture, thus furnishing a natural extension to the sequential C
ontrol stru
tures. The languageis not intended to be
ompletely general in the sense that any parallel stru
ture
an be expressed. On the
ontrary, good stru
ture means restri
ting the programmer and not allowing some
onstru
ts, as in the useof
losed while loops instead of a general goto instru
tion. The generalization of this idea to parallelismresults in the use of
losed parallel
onstru
ts rather than fork and join. In addition, a stru
tured languagemay in
lude some redundan
y if a number of similar
onstru
ts are useful; for example, C provides threedi�erent iterative
onstru
ts, for, do, and while, even though the �rst two
an easily be expressed using thethird. ParC has three redundant parallel
onstru
ts, as well as redundant syn
hronization me
hanisms.Parallelism is expressed in ParC at a high level of abstra
tion. The programmer need not know theexa
t number of pro
essors, the relative speeds of the pro
essors, or even whi
h pro
essor is exe
uting whi
h2

ParC
ode?pre
ompilationC
ode?
ompilationobje
t
ode��? � �?Clibrary�'? � $?
maxirun-timelibrary?linkingexe
utablefor Makbilanmultipro
essor

simulatortaskingsystem
?

extensionlibraries(network,
a
hing) BBBBBN
debuggingandmonitoringlibrary�����
 linkingexe
utablefor PC orworkstationFigure 1: The ParC software system.a
tivity. This results in very portable
ode, and frees the programmer from worrying about too many lowlevel details, allowing him to
on
entrate instead on getting the parallelism
orre
t. On the other hand,for some appli
ations, the resulting
ode may not be very eÆ
ient. In su
h
ases, it may be desirable to\hand-tune" the
ode to the ma
hine. For this purpose, ParC supplies
on
ise high-level fa
ilities to expresshow the program is mapped at run time. It is also possible to improve performan
e by restru
turing theprogram and
hanging the relationship between parallel and sequential
onstru
ts. Note that this is all donewithin the
ontext of the language, and there is no need for additional low-level primitives. The tuning isusually done after the appli
ation has been fully developed and performan
e analysis has shown the problemspots.System Stru
tureThe purpose of the ParC system is to fa
ilitate resear
h on the design and implementation of parallelalgorithms, and at the same time provide a testbed for resear
h on parallel programming, debugging, andrun-time systems, all in the
ontext of a shared-memory model. The environment is
omposed of three parts:a pre
ompiler that translates ParC
ode into C, a simulator that simulates parallel exe
ution on a UNIXworkstation or any IBM
ompatible PC [5℄, and a run-time library that supports the exe
ution of ParCprograms on the Makbilan resear
h multipro
essor [6, 7℄ (see Figure 1).The parallel program is represented by a single Unix (or DOS) pro
ess, but this has little signi�
an
e tothe programmer. Pro
ess-oriented Unix system
alls may not be used in a parallel program. Unix or DOSis available to the programmer for program start-up and for all I/O operations. Thus I/O operations areserialized, and �le des
riptors are shared by all the parallel a
tivities. This is true for both the simulatorand the Makbilan.The software layer of the Makbilan system is
alled maxi for short [6, 7℄; it runs above the Intel RMKkernel. The implementation of ParC
onstru
ts is done partly by
ode transformations in the pre
ompiler,and partly by the simulator and maxi library. It should be noted that the pre
ompiler is a
tually a
ompiler,not a prepro
essor. The parallel extensions in ParC are language extensions, and not merely high-level
allsto system fun
tions. The pre
ompiler has to re
ognize the language and keep a symbol table in order tosupport the s
oping rules and other features.The simulator may be linked with libraries that extend its fun
tionality. One set of libraries emulates3

various hardware features, e.g. a
ertain network topology or a
a
hing s
heme [8℄. Other libraries belongto di�erent versions of the parallel debugger. These libraries
ontain routines that monitor the programexe
ution, and provide data for a graphi
al display fa
ility [9℄. Even without these additions, the simulatorgives a detailed performan
e predi
tion by
ounting assembler instru
tions.The Makbilan resear
h multipro
essor
ontains up to 16 single board
omputers,
onne
ted by a MultibusII. Ea
h board has an Intel 80386 pro
essor running at 20 MHz, an 80387 mathemati
al
opro
essor, and4 MB of memory. A pro
essor
an a

ess the memory on another board through the bus, but this takeslonger than a lo
al a

ess. Hen
e the Makbilan is a non-uniform memory a

ess (NUMA) ar
hite
ture [10℄.Additional elements on the bus in
lude the Unix host, a terminal server, and a peripherals interfa
e
ard.It should be noted that ParC does no depend on this ar
hite
ture. It is fairly
ost e�e
tive to assemble asmall s
ale parallel ma
hine using several single board
omputers
onne
ted by a shared bus. The Makbilanis only one instan
e of su
h an ar
hite
ture. A shared memory that is a

essed through a
rossbar or amultistage network
ould also be used. ParC does not make any assumptions about the ar
hite
ture; it justrequires the ability to share the address spa
e a
ross all the pro
essors.Creating Parallelism: A
tivities and Shared VariablesThis se
tion des
ribes the essen
e of ParC : its parallel
onstru
ts, s
oping rules for sharing variables, andother spe
ial
onstru
ts related to parallel pro
essing. ParC is a superset of the C programming languageand so there is no need to review any of the standard features.Parallel Constru
tsParallel programs have two main sour
es of parallelism: loops and re
ursion. The parallel
onstru
ts in ParCare espe
ially designed to handle both
ases in an eÆ
ient and stru
tured manner. The parallel \things"generated by ParC are
alled a
tivities, in order to avoid overloaded terms su
h as \pro
ess" or \task".parforLoop parallelism is handled by the parfor
onstru
t, whi
h is a parallel version of the
onventional for loop.The syntax for this
onstru
t is: parfor (index; e1; e2; e3)stmtThe body of the loop, stmt,
an be any legal statement in ParC, in
luding a
ompound statement withpossible nested parallel
onstru
ts and fun
tion
alls. If it is a blo
k (
ompound statement), it
an de
lareits own private variables whi
h won't be known outside the s
ope of this blo
k, or by any of the otheriterations of the blo
k; this is elaborated below. The bodies of the distin
t iterates are exe
uted in parallel;the meaning of being exe
uted in parallel is dis
ussed in the se
tion entitled \The Meaning of Parallelism".A distin
t, lo
al
opy of the loop index is
reated for ea
h iterate; this is always an integer variable. Theindex variable
an be modi�ed without a�e
ting other a
tivities. By analogy to serial for loops, the numberof a
tivities is j e2�e1e3 k + 1. The index variable in a
tivity i is initialized to e1 + (i � 1)e3. Note that thisvariable is only de�ned within the parfor blo
k, and does not exist outside of its s
ope.Unlike the for loop, however, the expressions e1, e2, and e3 are evaluated only on
e, before any a
tivitiesare a
tually spawned. Moreover, it is illegal to dire
tly transfer
ontrol, via a goto statement, either into orout-of the body of the parfor
onstru
t.lparforThe lparfor
onstru
t is important for the
ommon
ase in whi
h the number of iterates in a parallel loop ismu
h larger than the number of pro
essors, P . If the iterates are independent, i.e. with no data dependen
ies,4

it would be more eÆ
ient to
hunk them and
reate only P a
tivities, one per pro
essor. Ea
h of these
hunked a
tivities would then exe
ute n=P of the iterates in a serial loop (where n = e2�e1e3 + 1 is the totalnumber of iterates). This saves the overhead asso
iated with spawning all the a
tivities, and improves thepossibility of using �ne-grain parallelism. ParC has a spe
ial
onstru
t that implements this optimization,
alled lparfor, with the l pre�x denoting lightweight. Using lparfor gives the
ompiler the opportunity togenerate more eÆ
ient
ode. Note that this
onstru
t does not add fun
tionality, it is useful only foroptimizations. The implementation
an
hoose to balan
e the load between the P a
tivities stati
ally, byallo
ating n=P iterates to ea
h, or dynami
ally, by using
hunked self s
heduling [11, 12, 13℄. This is afurther optimization that does not
hange the semanti
s.It was de
ided to add a spe
ial
onstru
t to the language instead of just adding a hint to the
ompiler, asfound in many
ommer
ial parallel languages, be
ause of the semanti
 impli
ations. lparfor expli
itly impliesthat the iterations are independent. A
orre
t program using parfor
onstru
ts may not be
orre
t if lparforis used instead. The reverse is not true | one may always repla
e an lparfor with a parfor without a�e
ting
orre
tness (just eÆ
ien
y).parblo
kThe parallelism that is found in re
ursion, su
h as that of divide and
onquer algorithms, is handled by theparblo
k
onstru
t: parblo
kf stmt-list:: stmt-listg(in general, more than two blo
ks are possible). However, this
onstru
t is more general than a spe
ialized
onstru
t for divide and
onquer, be
ause the
onstituent a
tivities are
oded individually. Note that thethree parallel
onstru
ts are redundant: a parblo
k and lparfor may be implemented using a parfor, forexample. But su
h implementations would be bulky and degrade
ode quality.Mapped Constru
tsAll three parallel
onstru
ts
an be quali�ed by the mapped keyword. This has the e�e
t of always mappinga
tivities to physi
al pro
essors in the same way. The exa
t mapping is implementation-dependent; a rea-sonable
hoi
e is round robin by the a
tivity index, i.e. mapping a
tivity i to pro
essor i mod P . The keyfeature is that in every instantiation of a mapped parallel
onstru
t, the i'th a
tivity will be mapped to thesame pro
essor. Hen
e these a
tivities have a lo
ality relationship. Advan
ed programmers
an make use ofthis feature to produ
e more eÆ
ient
ode on many ma
hines types. It gives the programmer some abilityto
ontrol the allo
ation of a
tivities to pro
essors without the burden of keeping tra
k of pro
ess IDs orexpli
it mapping. It also helps make
ode more readable by avoiding some syn
 statements.In the
urrent implementation, only the mapped lparfor
onstru
t is supported.Nesting of Parallel Constru
tsThe di�erent parallel
onstru
ts may be nested in arbitrary ways, and also mixed with regular C
onstru
ts.In all
ases, the a
tivity that exe
utes the parallel
onstru
t is suspended until all the
onstituent a
tivitieshave terminated. Nesting of parallel
onstru
ts thus
reates a tree of a
tivities, where only the leaves areexe
uting while internal nodes wait for their des
endents. Note that these
onstru
ts allow the user toexpress the spawning of a large number of a
tivities at on
e, while avoiding messy implementation andmapping details [14℄. Su
h details are delegated to the runtime system.General gotos are not allowed past the boundaries of parallel
onstru
ts. This is the only restri
tion inParC that is not
ompatible with C. 5

int sorted[n℄;void qui
ksort(arr1, arr2, left, right)f int i, l, r, n, splitter;n = right � left + 1;if (n == 1)sorted[left℄ = arr1[left℄;if (n <= 1)return;splitter = arr1[left℄;l = left;r = right;for (i=left+1; i<=right; i++) fif (arr1[i℄ < splitter)arr2[l++℄ = arr1[i℄;elsearr2[r��℄ = arr1[i℄;gsorted[l℄ = splitter;qui
ksort(arr2, arr1, left, l�1);qui
ksort(arr2, arr1, r+1, right);g

int sorted[n℄; /�shared array �/void qui
ksort(arr1, arr2, left , right)f int l, r, n, splitter; /�no de
laration for i �/n = right � left + 1;if (n == 1)sorted[left℄ = arr1[left℄;if (n <= 1)return;splitter = arr1[left℄;l = left;r = right;lparfor (i; left+1; right; 1) fif (arr1[i℄ < splitter)arr2[faa(&l,1) ℄ = arr1[i℄;elsearr2[faa(&r,�1) ℄ = arr1[i℄;gsorted[l℄ = splitter;parblo
k fqui
ksort(arr2, arr1, left, l�1);:: qui
ksort(arr2, arr1, r+1, right);ggFigure 2: Sequential and parallelized versions of qui
ksort. faa is an atomi
 fet
h-and-add operation (seethe se
tion on syn
hronization). Note that in the parallel version l and r are shared by all a
tivities in thelparfor, but ea
h re
ursive
all will
reate new
opies of l and r. There is only one
opy of the array sortedand it is shared by all a
tivities.An Example: Parallel Qui
ksortAs an example,
onsider the parallelization of a C program that implements the qui
ksort algorithm (left ofFigure 2). Two arrays are used alternately to
opy elements that are smaller or larger than the �rst elementin the segment. The �rst element is
opied to the output array at a lo
ation that is between the set ofsmaller values and the set of larger values. The re
ursion ends when the segment is empty or in
ludes asingle element; if there is a single element, it is
opied to the output array.The parallel version in ParC is given in the right of Figure 2. An lparfor is used to
ompare the elementsagainst a splitting value in parallel, dividing them into those that are larger and those that are smaller.As this implies parallel a

ess to the indi
es l and r, the atomi
 fet
h-and-add (faa) instru
tion is used toin
rement and de
rement them. Then a parblo
k is used to perform the two re
ursive
alls in parallel.S
oping RulesAn important feature of a programming language is its s
oping rules. In parallel languages, s
oping is oftenrepla
ed by expli
it de
larations that variables are either private or shared. We �nd that expli
it de
larationsare unne
essary, as the s
oping naturally leads to a ri
h sele
tion of sharing patterns. This is so be
auseParC is a real parallel language, not just a sequential language with
alls to a parallel run-time supportsystem, and the pre
ompiler understands the program stru
ture.6

parfor (i; 0; N�1; 1) fstati
 int s; /� shared by all N a
tivities �/int t; /� private to ea
h a
tivity �/faa(&s,1); /� must be updated atomi
ally �/t++; /� private variables need not be prote
ted �/gFigure 3: A variable de
lared as stati
 within the
onstru
t will a
tually be shared by all the a
tivities ofthe
onstru
t!Sharing Patterns in Nested Blo
ksThe s
oping rules of the C language
ome in two
avors: lo
al to a pro
edure and global. Within a pro
edurethere is a hierar
hi
al s
oping of variables, sin
e ea
h blo
k of
ode may
ontain a data de
laration se
tion.This is reminis
ent of the hierar
hi
al s
oping of Pas
al. The s
ope of global variables
an be limited to justthose pro
edures within the same �le by the stati
 statement.ParC allows parallel
onstru
ts to be freely nested inside of other parallel
onstru
tions. By preservingthe normal C language s
oping rules, variables de
lared within a blo
k (no matter if the blo
k is parallel orsequential)
an be a

essed by any of its nested statements (parallel or sequential). In parti
ular, if a nestedstatement is a parallel
onstru
t, all the spawned a
tivities will share the variables de
lared in the en
losingblo
ks. Global variables are shared among all the program a
tivities; stati
 variables and externals are also
onsidered global. The general rule is: if you
an see it, you
an use it. If more than one a
tivity
an seea variable, then that variable is shared, otherwise it is private. Every variable within a ParC program
anpotentially be shared. A private variable
an be
ome shared when a shared variable points to it.Lo
al variables de
lared within a blo
k are allo
ated on the a
tivity's sta
k. The s
oping rules thereforeimply a logi
al \
a
tus sta
k" stru
ture for nested parallel
onstru
ts. Note, however, that this is the
aseonly for nested parallel
onstru
ts in the same pro
edure. Code in one pro
edure
annot a

ess variableslo
al to the pro
edure that
alled it unless they are passed as arguments. It
annot modify them unless theyare passed by referen
e.An example of the hierar
hi
al s
oping rules in ParC was given already in Figure 2. The index variablei in the lparfor is lo
al in ea
h a
tivity, so there are many (spe
i�
ally, right� left) distin
t
opies of it. Thevariables l and r, however, are shared and must be prote
ted during their modi�
ation. This is done by theatomi
 faa (fet
h-and-add) operation.stati
 De
larationsThe C language was designed in the early '70s in the
ontext of writing the Unix operating system on a PDP11. It is remarkable that most of its features
an be used in ParC on parallel ma
hines with no ill-e�e
ts.A major ex
eption is the stati
 de
laration. In C, stati
 variables are persistent a
ross fun
tion invo
ations.The implementation is therefore to allo
ate storage for su
h variables from the global heap spa
e, ratherthan on the sta
k. In ParC, stati
 variables de
lared in a parallel blo
k be
ome shared by all the a
tivities,rather than being private to the de
laring blo
k (see Figure 3).For
ed TerminationParC a
tivities are logi
al stru
tures that are impli
itly spe
i�ed by the parallel
onstru
ts and
onsequentlyare not identi�ed by names or IDs. Therefore it is impossible for an a
tivity to dire
tly kill or terminate anyother a
tivity.However, sin
e a
tivities in ParC are generated by blo
k-stru
tured expressions, ParC does allow somelimited
ontrol over the exe
ution of the a
tivities within the
onstru
t. It is possible for an a
tivity to selfdestru
t or to kill a whole group of related a
tivities, by \jumping out" of a parallel
onstru
t. This is done7

Sample
ode:main()f m1f()m2gvoid f()f s1parblo
kf s2:: s3parfor (i; 1; 3; 1)s4is5:: s6gs7g

Snapshot of a
tivity tree:�Æ�
pb����� PPPPP�Æ�
s2 �Æ�
s6�Æ�
pf��� HHH�Æ �
s41 �Æ �
s42 �Æ �
s43The e�e
t of di�erent instru
tions exe-
uted by a
tivity s41 or a
tivity s2 atthis moment are:s41 does p
ontinue s41 does pbreak s41 does return�Æ�
pb����� PPPPP�Æ�
s2 �Æ�
s6�Æ�
pfHHH�Æ �
s42 �Æ �
s43
�Æ�
pb����� PPPPP�Æ�
s2 �Æ�
s6�Æ�
s5 �Æ�
m2

s2 does p
ontinue s2 does pbreak s2 does return�Æ�
pbPPPPP�Æ�
s6�Æ�
pf��� HHH�Æ �
s41 �Æ �
s42 �Æ �
s43
�Æ�
s7 �Æ�
m2

Figure 4: The e�e
t of p
ontinue, pbreak, and return when issued in a parallel
onstru
t.by the following ParC instru
tions, whose semanti
s when exe
uted inside a parallel
onstru
t are based onanalogies with serial
onstru
ts:p
ontinue | deletes the a
tivity that exe
utes it, without any e�e
t on its siblings. This is analogous to ajump to the end of the a
tivity's blo
k of
ode.pbreak | terminates the a
tivity with all its siblings and their des
endents, e�e
tively ending the parfor orparblo
k that generated them. As in C, this breaks out of the
onstru
t and is analogous to a jump tothe �rst instru
tion after the
onstru
t.return | returns from the last fun
tion
all, terminating all the a
tivities generated within this fun
tion.8

sear
h(arr, n, x)int �arr, n, x;f lparfor (i; 1; n; 1)if (arr[i℄ == x)return(i);return(�1);gFigure 5: An example of using a return
onstru
t within an lparfor
onstru
t. When a mat
h is found, allthe other a
tivities are terminated.Likewise, setjmp and longjmp allow to return to a previous state a
ross any number of fun
tion
alls.The p pre�x in p
ontinue and pbreak is required so that these instru
tions
an be used unambiguously evenwithin a sequential iterative
onstru
t nested inside a parallel
onstru
t.An example that
lari�es the e�e
t and highlights the di�eren
es between these instru
tions is given inFigure 4. Note that when a subtree is terminated, the root a
tivity may only resume after all the
onstituenta
tivities have terminated. It is not enough to start an asyn
hronous me
hanism that will
ause the subtreeto terminate (or, in the extreme
ase, just let it exe
ute to termination in parallel with the root), be
ausethe a
tivities in the subtree have a

ess to lo
al variables in the root. Indeed, it is implied that the wholema
hine be interrupted and the subtree terminated as fast as possible, to prevent situations where newa
tivities are generated at a higher rate than existing ones are terminated.The
ode in Figure 5 shows the use of the return statement within a parfor
onstru
t in a
ode fragmentof a parallel sear
h on all the elements of a large array. When a mat
h is found, the sear
h is terminatedby the return instru
tion that returns the index of the mat
hing
ell. The lparfor
onstru
t is used to redu
ethe overhead sin
e the size n of the array may be mu
h larger than P , but only P a
tivities will be spawnedand ea
h will loop over n=P elements.Syn
hronizationThe
losed parallel
onstru
ts are not suÆ
ient for all the syn
hronization needs of parallel programming.There is no wide-spread agreement as to what
onstitutes satisfa
tory high-level syn
hronization me
hanismsfor parallel languages. Some resear
hers emphasize data abstra
tion and mutual ex
lusion, and advo
atethe use of monitors or similar
onstru
ts. Others emphasize the relationship between syn
hronization and
ommuni
ation, and suggest me
hanisms that are based on message passing (e.g. the Ada rendezvous). Athird group suggests the use of events as the main me
hanism for pro
ess syn
hronization.The approa
h adopted for ParC is not to
hoose a spe
i�
 high-level primitive. Instead, a number of low-level syn
hronization primitives with di�erent
hara
teristi
s are provided. This allows the programmer to
reate various syn
hronization s
hemes, and to
ontrol the program behavior and the resulting performan
e.It is
ertainly possible that some high-level primitives will be added to the language if the programmingexperien
e indi
ates that they are useful for a large
lass of appli
ations.The three basi
 syn
hronization me
hanisms in ParC are:� Fet
h-and-add, denoted faa(&i,exp), is an atomi
 read-modify-write operation on integers. It has beenshown to be useful in a large number of algorithms [15, 16℄. Spe
i�
ally, faa
an be used to implementwait-free intera
tions, where a number of a
tivities operate on shared data stru
tures simultaneouslywithout having to wait for ea
h other. In addition, it
an be used for various syn
hronization s
hemesbased on busy waiting. An example of its use appears in the qui
ksort program of Figure 2. faais used there to allo
ate distin
t
ells in the array arr2 to di�erent a
tivities that all in
rement theindex variables at the same time. The atomi
 nature of this instru
tion alleviates the need for mutualex
lusion, and prevents unne
essary serialization.9

int a[N℄;parfor (i; 0; N�1; 1)f int t, tmp;a[i℄ = init val(i);syn
;for (t=0; t<T; t++) ftmp = f(a[i�1℄,a[i℄,a[i+1℄);syn
;a[i℄ = tmp;syn
;gg
int t, a[N℄, tmp[N℄;lparfor (i; 0; N�1; 1)a[i℄ = init val(i);for (t=0; t<T; t++) flparfor (i; 0; N�1; 1)tmp[i℄ = f(a[i�1℄,a[i℄,a[i+1℄);lparfor (i; 0; N�1; 1)a[i℄ = tmp[i℄;gFigure 6: Two examples of the initialization and use of private variables. In the �rst, a syn
 statement inembedded in the loop. In the se
ond, the two parallel
onstru
ts
learly show the sequentiality. The use ofthe lparfor should be eÆ
ient for large values of n, but it requires temporaries to be de�ned as shared arrays.lparfor
annot be used on the left be
ause the syn

reates a dependen
y between the iterations.� Semaphores
omplement the wait-free
apability of faa by providing an interfa
e through whi
h ana
tivity
an suspend itself waiting for an event. Variables of type semaphore may be de
lared, and theP and V operations may be applied to them with the usual semanti
s [17℄.� It is evident that barrier syn
hronization is a very useful primitive for parallel programming [18℄.We therefore added the syn
 instru
tion to ParC. This instru
tion implements a barrier that involvesall the a
tivities spawned by a
ertain parallel
onstru
t. Thus an a
tivity that exe
utes a syn
 issuspended until all its live siblings also exe
ute a syn
. If only a subset of these a
tivities perform asyn
 instru
tion, while the others loop forever or wait at a semaphore, deadlo
k will ensue. However,if a subset of these a
tivities terminate, only the remaining a
tivities have to perform a syn
. Inparti
ular, if all the awaited a
tivities terminate, the a
tivities waiting at the syn
 may pro
eed.It should be noted that the syn
 instru
tion is redundant, in the sense that it
an be implemented by usingsemaphores. However, its use is so
ommon that it is appropriate to provide a spe
ial instru
tion for it, andrelieve users from the implementation details.A
ommon use is to ensure that all variables that might be shared have been initialized before they area

essed (Figure 6 left). In this example, an array is initialized and then ea
h
ell is \relaxed". Alternatively,this
ould be done with separate parallel
onstru
ts, thus emphasizing the sequential nature of the operation(Figure 6 right). However, using separate
onstru
ts requires shared arrays for temporary values that haveto be maintained a
ross
onstru
ts. We note in passing that it is doubtful that any ma
hine
ould supporta naive implementation of the
ode on the left of this �gure (with the parfor
onstru
t) for large values of nas it would require a large number of a
tivities to be maintained.Two additional instru
tions allow users to in
uen
e the exe
ution of a
tivities on pro
essors, bypassingthe high level of abstra
tion provided by the other language
onstru
ts. For example, these instru
tionsallow the programmer to a
hieve e�e
ts similar to
o-routines. They are:yield | An a
tivity exe
uting this instru
tion expli
itly yields its pro
essor,
ausing a
ontext swit
h toanother ready a
tivity.swit
h on, swit
h o� | This allows the user to
reate nonpreemptable a
tivities. It is used to
hange thesemanti
s of the parallel
onstru
ts as de�ned below. The reasons for this option are dis
ussed inthe se
tion entitled \The Meaning of Parallelism". A nonpreemptable a
tivity may nevertheless bepreempted if it is for
ed to wait for some event. This happens if the a
tivity performs a syn
 instru
tion,10

a P on a semaphore, a yield, a blo
king I/O
ommand, or spawns additional a
tivities. Note that thisinstru
tion
annot be used to guarantee mutual ex
lusion, be
ause it has no e�e
t on a
tivities runingon other pro
essors.As an example illustrating the use of these instru
tions
onsider a global time-stamp me
hanism whi
h isuseful for programmonitoring and debugging. The idea is to initially
reate two a
tivities: a non-preemptablea
tivity, a

omplished via the swit
h o�
onstru
t, whi
h in
rements a \
lo
k" variable in an in�nite loop,and a regular a
tivity whi
h starts the parallel program. Whenever an interesting event o

urs, it
an belabeled with the
urrent
lo
k value. This provides a full ordering of the events that o

ur during programexe
ution. When the parallel program terminates, a pbreak
an be used to stop the
lo
k a
tivity. As anotherexample, the yield instru
tion
an be used to implement a two-phase blo
king me
hanism, whi
h might bemore eÆ
ient than busy-waiting [19℄.Implementation IssuesParC is a parallel programming language that, hopefully, will allow programmers to get high performan
efrom parallel
omputers. It is therefor important that the programmer have some idea as to how ParCimplements its
onstru
ts and how the data stru
tures get mapped. On the other hand, the goal of an easyto use language implies that the programmer need not know a whole lot about the implementation nor theunderlying ma
hine. In this se
tion, we try to give the appropriate amount of information to meet these two
on
i
ting goals.Similarly, it is important for the programmer to understand the meaning of the parallelism provided byParC . The language itself gives the programmer some
ontrol over how the a
tivities are a
tually exe
uted.Expli
it details of the runtime or operating system are therefore not needed.Mapping A
tivities and Data Stru
turesIn ar
hite
tures with non-uniform memory a

ess, su
h as the Makbilan, it is very important that a largepart of the memory referen
es be dire
ted to lo
al memory. Therefore the programmer must have somemeans to
oordinate the mapping of a
tivities to pro
essors and the mapping of data stru
tures to memorymodules. In ParC, this is done by the s
oping rules, the mapped lparfor
onstru
t, and memory allo
ationpro
edures.Threaded Sta
kVariables and data stru
tures that are de
lared within an a
tivity are not known to other a
tivities, ex
eptfor des
endents of the de
laring a
tivity. It is therefore reasonable to require that su
h variables reside in amemory module
lose to the pro
essor that runs that a
tivity. As the variables are allo
ated on the a
tivity'ssta
k, this implies that the sta
k should be allo
ated in the memory module adja
ent to the pro
essor thatruns the a
tivity. If run-time migration is used, the sta
k must be moved as part of the a
tivity
ontext. Asthe sta
k must retain its virtual address, this means that the page tables must also be modi�ed.The s
oping rules are implemented by the ParC pre
ompiler, by
hanging the referen
es to variablesde
lared in surrounding blo
ks to indire
t referen
es. Thus the run-time system does not have to
hainsta
ks to ea
h other expli
itly to
reate a full-
edged
a
tus sta
k, and it does not have to sear
h the sta
kto �nd the referen
ed variables [20℄. Instead, dire
t pointers to the variables lo
ation (typi
ally on anothera
tivity's sta
k) are available. We
all the resulting stru
ture of sta
ks with mutual pointers into ea
h othera threaded sta
k.An example is given in Figure 7. The two a
tivities in the parblo
k share the variable i de
lared beforethe parblo
k. Ea
h a
tivity is transformed by the pre
ompiler into a pro
edure that gets a pointer to i as itsargument. The fun
tion names and the arguments are passed as parameters to the do parblo
k fun
tion. Thisfun
tion is part of the run-time library. When it is
alled, it
reates new a
tivities on di�erent pro
essors.Ea
h a
tivity is
omplete with its own
all sta
k. An a
tivation re
ord for the a
tivity's fun
tion is
onstru
tedon the sta
k, and the appropriate arguments are
opied to it. The a
tivity
an then
ommen
e, and behavesas if the fun
tion was
alled on a remote pro
essor. 11

original
ode:main()f int i;parblo
kf int x;x = i;:: int y;i = y;gg
XXXXXXJJJJJ

������pre
ompilation

main()f int i;do parblo
k(f1,&i,f2,&i);gf1 (i)int �i;f int x;x = �i;gf2 (i)int �i;f int y;�i = y;gat run time:

parent a
tivitysta
ki
8><>:framefor main f1&if2&i

?
q
?q

8><>:framefordo parblo
k -ZZ ZZ ZZ ZZ ZZ~

opyarguments

a
tivity 1 sta
kx&iPPPPPPPPPPPi q � frame for f1
a
tivity 2 sta
ky&i�����������+
q � frame for f2

Figure 7: Implementation of the s
oping rules with threaded sta
ks.
12

Persistent Partitioned Data Stru
turesDataparallel programming languages have a de�
ien
y in spe
ifying the
ontrol stru
ture, i.e. whi
h pro
essor
omputes what. Likewise,
ontrol parallelism languages, of whi
h ParC is an instan
e, are often de�
ient inexpressing the data distribution. In many appli
ations, de
laring lo
al variables is not enough. Numerousparallel algorithms
all for the use of large shared data stru
tures, whi
h are partitioned among a set ofa
tivities. This means that ea
h a
tivity \owns" part of the data stru
ture, and that most of its
omputationrelates to this part. However, a
tivities
an also a

ess parts belonging to other a
tivities. For example, aparallel image pro
essing appli
ation may partition a large image into blo
ks. A separate a
tivity would beresponsible for ea
h blo
k, but it would have a

ess to neighboring blo
ks if ne
essary.Another problem with lo
al variables is that they only exist during the lifespan of the a
tivity thatde
lared them. It is not possible for one set of a
tivities to deposit data in a set of lo
al data stru
tures,and for another set of a
tivities to subsequently retrieve the data with the same lo
ality properties. Whatwe need is the ability to partition data stru
tures a

ording to a persistent pattern.A ParC programmer
an over
ome these problems by using the mapped lparfor
onstru
t and the mallo
system
all. As explained, the lparfor
onstru
t
reates no more than P a
tivities and when using the mappedvariant,
orresponding a
tivities in distin
t
onstru
ts will be mapped to the same pro
essor. If the userwants to
reate exa
tly one a
tivity on ea
h pro
essor, the prede�ned global variable pro
 no may be used.A persistent, two dimensional, shared array that is partitioned a
ross the pro
essors, may be
reated asshown in the
ode on the right of Figure 8. Its elements are referen
ed as any two dimensional array, and it�ts in well with the C notion of a ve
tor of pointers to ve
tors. First, a global array of pointers is de
lared.Then a set of a
tivities is spawned by a mapped lparfor. Ea
h a
tivity allo
ates persistent lo
al memory usingthe C mallo
 fun
tion; the de�nition of ParC guarantees that mallo
 use a lo
al heap. The addresses of thelo
al memory blo
ks are assigned to the global array. Re
all that although the heap is lo
al, it is a

essibleby all a
tivities. Also note that this
ode works for any number of pro
essors; the mapped
onstru
t alwaysperforms the same mapping of a
tivity to pro
essor.The implementation des
ribed here is not optimal; in fa
t, every array a

ess involves a non-lo
al a

essto the global pointer array. This is easily �xed by
opying the pointers to lo
al memory. We are
urrentlyexperimenting with this and other implementations of partitioned data stru
tures, and plan to de�ne newlanguage
onstru
ts to make their use easier based on the results.The Meaning of ParallelismAlthough the ParC
onstru
ts identify a
tivities that may run in parallel, a more pre
ise de�nition is requiredin order to fully de�ne the semanti
s as well as giving some indi
ation as to the performan
e
hara
teristi
s ofthe
onstru
ts. The phrase \exe
ute in parallel" is used in many di�erent ways, and most parallel languagesleave the exa
t semanti
s up to the implementation, obtaining an ad ho
 operational de�nition. We feel thatthe issue is far too important to be thus ignored. The ambiguities arise from the fa
t that the number ofphysi
al pro
essors in any ma
hine is limited and the fa
t that in MIMD mode the pro
essors may exe
uteat varying speeds. To resolve them, we must
hara
terize the way in whi
h ParC a
tivities are s
heduled.Thus we de�ne whi
h implementations give legal operational semanti
s.The problem is espe
ially severe in a shared memory model like that assumed by ParC. Computations infun
tional languages, for example, also
reate a tree of a
tivities. But due to the fa
t that fun
tional languagesprohibit side e�e
ts, there are no intera
tions between these a
tivities. Therefore the s
heduling de
isionsmay have some e�e
t on performan
e, but do not a�e
t the out
ome of the
omputation. Computationsbased on expli
it message passing let the run-time system know when one pro
ess is waiting for another.With shared memory, on the other hand, intera
tions are mediated by side e�e
ts. The run-time system
annot know that a busy-waiting pro
ess is not doing useful work. Good programs
an avoid undesireds
enarios by using syn
hronization me
hanisms supplied by the system to regulate the intera
tions. Butit is also important to de�ne what will happen if the syn
hronization is omitted, or implemented by theprogrammer.It is now fairly
ommon for parallel ma
hines to adhere to the di
tates of sequential
onsisten
y in orderto fa
ilitate our understanding of parallel programs [21℄. This requirement states that the results of parallelexe
ution of a program are the same as the results that would be obtained had the instru
tions from distin
t13

shared memory

Stored in

a[N]

a[N][N]

Stored in shared memory

N

N

N

N
Stored in the

local memories

/� whole array de
lared; ineÆ
ient �/int a[N℄[N℄;mapped lparfor (k; 0; N�1; 1)f initialize(a[k℄);gmapped lparfor (k; 0; N�1; 1)f int i;/� some use of owned array row �/if (k == 0 jj k == N�1) p
ontinue;for (i=1; i<N�1; i++) fa[k℄[i℄ = f(a[k�1℄[i℄, a[k℄[i�1℄,a[k+1℄[i℄, a[k℄[i+1℄);gg

/� partitioned array; eÆ
ient �/int �a[N℄;mapped lparfor (k; 0; N�1; 1)f a[k℄ = (int �) mallo
(N�sizeof(int));initialize(a[k℄);gmapped lparfor (k; 0; N�1; 1)f int i;/� some use of owned array row �/if (k == 0 jj k == N�1) p
ontinue;for (i=1; i<N�1; i++) fa[k℄[i℄ = f(a[k�1℄[i℄, a[k℄[i�1℄,a[k+1℄[i℄, a[k℄[i+1℄);ggFigure 8: The left side of the �gure illustrates the usual two dimensional array in shared memory. In theright side the array is partitioned among the pro
essors' memories. This is a
hieved as shown in the ParC
ode. Its elements are referen
ed as any two dimensional array and �ts in well with the C notion of ve
tor ofpointers to ve
tors. The mapped version of lparfor ensures that the indexed a
tivities will always be mappedto the same physi
al pro
essor.parallel a
tivities been interleaved and exe
uted in some serial ordering. So if instru
tions A and B exe
utein parallel, the results are as if either A was exe
uted before B or B before A.The ideal semanti
s of a parallel
onstru
t would
ompletely de�ne the interleaving. This would leadto a deterministi
 exe
ution of shared-memory parallel programs. For example, we
ould require that theinterleaving emulate a priority CRCW PRAM: this is done by exe
uting one instru
tion at a time from ea
ha
tivity in a
y
le, with the a
tivities ordered lexi
ographi
ally. Regrettably, it is not pra
ti
al to requiresu
h semanti
s. The overhead involved in enfor
ing them would by far outweigh the bene�ts of parallelism.The problem is that if the interleaving is not
ompletely de�ned, the program exe
ution is indeterminate.As a
onsequen
e, distin
t exe
utions of the same program may lead to di�erent results, and even to di�erentbehaviors. For example, one exe
ution may spawn many more a
tivities then another, or one exe
ution mayterminate with a result while another enters an in�nite loop. It is therefore impossible to spe
ify the exa
tsemanti
s of ParC programs. In the absen
e of formal semanti
s, we make do with a spe
i�
ation of a set14

int x=1;parblo
kf while (x==1) /� do nothing �/;:: x = 0;gFigure 9: An example of an extreme
ase where it is
riti
al that the programmer understand the underlyingexe
ution model. In a nonpreemptive system, this
ode might never terminate.of rules to guide the implementation of a ParC system.As noted above, the manner of interleaving instru
tions from di�erent a
tivities may have an e�e
t onprogram termination, in addition to the obvious e�e
t on a

ess to shared variables. The implementationrules attempt to redu
e the probability of adverse e�e
ts su
h as deadlo
k and non-termination. They try to�t the intuitive understanding of what \exe
uting in parallel" means, thus (hopefully) redu
ing the
han
eof unpleasant surprises. We show that this is equivalent to a requirement for fairness.Preemption of Exe
uting A
tivitiesUsing a multipro
essor with P pro
essors, only P a
tivities
an exe
ute at any given time. The pool ofready a
tivities, however,
an be expe
ted to be larger than P . The implementation rules de�ne when andin what order a
tivities join and leave the set of P
urrently exe
uting a
tivities.There are two options for the removal of an a
tivity from the exe
uting set: (i) voluntary, letting it rununtil it suspends, requests to be removed expli
itly, or terminates, or (ii) preemptive, for
ing it to relinquishthe pro
essor after a
ertain time quantum. Preemption ensures a degree of fairness between the a
tivities.It is equivalent to a situation in whi
h all the a
tivities exe
ute all the time, but use asyn
hronous pro
essors.Thus it is guaranteed that none are delayed inde�nitely while others pro
eed. The arguments for and againstpreemption are the following:For preemption� The user should per
eive ea
h a
tivity as a virtual pro
essor, and should be able to
reate intera
tionsand interdependen
ies between these virtual pro
essors. An extreme example is given in the
odesegment of Figure 9: Without preemption,
ode su
h as this might deadlo
k. Note that all the softwarealgorithms for mutual ex
lusion are like this [17℄.� Corre
tness (e.g. termination) should not depend on the number of pro
essors that are available, eventhough performan
e may be e�e
ted. The user should not be for
ed to take this into a

ount.� The goal is to shift the burden from the programmer to the
ompiler and system. For example, theabove
ode segment will be eÆ
ient if gang s
heduling is used [22℄.� Naive programmers might expe
t too mu
h from a system that guarantees that a
tivities \run to
om-pletion". For example, la
k of preemption does not guarantee mutual ex
lusion in parallel systems.Minor
hanges su
h as adding print statements for debugging might
ause a
tivities to be preemptedunexpe
tedly, surprising the users. Su
h e�e
ts lead the designers of Amoeba to
omment that \prob-ably the worst mistake in the design of Amoeba 4.0 pro
ess management me
hanisms was the de
isionto have threads run to
ompletion, that is, not be preemptable" [23℄.Against preemption 15

int x=1;main()f parblo
kff(&x):: x = 0;ggvoid f(int �y)f if (�y==1)parblo
k ff(y);:: f(y);gg

int x=1;main()f f(x);gvoid f(int y)f if (y<1000)parblo
k ff(y+1);:: f(y+1);ggFigure 10: Examples of
odes that support the use of breadth-�rst exe
ution (on the left) and depth-�rstexe
ution (right). In either
ase, using the other exe
ution method might lead to an explosion of a
tivities.� Only users knows what is going on, so they should have full
ontrol over the system. The systemshould not surprise the user by suddenly preempting one task and s
heduling another, be
ause thenthe user would not be able to analyze the performan
e of the program.� As the model is asyn
hronous, the programmer must use expli
it syn
hronization to regulate theexe
ution. Code without expli
it syn
hronization need not be supported as there is no formal notionof
orre
tness [24℄.� Preemption introdu
es additional overhead due to
ontext swit
hing, and degrades
a
he performan
e[25℄.It seems that preemption would provide a friendlier environment for the naive user, but might annoy aseasoned parallel programmer. The implementation rules for ParC are therefore a
ompromise. The defaultrule is that preemption be used. However, sophisti
ated users that want full
ontrol may override this ruleby using the yield, swit
h on, and swit
h o� instru
tions des
ribed in the se
tion on syn
hronization.A
tivity Sele
tionThe se
ond question is the order in whi
h a
tivities join the exe
uting set. If the number of a
tivities ex
eedsP , some a
tivities will have to wait before they
an start exe
ution. The pool of waiting a
tivities
an beorganized as a FIFO queue or a LIFO sta
k. Viewing the tree of a
tivities that are generated, this
hoi
ewill determine whether the tree is traversed in a breadth-�rst or a depth-�rst order1.The impli
ations of the order of exe
ution are subtle. Consider the two
ode segments shown in Figure10. The argument for breadth-�rst ordering is based on the
ode on the left. This
ode might deadlo
kdespite the use of preemption if depth-�rst ordering is used, be
ause new a
tivities are generated all the timeand they prevent the exe
ution of the only a
tivity that
an terminate the program. A
tually this s
enariowill probably
ause a system failure due to an in�nite re
ursion. The argument for depth-�rst ordering is1Note that this is an abuse of terminology, as P bran
hes of the tree are traversed in parallel in any
ase.16

also based on problems in dealing with deep re
ursion. For example, the
ode on the right would require21000 a
tivities to be started if it is done breadth �rst, but only a thousand if it is done depth �rst. Hen
ein this
ase it is breadth-�rst that will probably lead to system failure.While both of these examples lead to the same e�e
t (the generation of huge numbers of a
tivities), thereis a di�eren
e. The
ode on the right is looking for trouble by expli
itly asking for the
reation of 21000a
tivities; using depth-�rst is a system optimization that might get it out of trouble despite itself. The
odeon the left, on the other hand, is perfe
tly reasonable if we use a natural extension to the notion of fairnessthat motivates the use of preemption. The extension requires that fairness be maintained not only betweenindependent a
tivities, but also between bran
hes in the tree of a
tivities. In other words, an a
tivity is
harged not only for its own exe
ution but also for the exe
ution of its des
endents. When a
ertain a
tivityand its des
endents exe
ute for too long, the whole bran
h is preempted, giving other bran
hes a
han
e toexe
ute. Therefore the breadth-�rst approa
h is advo
ated for ParC.Note that fairness is advo
ated as a pra
ti
al matter, not a theoreti
al issue. We extend the work doneon fairness in nondeterministi
 systems, su
h as CSP, and
laim that it is important also for indeterministi
systems2. Regrettably, even with fairness it is impossible to de�ne the semanti
s of an indeterministi
shared-memory program. However, in many
ases fairness will improve program behavior and ease the taskof parallel programming.Experien
e with ParCParC has been in use for several years at Hebrew University and has served as the vehi
le for the annual
ourse on parallel algorithms. In this se
tion, we review this experien
e, and the strengths and weaknessesof the language.ParC has lived up to its
harter of providing a platform for undergraduate students to gain experien
ewith parallel programming. The parallel algorithms
ourse has su

essfully trained both graduate andundergraduate
omputer s
ien
e students. The main exer
ises in parallel programming usually
ould bea

omplished by identifying the most intensive inner loops of an appli
ation and repla
e the for loop withthe parfor
onstru
t. While this simple modi�
ation rarely leads to signi�
ant speedups, it reveals the
hallenges of parallel pro
essing. One is immediately fa
ed with the problem of
olle
ting the partial resultsof ea
h iteration. The faa primitive makes this task easier. For example, the
onjugate gradient method hasbeen programmed and a
hieved a speedup between 3 and 5 using 8 pro
essors using this simple method.The large varian
e in speedup is due to the sparsity of the input matrix and to the di�erent
onvergen
espeeds from the parallel and sequential versions.Two detailed examplesParC is both simple enough to qui
kly get a working program with reasonable performan
e and ri
h enoughto allow a knowledgeable programmer to squeeze out additional performan
e. The following examples showhow performan
e-enhan
ing transformations may be applied to a parallel program. The main idea is to startwith a simple parallelization, and then to re�ne it to get better performan
e. In the �rst example the simpleparallelization possible with ParC gives good performan
e to begin with, and extensive additional opti-mizations a

rue only limited bene�ts. In the se
ond example the simple parallelization is not enough, andadditional work is needed to improve memory lo
ality. In both
ases, it is easy to express the optimizationsusing features of ParC.
17

int A[N℄, j;for (j=lg(N)�1; j>=0; j��) fparfor (i; 0; 2��j�1; 1)add(&A[i℄, A[i+2��j℄);gFigure 11: A simple ways to sum N numbers in ParC . The �nal sum is
ontained in A[0℄. Sin
e the iteratesare independent, an lparfor
onstru
t should be used.int A[N℄;parfor (i; 0; N/2�1; 1) fint j; /� private due to s
oping rules �/for (j=lg(N)�1 ; j>=0 ; j��) fif (i>=2��j) p
ontinue; /� terminate top half �/add(&A[i℄, A[i+2��j℄);syn
; /� expli
it barrier ea
h iteration �/ggFigure 12: An optimization to avoid the expli
it generation and termination of a
tivities during ea
h of thelg(N) iterations. But many systems are unable to maintain a large number of waiting a
tivities.Ve
tor Summation ExampleConsider the
al
ulation of the sum of the elements of an array. For simpli
ity, assume that both the sizeof the array N, and the number of pro
essors P, are powers of two3. The basi
 parallel algorithm is tosum element pairs, then pairs of pairs, and so on, resulting in a tree stru
ture. It is easier to express thisalgorithm if the pairs are not taken as adja
ent elements, but rather as elements that are half an array apart.The
ode presented in Figure 11 is a ParC version of this pro
edure (with relaxed notation, e.g. use of 2��jfor exponentiation).This formulation is
onvenient in that it in
ludes an impli
it syn
hronization at the end of ea
h iteration,be
ause a new parfor is spawned for ea
h one. But this
osts the overhead asso
iated with the parfor, whi
his mu
h higher than the overhead of syn
hronization alone. An lparfor
onstru
t
an be used to redu
e thisoverhead.Another potential transformation is to avoid the
reation and termination of the a
tivities in ea
h itera-tion. This is a
hieved by reorganizing the
ode and putting the sequential for loop inside the parfor, addingan expli
it syn
hronization at the end of ea
h iteration. This version is shown in Figure 12. Note that nowan lparfor
annot be used, be
ause the syn
 introdu
es a dependen
y between the a
tivities.The number of a
tivities is halved in ea
h iteration and the syn
 instru
tion \knows" the number ofparti
ipating a
tivities. However, in many
ases the array is mu
h larger than the number of pro
essors andso, sin
e an lparfor
onstru
t
annot be used, it is then advisable to
hunk the
omputation by hand. Thisis done by spawning only P a
tivities and have ea
h one take
are of a number of values. Indeed, for largevalues, the
ode in Figure 12
ould not exe
ute on the Makbilan as there were too many a
tivities for thesystem to maintain.The
ode in Figure 13 implements the \
hunking" optimization. The original lg(N) iterations are now2Nondeterminism o

urs when a
ertain language
onstru
t allows an arbitrary
hoi
e between a number of options. Su
h
onstru
ts exist in several message passing languages, e.g. the sele
t statement in Ada and the ALT
onstru
t in O

am.Indeterminism is when the
hoi
es are not expli
it, and the program behavior
an
hange at any moment due to di�eren
es inthe exe
ution rates of di�erent pro
esses. This may happen in shared memory programs that do not syn
hronize a

esses toshared variables.3ParC provides the number of pro
essors in a variable named pro
 no. We use P here for short.18

int A[N℄, P=pro
 no; /� the number of a
tual pro
essors �/parfor (i; 0; N/2�1; N/2P) fint j, k,
nk=N/2P; /� private due to s
oping rules �/for (j=lg(N)�1; j>=0; j��) fif ((j<lg(P)) && (i>=2��j))p
ontinue; /� terminate top half in last lg(P) iterations �/for (k=i; k<i+
nk; k++) /� loop on private
hunk �/add(&A[k℄, A[k+2��j℄);if (j > lg(P)) f /� shift to lower part of the array in �rst phase �/i = i/2;
nk =
nk/2;gsyn
; /� expli
it barrier ea
h iteration �/ggFigure 13: The �nal hand-optimized
ode. It does slightly better than the �rst lparfor version.Time (Speedup)Number of PEs 1 2 4 8 16Sequential 2620(1.00)Sum1 (parfor) 6380(0.41) 3315(0.79) 1885(1.39) 950(2.76) 485(5.40)Sum1 (lparfor) 2660(0.98) 1360(1.92) 865(3.03) 440(5.95) 235(11.15)Sum3 2635(0.99) 1340(1.96) 845(3.10) 425(6.16) 220(11.91)Table 1: The result of adding together 4096 numbers (with an expensive add operation to
ompensate forthe memory
on
i
ts). The �rst line is the time using a simple for loop. The two lines labeled \Sum1" arefrom the
ode in Figure 11, and \Sum3" is from the
ode in Figure 13.split into two phases. In the �rst lg(N)�lg(P) iterations, there are more a
tivities than array elements.Ea
h a
tivity then loops on the array elements that are assigned to it (this is the loop with index k). Theassignment
hanges from one iteration to the next, as the partial sums are
reated in the lower half of thearray. In the �nal lg(P) iterations, the number of a
tivities is halved with ea
h iteration, and the assignmentdoes not
hange any more, as it was in the previous example.We implemented these four variants on the Makbilan parallel ma
hine. In order to
ompensate for theproblems with memory
ontention, we in
reased the
omplexity of the addition operation (a dummy loop of500 iterations was the overhead per ea
h
all to the add routine). The experiments
onsisted of summingtogether 4096 numbers. The se
ond version
ould not run be
ause of the large number of a
tivities that hadto be maintained. The results are shown in Table 1. We see that the simplest parfor version was indeed ratherslow, but the lparfor version
ame quite
lose to the sequential time for 1 pro
essor and with 16 pro
essorsgot a speedup of more than 11 times the best sequential time (2620/235). The hand optimized version with
hunking only did slightly better than that, indi
ating that using lparfor
an save signi�
ant amount of work.A Matrix Multipli
ation ExampleAs another example,
onsider matrix multipli
ation where the arrays are partitioned between the lo
almemories of the pro
essors. Using the mapped version of lparfor, a number of arrays may be manipulated inparallel. 19

int ��A, ��B, ��C;void init()f A = (int ��) mallo
(N); B = (int ��) mallo
(N); C = (int ��) mallo
(N);mapped lparfor (i; 0; N�1; 1) fint j;A[i℄ = (int �) mallo
(N); B[i℄ = (int �) mallo
(N); C[i℄ = (int �) mallo
(N);for (j=0; j<N; j++) fA[i℄[j℄ = init A(i,j); B[i℄[j℄ = init B(j,i);gggFigure 14: Initialization of three partitioned arrays for the matrix multipli
ation example.
mapped lparfor (i; 0; N�1; 1)f int k, t, sum, �a, �b, �
;a = A[i℄;
 = C[i℄;for (k=0; k<N; k++) fb = B[k℄;sum = 0;for (t=0; t<N; t++)sum += a[t℄ � b[t℄;
[k℄ = sum;gg

mapped lparfor (i; 0; P�1; 1)f int j, k, t, sum, �a, �b, �b rem, �
;int bot, top;bot = i�N/P;top = bot+N/P;b = (int �) mallo
(N);for (k=bot; k!=(bot�1)%N; k=(k+1)%N) fb rem = B[k℄;for (j=0; j<N; j++)b[j℄ = b rem[j℄;for (j=bot; j<top; j++) fa = A[j℄;
 = C[j℄;sum = 0;for (t=0; t<N; t++)sum += a[t℄ � b[t℄;
[k℄ = sum;gggFigure 15: Two versions of matrix multipli
ation. The �rst assumes nothing about the ma
hine, using themapped lparfor
onstru
t. The se
ond knows that it is better to exploit and reuse lo
al memory. It allo
atesjust one a
tivity per physi
al pro
essor, and
opies ea
h
olumn of B to lo
al memory before using it.
20

Time (Speedup)Number of PEs 1 2 4 8 16MM (lparfor N) 32740(1.00) 20580(1.59) 14045(2.33) 8080(4.05) 8175(4.00)MM (lparfor P) 31990(1.00) 16210(1.97) 10215(3.13) 5075(6.30) 2570(12.45)Table 2: The result of matrix multipli
ation with partitioned arrays. The �rst row shows the behavior ofthe simple
oded version (left side of Figure 15). Improved performan
e
an be attained through better useof lo
al memory and attempts to avoid memory
on
i
ts (right side of Figure 15). Note that the speedupsare relative to the exe
ution on a single PE, not relative to a separate sequential version.Figure 14 shows how the partitioned arrays are allo
ated. Note that the mapped lparfor
onstru
t ensuresthat partition i will be lo
al to a
tivity with index i. Matri
es A and C are stored in row-major, and ea
hpartition is interpreted as a band of rows. Matrix B is stored in
olumn major.We present two versions of the body of the matrix multipli
ation
ode. The �rst assumes nothing aboutthe ma
hine, using the mapped lparfor
onstru
t. The results (�rst row of Table 2) show some improvementin run time as the number of pro
essors in
reases, but it levels of at a speedup of 4 for 8 PEs and thenstarts to degrade. The reason is that while all a

esses to A and C are lo
al, a

esses to B are almost alwaysremote.The se
ond version exploits and reuses lo
al memory by allo
ating just one a
tivity per real pro
essor(the initialization must be similarly modi�ed, but is not shown). Then, ea
h
olumn of the array B is
opiedfrom shared memory to a lo
al array. It is then used for the entire sli
e of the array A that is lo
al. Notethat the
ode is parametrized by P, the real number of physi
al pro
essors, and thus adjusts to the availableparallelism. Signi�
ant improvements result, as seen from the se
ond row of Table 2; a speedup of almost12.5 for 16 pro
essors.Other Appli
ationsStudents have also gotten signi�
ant speedups on more
omplex appli
ations, e.g. a speedup of 10.9 using16 pro
essors for an FFT appli
ation. Here again, the implementation was fairly simpleminded: a butter
ynetwork was simulated in shared memory and an a
tivity was
reated for ea
h of the nodes in the network.Message passing between the nodes was done in shared memory with
ags used to indi
ate the presen
e ofdata.As expe
ted, sorting programs were popular among students. One interesting variant on sorting tried toavoid the bottlene
ks on the shared bus of the Makbilan. The ParC program limited its parallelism to theparallelism inherent in the system, i.e. the number of pro
essors. Ea
h pro
essor radix sorted its assigneddata and then only a few were allowed to distribute their bu
kets to the other pro
essors. In the mean time,the other pro
essors
ontinued radix sorting with their bu
kets, so that the data transferred would be moresorted. Surprisingly, this method was not noti
eably better than allowing all the pro
essors a

ess to thebus. This is due to the fa
t that the lo
al work is so large.Another interesting appli
ation parallelized the usual fra
tal demonstration program. Several di�erentmethods were tried. Initially, ea
h pro
ess generated its own strip. But due to the di�ering amounts of work,load balan
ing was added to the program. Ea
h pro
ess
al
ulated its rate of progress and
ompared it tothe global average. If it was too slow, it split its remaining work and pla
ed part of it in a global workpile.When a pro
ess was �nished with its work, it would take extra work from the global workpile. This s
hemewas
ompared to the automati
 balan
ing within the ParC runtime system by simply spawning o� a newa
tivity with the extra work. Be
ause of
ontext swit
hing overheads, it turned out to be better to do theload balan
ing within the program. ParC made it very easy to explore these alternatives.Most students �nished when they had working, (mostly)
orre
t implementations. A few
ontinued toinvestigate improvements. These improvements mostly were in exploiting memory lo
ality, programming loadbalan
ing, and avoiding ex
essive pro
ess
reation and termination. Finally, sin
e the
ourse was attendedby
omputer s
ien
e students, there was a stronger desire to develop programming and environmental tools21

for parallel programming rather than to run appli
ations themselves. Computer s
ientists rarely
are aboutthe result of a program | the program exe
ution holds more interest than its output. As a
onsequen
e,there were debuggers, visualizers, runtime systems, and automati
 load balan
ing systems developed withinthe ParC environment.Alas, debugging ParC programs was not an easy task, although we believe that there are features thatmake it easier to debug ParC programs than parallel programming languages based on message passing.Many ParC programs
an be easily serialized: simply repla
e the parfor statement with a for statement.Most of the bugs have been simple ones, but were hard to tra
k down be
ause students suspe
ted subtletiming bugs or strange parallel exe
ution possibilities, overlooking the simple possible
auses. For the mostpart, the
ommon ParC bugs have to do with
onfusion between what is lo
al and what is global | e.g.having a for loop with a global index variable inside a parallel
onstru
t.Comparison With Other LanguagesThere are many parallel ma
hines in existen
e and various ways of programming them. Many parallellanguages do not use an imperative style; rather, the parallelism is impli
it in the way the
omputation is
arried out, as in fun
tional and logi
 languages [26, 27℄, or else is is left as a
hallenge for the
ompiler[28℄. As ParC is an imperative language with expli
it
ontrol parallelism, we will only
ompare it with otherlanguages of the same type.In a nutshell, ParC may be
hara
terized as a language providing a shared-memory, MIMD, asyn
hronousmodel of
omputation, with dynami
 spawning of parallel a
tivities, and hierar
hi
al s
oping rules thatprovide a sense of lo
ality. We know of no other language with all these features. The following paragraphslist various parallel languages and point out the di�eren
es between them and ParC.Programming ModelMost of the imperative parallel languages are designed for distributed ar
hite
tures rather than for sharedmemory ma
hines [1℄. The O

am [29℄, Ada [30℄, Joy
e [31℄, Con
urrent C [32℄, and Cosmi
 C [33℄ languages,for example, provide fa
ilities for syn
hronous or asyn
hronous message passing between parallel pro
esses.This allows for eÆ
ient implementations on both shared-memory and message-passing ar
hite
tures. How-ever, programs written in these languages
annot utilize the full possibilities a�orded by shared-memoryar
hite
tures, be
ause they do not allow shared variables.Languages like Linda [34℄ or Swarm [35℄ provide a shared data spa
e, whi
h is like ParC , but theyla
k s
oping and a sense of lo
ality. This is partly due to the fa
t that these languages support a
ontent-addressable asso
iative memory, rather than a traditional lo
ation-addressable shared memory as in ParC.Split-C is another language that supports a non-traditional shared memory model [36, 37℄. A

ess to theshared address spa
e is mediated by a
tive messages, and spe
i�
ally asyn
hronous \put" and \get" ofmemory blo
ks to and from other PEs. The a

essing PE
an then
he
k (of busy wait) on a lo
al
ag tosee when the put or get
ompletes. Hen
e assignment from a remote lo
ation is a split-phase operation.The pC language uses the Ma
h task/thread model: threads in the same task share a
at addressspa
e, but
annot a

ess the address spa
es of other tasks [38℄. This gives a two-tier memory. Con
urrentC allows users to use the available shared memory on unipro
essor and shared-memory multipro
essorimplementations, for fear that users would refuse to use the system if this was prohibited [39℄. No languagesupport su
h as s
oping is given, and worse, implementations that la
k shared memory (e.g. LAN-based)
annot exe
ute programs that rely on this feature.In fa
t, languages designed expli
itly for shared memory MIMD ma
hines seem to be rather s
ar
e. Manyinstallations use simple thread pa
kages, that allow multiple threads that share the whole address spa
e.On the other hand, there do exist a number of SIMD languages that e�e
tively allow data sharing throughpointers or array indexes [40, 41, 42, 43℄. The main limitation in these languages is that all the parallel
omputations are identi
al, and must pro
eed in lo
kstep. This is relaxed in some re
ent languages su
h asHPF [44℄, where the
omputations are only loosely syn
hronous.Finally, some parallel languages are tailored very
losely to a spe
i�
 ar
hite
ture. This is espe
iallytypi
al in languages designed for ve
tor ma
hines, where the desire is usually for high ve
tor performan
e.22

This implies very simple and regular stru
tures that �t the ma
hine's ve
tor registers. Clarity, portability,and ease of programming are sa
ri�
ed [45, 46℄. While this
an result in eÆ
ient
ode for loops, it is not ageneral approa
h, and spe
i�
ally does not support the parallelism of divide-and-
onquer algorithms.Expressing the Sharing PatternsAs noted above, some parallel languages for the shared memory model allow all a
tivities to a

ess the fulladdress spa
e. Therefore there are no means to de�ne sharing patterns. Examples in
lude HPF [44℄ andother dataparallel languages, and well as the Linda Tuple Spa
e [47, 34℄.Some partitioning of the address spa
e is provided by the two-level task/thread s
heme used in pC [38℄.All threads
reated within the
ontext of the same task share that task's address spa
e. However they
annot a

ess the address spa
es of other tasks. In addition, a

essibility is not ne
essarily
orrelated withlo
ality. Split-C exposes the lo
ality by providing spe
ial operations (put and get) to a

ess remote memory[36, 37℄. A number of systems go a step further and introdu
e spe
ial annotations that tag variables asprivate or shared [48, 49℄. This is useful as an indi
ation of where the variable should be stored in a NUMAar
hite
ture. For example, on the Cedar system the degree of sharing di
tates whether a variable is storedin a
luster memory or in the global memory [50, 51℄.An alternative approa
h is to initially allow all variables to be shared, but during exe
ution to limitthe a

ess to
ertain a
tivities as needed. Obviously this is pra
ti
ed wherever mutual ex
lusion is used,but here we are talking of having spe
ial
onstru
ts for it in the language. One example is the use of
he
k-in/
he
k-out operations [52℄. Another example is the \with"
onstru
t in Jade [53, 54℄.S
oping rules like those used in ParC were proposed for programming the NYU Ultra
omputer [55℄.Expressing the ParallelismIt is often desirable that parallel programs should express the parallelism inherent in the algorithm andnot what is physi
ally available, to allow eÆ
ient implementations on di�erent ar
hite
tures [59℄. Thereforelanguages should be
apable of expressing massive parallelism. This
an be done by parallel loop
onstru
tsand re
ursion. Surprisingly, many parallel languages pla
e various limitations on the spawning of parallela
tivities. O

am does not allow re
ursion, making it pra
ti
ally impossible to
ode divide-and-
onqueralgorithms [29℄. Those languages that do have a parallel loop
onstru
t do not use it to de�ne s
opingboundaries. For example, O

am provides
losed parallel
onstru
ts that are similar to those of ParC, butit does not support shared variables. Fortrans with a parallel-do
onstru
t typi
ally assume that there areno intera
tions between iterations (like ParC 's lparfor) [45℄.Some languages have low-level unstru
tured support for parallelism. Dijkstra has observed that
losedparallel
onstru
ts (su
h as those provided by ParC) promote a stru
tured style, just like the
losed
ontrolstru
tures advo
ated for sequential languages [17℄. While this idea has
aught on in sequential languages,and the use of goto has all but disappeared, most parallel languages still supply fork and join primitivesinstead of
losed
onstru
ts; examples in
lude Ada [30℄ and Con
urrent C [32℄. In many
ases, su
h asthe C-threads pa
kage [56℄ and MPC [14℄, the support for parallelism is limited to a dire
t interfa
e to therun-time system.Many other systems have no dire
t support for expressing parallelism within the language | they assumea
opy of the program is exe
uted on ea
h pro
essor (the SPMD paradigm) [57℄. For example, this is the
ase in Con
urrent Pas
al [58℄ and in Split-C [36, 37℄, where it is required be
ause the use of a
tive messagesdepends on the fa
t that all nodes have the same memory image.Two systems that provide
apabilities somewhat similar to those of ParC are pC and the split-join model.pC has a parfor
onstru
t with exa
tly the same syntax as the C for loop, whi
h is more general that theparfor in ParC. The pri
e is that the implementation must �rst exe
ute the
ontrol sequentially to �gure outhow many iterations there are, and then spawns the threads [38℄. The split-join model takes the oppositeapproa
h. Rather than using parallel
onstru
ts to
reate more a
tivities, su
h
onstru
ts are used to splitthe existing a
tivities into groups that will work on di�erent tasks [60℄. The total number of a
tivities is
onstant and limited to the number of pro
essors. When the tasks are �nished the groups re-join to
reatethe original larger group. 23

ParC is unique in the way it deals with shared memory, and integrates s
oping, syn
hronization, andfor
ed termination with the blo
k stru
ture that is used to express the parallelism. Note that the ParC
onstru
ts are part of the blo
k stru
ture of the language, just like serial loops or
onditionals. Thus ea
ha
tivity is just a blo
k of
ode (a
ompound statement), as opposed to languages in whi
h parallelism is
reated by de�ning pro
esses or modules (e.g. Ada [30℄ and Joy
e [31℄). Thus ParC is suitable for theexpression of very �ne-grain parallelism. Of
ourse, a
tivities may also be quite large and may
all fun
tions.Expressing syn
hronizationSyn
hronization me
hanisms in shared memory environments typi
ally fall into two
ategories. One is me
h-anisms asso
iated with spe
i�
 a

ess to a spe
i�
 shared data stru
ture, in order to guarantee
onsisten
y.Examples in
lude all the various me
hanisms to ensure mutual ex
lusion, su
h as semaphores [17℄, monitors[58℄, lo
ks [61, 62℄,
he
k-in/
he
k-out [52, 63℄, and with [53, 54℄. The other
ategory is me
hanisms used todelimit program phases, on
e it is known that there are no data ra
es within ea
h phase. Examples in
ludethe barrier syn
hronization [18, 64℄, rendezvous [30, 65℄, and join [66℄.Another
lassi�
ation distinguishes among syn
hronization me
hanisms a

ording to their e�e
t on thea
tivity that uses them. Spe
i�
ally, there is a di
hotomy between those me
hanisms that
ause the a
tivityto blo
k, and those that allow the a
tivity to just probe the syn
hronization
ondition. If the
ondition is notmet, the a
tivity
an then pro
eed with some other work. Many blo
king me
hanisms were imported from
on
urrent languages that were designed to ease the programming of multitasking unipro
essor systems[67, 14℄. In su
h systems blo
king is the only reasonable alternative. Re
ently there is mu
h interest inwait-free primitives, whi
h are more suitable to truly parallel systems [68℄. Examples in
lude various read-modify-write instru
tions su
h as test-and-set [69℄, fet
h-and-add [15℄, and
ompare-and-swap [70℄.ParC provides a repertoire of low level primitives, that
over di�erent syn
hronization behaviors, bothblo
king (semaphores and barrier) and wait-free (fet
h-and-add). High-level primitives may be added ifprogramming experien
e indi
ates that
ertain
onstru
ts are espe
ially useful.Con
lusionsParC is a promising C language extension for
oding shared memory parallel algorithms. Unlike variousma
ro pa
kages that just provide a

ess to lightweight pro
esses supported by the system, ParC integratesthe parallelism into the blo
k stru
ture of the language. This results in a natural pattern of shared andprivate variables, based on the
onventional s
oping rules of C, and also allows for high-level instru
tions toterminate whole bran
hes of a parallel program and to syn
hronize a set of a
tivities. To summarize, thesalient features of ParC are:� Closed parallel
onstru
ts that
an be freely nested.� Control over allo
ation and mapping of a
tivities that does not involve detailed knowledge of theunderlying ar
hite
ture.� No expli
it de
larations of shared variables | variables are shared when parallel a
tivities
an seethem.� High level primitive for a
tivity and group termination.� Ability to exploit distributed, shared, NUMA memory of many MIMD ma
hines.The ideal semanti
s for a ParC program are that all the a
tivities a
tually exe
ute in parallel on distin
tpro
essors. However, the number of a
tivities in a program may surpass the number of physi
al pro
essorsthat are available. When some a
tivities are blo
ked from exe
ution, deadlo
k may ensue if there areinterdependen
ies between exe
uting and blo
ked a
tivities. We advo
ate the use of preemption and breadth-�rst exe
ution of the a
tivity tree to provide a degree of fairness that would avoid su
h situations.The basi
 features of ParC were �rst de�ned in 1985, and a simulator that provides support for themhas been in use sin
e 1986 (for histori
al reasons, the a
tual syntax of ParC as re
ognized by the original24

ompiler is marginally di�erent from that des
ribed here). This system in
ludes a
apa
ity to link librariesand C
ode, a graphi
al debugger, exe
ution
ontrol, and exa
t time measurements. A run time system thatsupports all the ParC features des
ribed in this paper on the Makbilan resear
h multipro
essor has beenoperational sin
e 1991. It is being used for resear
h on runtime systems and as a programming platform forparallel algorithms
lasses.A
knowledgementsParC was �rst developed by Yosi Ben-Asher. Some extensions were later added by Izhar Matkevi
h andDana Ron. The
ompiler and simulator were written by Yosi Ben-Asher, Mar
elo Bilezker, and Itzik Nudler.The initial port to the Makbilan multipro
essor was done by Omri Mann and Coby Metzger. An improvedrun-time environment on the Makbilan was implemented by Dror Feitelson, Moshe Ben Ezra, and LiorPi
herski. For
ed termination was implemented by Yair Friedman. Dror Zernik and Danny Citron wrote apa
kage for monitoring and graphi
al display of program exe
ution. Martin Land has kept the hardware upand running. Larry Rudolph has supervised the proje
t sin
e its in
eption. Lively dis
ussions between theauthors and Dror Zernik, Moshe Ben Ezra, Lior Pi
herski, and Sharon Broude, all members of the Makbilanresear
h group, were material in de�ning the semanti
s of various parallel
onstru
ts.Referen
es[1℄ H. E. Bal, J. G. Steiner, and A. S. Tanenbaum, `Programming languages for distributed
omputingsystems'. ACM Comput. Surv. 21, 261{322 (1989).[2℄ C. M. Pan
ake, `Multithreaded languages for s
ienti�
 and te
hni
al
omputing'. Pro
. IEEE 81, 288{304 (1993).[3℄ T. Merrow and N. Henson, `System design for parallel
omputing'. High Perform. Syst. 10, 36{44(1989).[4℄ G. C. Fox, `Appli
ations of parallel super
omputers: s
ienti�
 results and
omputer s
ien
e lessons'.In Natural and Arti�
ial Parallel Computation, M. A. Arbib and J. A. Robinson (eds.),
hap. 4, MITPress, 1990.[5℄ Y. Ben-Asher, G. Haber, and L. Rudolph, `Improving par
ti
al parallel
ode using SIMPARC: a parallelC simulator'. Manus
ript, Institute of Computer S
ien
e, The Hebrew University, Jerusalem (1992).[6℄ D. G. Feitelson, Y. Ben Asher, M. Ben Ezra, I. Exman, L. Pi
herski, L. Rudolph, D. Zernik, `Issuesin run-time support for tightly-
oupled parallel pro
essing'. In Symp. Experien
es with Distributed andMultipro
essor Systems (SEDMS) III, 27{42 (1992).[7℄ L. Rudolph, D. G. Feitelson, I. Exman, D. Zernik, Y. Ben Asher, M. Ben Ezra, and L. Pi
herski, `Run-time support for parallel language
onstru
ts in a tightly
oupled multipro
essor'. Te
hni
al reportmanus
ript, Institute of Computer S
ien
e, The Hebrew University, Jerusalem (1993).[8℄ B. Shaibe, `Performan
e of
a
he memory in shared-bus multipro
essor ar
hite
tues: an experimentalstudy of
onventional and multi-level designs'. Master's Thesis, Institute of Computer S
ien
e, TheHebrew University, Jerusalem (1989).[9℄ D. Zernik and L. Rudolph, `Animating work and time for debugging parallel programs - foundation andexperien
e'. In ACM ONR Workshop on Parallel and Distributed Debugging, 46{56 (1991).[10℄ Y. Ben-Asher and D. G. Feitelson, `Performan
e and overhead measurements on the Makbilan'. Te
h-ni
al Report 91-5, Dept. Computer S
ien
e, The Hebrew University of Jerusalem (1991).[11℄ C. D. Poly
hronopoulos and D. J. Ku
k, `Guided self s
heduling: a pra
ti
al s
heduling s
heme forparallel super
omputers'. IEEE Trans. Comput. C-36, 1425{1439 (1987).25

[12℄ S. F. Hummel, E. S
honberg, and L. E. Flynn, `Fa
toring: a method for s
heduling parallel loops'.Comm. ACM 35(8), 90{101 (1992).[13℄ T. H. Tzen and L. M. Ni, `Trapezoid self-s
heduling: a pra
ti
al s
heduling s
heme for parallel
ompilers'.IEEE Trans. Parallel & Distributed Syst. 4, 87{98 (1993).[14℄ D. Vrsalovi
, Z. Segall, D. Siewiorek, F. Gregoretti, E. Caplan, C. Fineman, S. Kravitz, T. Lehr, andM. Russinovi
h, `MPC - multipro
essor C language for
onsistent abstra
t shared data type paradigms'.In 22nd Ann. Hawaii Intl. Conf. System S
ien
es, I:171{180 (1989).[15℄ A. Gottlieb, B. Luba
hevsky, and L. Rudolph, `Basi
 te
hniques for the eÆ
ient
oordination of verylarge numbers of
ooperating sequential pro
esses'. ACM Trans. Prog. Lang. Syst. 5, 164{189 (1983).[16℄ C. P. Kruskal, `Algorithms for repal
e-add based para
omputers'. In Intl. Conf. Parallel Pro
essing,219{223 (1982).[17℄ E. W. Dijkstra, `Co-operating sequential pro
esses'. In Programming Languages, F. Genuys (ed.),pp. 43{112, A
ademi
 Press, 1968.[18℄ P. O. Frederi
kson, R. E. Jones, and B. T. Smith, `Syn
hronization and
ontrol of parallel algorithms'.Parallel Computing 2, 255{264 (1985).[19℄ J. K. Ousterhout, `S
heduling te
hniques for
on
urrent systems'. In 3rd Intl. Conf. Distributed Com-puting Systems, 22{30 (1982).[20℄ S. F. Hummel and E. S
honberg, `Low-overhead s
heduling of nested parallelism'. IBM J. Res. Dev.35, 743{765 (1991).[21℄ L. Lamport, `How to make a multipro
essor
omputer that
orre
tly exe
utes multipro
ess programs'.IEEE Trans. Comput. C-28, 690{691 (1979).[22℄ D. G. Feitelson and L. Rudolph, `Gang s
heduling performan
e bene�ts for �ne-grain syn
hronization'.J. Parallel & Distributed Comput. 16, 306{318 (1992).[23℄ A. S. Tanenbaum, R. van Renesse, H. van Staveren, G. J. Sharp, S. J. Mullender, J. Jansen, andG. van Rossum, `Experien
es with the Amoeba distributed operating system'. Comm. ACM 33(12),46{63 (1990).[24℄ S. V. Adve and M. D. Hill, `Weak ordering - a new de�nition'. In 17th Ann. Intl. Symp. ComputerAr
hite
ture Conf. Pro
., 2{14 (1990).[25℄ J. C. Mogul and A. Borg, `The e�e
t of
ontext swit
hes on
a
he performan
e'. In 4th Intl. Conf.Ar
hite
t. Support for Prog. Lang. & Operating Syst., 75{84 (1991).[26℄ P. Hudak, `Con
eption, evolution, and appli
ation of fun
tional programming languages'. ACM Comput.Surv. 21, 359{411 (1989).[27℄ E. Shapiro, `The family of
on
urrent logi
 programming languages'. ACM Comput. Surv. 21, 413{510(1989).[28℄ D. Klappholz, A. D. Kallis, and X. Kong, `Re�ned C: an update'. In Languages and Compilers forParallel Computing, D. Gelernter, A. Ni
olau, and D. Padua (eds.), 331{357, MIT Press (1990).[29℄ INMOS Ltd., O

am Programming Manual. Prenti
e-Hall, 1984.[30℄ United States Department of Defen
e, Referen
e Manual for the Ada Programming Language. ANSIMIL-STD-1815, 1983.[31℄ P. Brin
h Hansen, `A multipro
essor implementation of Joy
e'. Software | Pra
t. & Exp. 19, 579{592(1989). 26

[32℄ N. H. Gehani and W. D. Roome, `Con
urrent C'. Software | Pra
t. & Exp. 16, 821{844 (1986).[33℄ C. L. Seitz, `Con
urrent ar
hite
tures'. In VLSI and Parallel Computation, R. Suaya and G. Birtwistle(eds.),
hap. 1, Morgan Kaufmann Publishers, In
., 1990.[34℄ S. Ahuja, N. Carriero, and D. Gelernter, `Linda and friends'. Computer 19(8), 26{34 (1986).[35℄ G-C. Roman and K. C. Cox, `Implementing a shared dataspa
e language on a message-based multipro-
essor'. In 5th Intl. Workshop Software Spe
i�
ation & Design, 41{48 (1989).[36℄ T. von Eiken, D. E. Culler, S. C. Goldstein, and K. E. S
hauser, `A
tive messages: a me
hanism forintegrated
ommuni
ation and
omputation'. In 19th Ann. Intl. Symp. Computer Ar
hite
ture Conf.Pro
., 256{266 (1992).[37℄ D. E. Culler, A. Dusseau, S. C. Goldstein, A. Krishnamurthy, S. Lumetta, T. von Ei
ken, and K. Yeli
k,`Parallel programming in Split-C'. In Super
omputing '93, 262{273 (1993).[38℄ R. Canetti, L. P. Fertig, S. A. Kravitz, D. Malki, R. Y. Pinter, S. Porat, and A. Teperman, `The parallelC (pC) programming language'. IBM J. Res. Dev. 35, 727{741 (1991).[39℄ R. F. Cmelik, N. H. Gehani, and W. D. Roome, `Experien
e with multiple pro
essor versions of Con-
urrent C'. IEEE Trans. Softw. Eng. 15, 335{344 (1989).[40℄ J. R. Rose, `C*: a C++-like language for data parallel
omputation'. In Usenix C++ Papers, 127{134(1987).[41℄ W. D. Hillis, The Conne
tion Ma
hine. MIT Press, 1985.[42℄ R. H. Perrott, D. Crookes, and P. Milligan, `The programming language ACTUS'. Software | Pra
t.& Exp. 13, 305{322 (1983).[43℄ J. T. Kuehn and H. J. Siegel, `Extensions to the C programming language for SIMD/MIMD parallelism'.In Intl. Conf. Parallel Pro
essing, 232{235 (1985).[44℄ D. B. Loveman, `High Performan
e Fortran'. IEEE Parallel & Distributed Te
hnology 1, 25{42 (1993).[45℄ A. H. Karp, `Programming for parallelism'. Computer 20(5), 43{51 (1987).[46℄ A. H. Karp and R. G. Babb II, `A
omparison of 12 parallel Fortran diale
ts'. IEEE Software 5(5),52{67 (1988).[47℄ D. Gelernter, `Generative
ommuni
ation in Linda'. ACM Trans. Prog. Lang. & Syst. 7, 80{112 (1985).[48℄ H. F. Jordan, `The For
e'. In The Chara
teristi
s of Parallel Algorithms, L. H. Jamieson, D. B. Gannon,and R. J. Douglass (eds.), 395{436, MIT Press (1987).[49℄ M. A. Ni
hols, H. J. Siegel, and H. G. Dietz, `Data management and
ontrol-
ow aspe
ts of anSIMD/SPMD parallel language/
ompiler'. IEEE Trans. Parallel & Distributed Syst. 4, 222{234 (1993).[50℄ R. Eigenmann, J. Hoe
inger, G. Jaxon, Z. Li, and D. Padua, `Restru
turing Fortran programs forCedar'. In Intl. Conf. Parallel Pro
essing, I:57{66 (1991).[51℄ U. Meier and R. Eigenmann, `Parallelization and performan
e of
onjugate gradient algorithms on theCedar hierar
hi
al-memory multipro
essor'. In 3rd Symp. Prin
iples & Pra
ti
e of Parallel Program-ming, 178{188 (1991).[52℄ M. D. Hill, J. R. Larus, S. K. Reinhardt, and D. A. Wood, `Cooperative shared memory: software andhardware for s
alable multipro
essors'. In 5th Intl. Conf. Ar
hite
t. Support for Prog. Lang. & OperatingSyst., 262{273 (1992). 27

[53℄ M. S. Lam and M. C. Rinard, `Coarse-grain parallel programming in Jade'. In 3rd Symp. Prin
iples &Pra
ti
e of Parallel Programming, 94{105 (1991).[54℄ M. C. Rinard, D. J. S
ales, and M. S. Lam, `Jade: a high-level, ma
hine-independent language forparallel programming'. Computer 26(6), 28{38 (Jun 1993).[55℄ J. Edler, A. Gottlieb, C. P. Kruskal, K. P. M
Auli�e, L. Rudolph, M. Snir, P. J. Teller, and J. Wilson,`Issues related to MIMD shared-memory
omputers: the NYU Ultra
omputer approa
h'. In 12th Ann.Intl. Symp. Computer Ar
hite
ture Conf. Pro
., 126{135 (1985).[56℄ E. C. Cooper and R. P. Draves, C Threads. Te
hni
al Report CMU-CS-88-154, Dept. Computer S
ien
e,Carnegie-Mellon University, Jun 1988.[57℄ F. Darema, D. A. George, V. A. Norton, and G. F. P�ster, `A single-program-multiple-data
omputa-tional mode for EPEX/FORTRAN'. Parallel Computing 7, 11{24 (1988).[58℄ P. Brin
h Hansen, `The programming language Con
urrent Pas
al'. IEEE Trans. Softw. Eng. 1, 199{207(1975).[59℄ L. G. Valiant, `A bridging model for parallel
omputation'. Comm. ACM 33(8), 103{111 (1990).[60℄ E. D. Brooks, III, B. C. Gorda, K. H. Warren, and T. S. Wel
ome, `Split-join and message passingprogramming models on the BBN TC2000'. Te
hni
al Report UCRL-ID-107022, Lawren
e LivermoreNational Laboratory (1991).[61℄ L. Rudolph and Z. Segall, `Dynami
 de
entralized
a
he s
hemes for MIMD parallel pro
essors'. In 11thAnn. Intl. Symp. Computer Ar
hite
ture Conf. Pro
., 340{347 (1984).[62℄ M. Heuser, `An implementation of real-time thread syn
hronization'. In Pro
. Summer USENIX Te
h-ni
al Conf., 97{105 (1990).[63℄ D. A. Wood, S. Chandra, B. Falsa�, M. D. Hill, J. R. Larus, A. R. Lebe
k, J. C. Lewis, S. S. Mukherjee,S. Pala
harla, and S. K. Reinhardt, `Me
hanisms for
ooperative shared memory'. In 20th Ann. Intl.Symp. Computer Ar
hite
ture Conf. Pro
., 156{167 (1993).[64℄ R. Gupta, `The fuzzy barrier: a me
hanism for high speed syn
hronization of pro
essors'. In 3rd Intl.Conf. Ar
hite
t. Support for Prog. Lang. & Operating Syst., 54{63 (1989).[65℄ N. Gammage and L. Casey, `XMS: a rendevous-based distributed system software ar
hite
ture'. IEEESoftware 2(3), 9{19 (1985).[66℄ R. S. Nikhil, G. M. Papadopoulos, and Arvind, `*T: a multithreaded massively parallel ar
hite
ture'.In 19th Ann. Intl. Symp. Computer Ar
hite
ture Conf. Pro
., 156{167 (1992).[67℄ G. R. Andrews and F. B. S
hneider, `Con
epts and notations for
on
urrent programming'. ACMComput. Surv. 15, 3{43 (1983).[68℄ M. Herlihy, `Wait-free syn
hronization'. ACM Trans. Prog. Lang. & Syst. 13, 124{149 (1991).[69℄ J. E. Burns, `Mutual ex
lusion with linear waiting using binary shared variables'. SIGACT News 10,42{47 (1978).[70℄ H. S. Stone, High-Performan
e Computer Ar
hite
ture. Addison-Wesley, 2nd ed. (1990).
28

