
Parallel I/O Systems and Interfacesfor Parallel ComputersTo appear (possibly revised) inMultiprocessor Systems | Design and IntegrationC.L. Wu (Ed.), World Scienti�c Publication Co., 1995Dror G. Feitelson, Peter F. Corbett, Yarsun Hsu, Jean-Pierre ProstIBM T. J. Watson Research CenterP. O. Box 218Yorktown Heights, NY 105981 IntroductionContinued improvements in processor performance have exposed I/O subsystems as asigni�cant bottleneck, which prevents applications from achieving full system utiliza-tion [33, 54]. This problem is exacerbated in massively parallel processors (MPPs),where multiple processors are used together. As a result, I/O subsystems have be-come the focus of much research, leading to the design of parallel I/O hardware andmatching system software.The requirement driving the work on I/O subsystems is the desire to achieve abalanced system [8]. The degree to which a system is balanced is typically expressedby the F=b ratio, which is de�ned as the ratio of the rate of executing
oating pointoperations (F) to the rate of performing I/O, in bits per second (b). A widely acceptedrule of thumb, attributed to Amdahl, calls for F=b � 1. While this was originallyexpressed in instructions rather than
oating point operations, there is evidence thatthis requirement holds for computationally intensive numerical codes as well [20].Given the high rate of increase in performance of processors, and the lower im-provement rate of disks, F=b � 1 leads to the use of multiple disks in parallel. Thishas the advantage of being able to use multiple heads at once, increasing through-put, but introduces reliability problems. The common solution is to encode the datawith some level of redundancy, so that if one disk fails the data can be reconstructedfrom the others [33]. The resulting organization is called a RAID, for RedundantArray of Independent Disks. The encoding typically involves calculating the parity ofdata striped across a set of disks, and storing the parity itself on another disk. Thisapproach is now widely accepted in industry [9].It should be noted that RAID de�nes how data is stored and protected, but notthe interface for data access. Most systems use a conventional serial interface, wherethe whole RAID operates as a single device that just happens to have a larger capacityand higher bandwidth. In parallel systems such an interface is often limiting, becausethe data needs to be accessed in parallel by multiple processors. Therefore parallel1

controller

workstation
file

server

LAN

compute
node

compute
node

compute
node

compute
node

gateway

I/O node

I/O node

in
te

rc
on

ne
ct

io
n

ne
tw

or
k

MPPMSS

HiPPI

Figure 1: The I/O architectures of MPPs resembles that of LAN-connected workstationsat two levels: �rst, there is internal I/O from compute nodes across the MPP's intercon-nection network to I/O nodes, and then there is I/O from the MPP as a whole acrosshigh-bandwidth channels to external mass storage systems.interfaces have been developed for MPPs. The idea of redundant encoding is oftenused under the parallel interface, e.g. as a number of independent RAIDs that areaccessed in parallel.The general trend in recent years is toward network-connected I/O devices [32].In a typical o�ce environment, this means diskless workstations served by dedicated�le servers. In an MPP, this structure can be seen at two levels (Fig. 1). First,there is internal I/O from compute nodes to I/O nodes. Compute nodes are thecomputation engine of the MPP, and are used to run parallel user applications. Interms of hardware, they often use the same components as workstations. I/O is thenperformed over the MPP's internal high-performance interconnection network. SuchI/O operations are serviced by dedicated I/O nodes with disks. These nodes do notrun user applications: rather, they are the MPP's internal dedicated I/O servers, justlike the dedicated �le servers found on LANs.The second level is external I/O to mass storage systems (MSS) that are used2

for archival storage. At this level, the MPP as a whole uses some high bandwidthlink (typically HiPPI) to transfer data to and from the MSS. This is often mediatedby special gateway nodes, that are specially con�gured to support the required high-bandwidth transfers. The MSS acts as a dedicated I/O server for the MPP, andpossibly for other systems as well.This chapter is about internal parallel I/O systems in MPPs. Section 2 deals withthe architecture of such parallel I/O subsystems. Section 3 discusses the semantics ofparallel I/O operations, and reviews the interfaces used to express di�erent semantics.Section 4 is about implementation issues and their performance implications. Finally,section 5 presents the conclusions.2 Parallel I/O ArchitecturesWhile some parallel machines are dedicated to a single application, most supportmultiprogramming. This means that multiple user jobs can execute at once, usingspace-slicing, time-slicing, or a combination of both [19]. In such an environment, I/Odevices become a shared resource. Consequently it is undesirable to couple the I/Oresources with any speci�c application. Rather, I/O devices should be independentand equally accessible by all. This approach has the added advantage that one jobwill not be perturbed by I/O operations of another job, as would be the case if theI/O devices were tightly coupled to the �rst job in some way.Based on such arguments, most vendors of parallel machines elect to have dedi-cated I/O nodes act as an internal shared I/O server. These I/O nodes are used forstorage of persistent data, i.e. data that is supposed to outlive any single instanceof an application's execution. Examples include the Connection Machine CM-5 fromThinking Machines Corp. [65, 40], the nCUBE hypercube [26], the Intel iPSC hy-percubes [56] and Paragon mesh, the Meiko Computing Surface CS-2, and the IBMScalable POWERparallel system SP2. Even the MasPar SIMD array processor hasan internal parallel I/O system. While this is based on a large dedicated memorybu�er that interfaces the computational array to the disk arrays (rather than on I/Onodes), it is accessible in parallel via the router network [49]. The only major MPPsthat do not have internal I/O nodes are the Cray T3D and Fujitsu VPP500. TheCray T3D currently uses a Cray Y-MP front-end to service I/O. However, it can havea number of I/O gateway nodes connected to the front-end, and plans call for thegateway nodes to connect directly to I/O controllers and through them to devices [34].The Fujitsu VPP500 also uses a front end, which is also connected via a number ofcontrol processors [48].In addition to persistent storage, there may be need for temporary storage usedonly during a single execution. Examples include swap space for virtual memory, ortemporary storage for explicit overlays and out-of-core computations [64]. This spacecan be supplied as part of the shared space on the dedicated I/O nodes. Alternatively,additional I/O devices can be connected to the compute nodes, reducing the load and3

SCSI-2

control network data network

network

interfaceand memory

processor

8 MB disk buffer

channel

SCSI-2

channel

SCSI-2

channel

SCSI-2

channelFigure 2: A CM-5 I/O node (called a Disk Storage Node in CM-5 terminology) [44].congestion on the shared resource. Such additional I/O devices are available on theIBM SP2 and the Meiko CS-2. I/O devices can also be connected to all nodes of theKSR1 machine, which can double as both compute nodes and I/O nodes [22].2.1 Example: the CM-5 Scalable Disk ArrayThe Connection Machine CM-5 is the last model out of Thinking Machines Corpo-ration, and has been available since 1992 [65]. The compute nodes in this machineare based on SuperSPARC microprocessors with 4 optional vector units. The inter-connection network has a fat-tree topology, implemented as a multi-stage network.The machine can be partitioned into partitions that correspond to sub-trees in thenetwork. Each partition also has a control workstation.I/O nodes | called \disk storage nodes" (DSN) in CM-5 terminology | are alsoSPARC-based. Each DSN has 8 disks, each with a sustained bandwidth of about 1.5MB/s (Fig. 2). The aggregate bandwidth is therefore a close match to the 20 MB/sbandwidth provided by the data network. An 8 MB bu�er is used to stream databetween the disks and the network. DSNs are usually packed in groups of 3. Thewhole set of DSNs taken together form the I/O partition, which is called the \scalabledisk array" (SDA). This is a partition of the machine just like other partitions, andalso corresponds to a subtree of the network (see Fig. 3).The system comes in a number of scales, which measure the number of stages in its4

system network compute-heavy balanced I/O-heavysize ports CN ION F=b CN ION F=b CN ION F=bscale 3 64 32 2 29.8scale 4 256 128 6 37.9 64 9 12.6 32 12 4.7scale 5 1024 512 12 78.6 256 24 19.4 128 48 4.7Table I: Suggested con�gurations for the CM-5E. Figures are from Thinking MachinesCorp. sales brochures. CN is the number of compute nodes, ION is the number of I/Onodes, and F=b is computed as the ratio of advertised peak
ops to data transfer rate.network. Each scale has a certain number of network ports. These ports can be usedto connect compute nodes, I/O nodes, or other I/O devices (for example, a HiPPIgateway requires 8 network ports, so as to match the high bandwidth of the HiPPIchannel). By using di�erent numbers of compute nodes and I/O nodes, it is possible tocreate di�erent con�gurations for compute-heavy or I/O-heavy installations. Speci�ccon�gurations suggested by Thinking Machines are compared in Table I. Note thatin all cases the provided F=b ratio is larger than 1.2.2 I/O Node PlacementWhile using dedicated I/O nodes prevents I/O operations from directly in
uencingother jobs, the separation is not always complete. Obviously, if multiple jobs performI/O operations at the same time, these operations will cause some con
icts at theshared I/O nodes. But there is also a danger of con
icts in the interconnectionnetwork. I/O is necessarily implemented by messages sent from the compute nodesto the I/O nodes and vice versa. These messages can interfere with other messages inthe network, thus degrading application performance. Whether or not this happensdepends on the network design (Fig. 3). For example, the CM-5 data network isdesigned so that each application executes in a separate partition of compute nodes,with a dedicated part of the network [40]. The I/O nodes also form a separatepartition. In addition, interpartition tra�c (such as I/O tra�c from an applicationpartition to the I/O partition) uses another part of the network, that does not belongto any partition. Therefore I/O tra�c does not have any e�ect on jobs that are notperforming I/O themselves.The Intel Paragon design, on the other hand, does not have this feature. Whileapplications still execute on partitions of compute nodes, messages can sometimesuse links that are external to the partition. In addition, messages from one partitionto another (such as I/O tra�c) can pass through partitions that are in the way, usingthe same links that are used by the application running in that partition. This cancause noticeable congestion and degradation in communication performance for suchapplications [42].Other systems, such as the IBM SP2 and Meiko CS-2, do not necessarily con-centrate all the I/O nodes into an I/O partition. These machines are based on a5

Intel Paragon design:

job A job B I/O partition

I/O traffic from job A does not interfere with job B

job A job B I/O
I/O traffic from job A

passes through job B

CM-5 design:

Figure 3: I/O from one job may cause interference with the communication of anotherjob, depending on the network design.multi-stage interconnection network. The network is not partitioned as it is in theCM-5, so message passing tra�c and I/O tra�c from di�erent jobs can interfere witheach other. As any node in the system can be designated as a compute node or anI/O node, there is an opportunity to decrease the interference with I/O by a judiciouschoice of network ports for the I/O nodes. However, it is not yet clear how to do so.One approach that has been suggested is to spread the I/O devices evenly acrossthe machine, to provide some degree of locality between compute nodes and I/Odevices [57, 61]. However, this is questionable for two reasons. First, it imposesrestrictions on the compute nodes used to run applications, because these must matchI/O nodes that already contain persistent data to be used by the application. Second,given that interconnection networks in MPPs are much faster than disks, the correctmodel is that all the persistent storage is equally distant from all compute nodes [2].The physical placement is actually immaterial.6

However, the physical placement does a�ect network contention, and speci�cally,interference between message passing tra�c belonging to applications and that be-longing to I/O. If either of these patterns creates a signi�cantly higher load thanthe other, concentrating the involved nodes in one place will cause contention anddegraded performance [4]. It is then best to distribute the nodes throughout the ma-chine, thereby also distributing the communication volume throughout the network.On the other hand, distributing the I/O nodes throughout the system impliesthat they come between adjacent compute nodes. This could impair message passingperformance within an application. For example, an IBM SP2 frame can contain upto 16 nodes. A 16-process parallel job can therefore be loaded onto a single frame,and use that frame's high-performance switch exclusively. But if some of the frame'snodes are I/O nodes, the 16-process job must span two frames, and use the inter-frame links. In some con�gurations (where frames are connected directly to eachother, rather than using an additional switching stage), these have lower aggregatebandwidth and are therefore more susceptible to contention [63]. Such scenarios areavoided if I/O nodes are concentrated in a separate frame of their own.2.3 Sustained vs. Peak BandwidthAs with computation capabilities, I/O sometimes also exhibits a wide gap betweenadvertised peak bandwidth and the bandwidth that is sustained in practice by applica-tions. For example, applications running on the Touchstone Delta typically achievedonly 4 MB/s aggregate bandwidth using CFS (Intel's Concurrent File System [56]),even though the system had 32 I/O nodes with a disk bandwidth of about 1 MB/seach [47].Various factors can lead to performance problems with parallel I/O. In many cases,these are related to the fact that multiple processes are performing I/O operations atthe same time, to the same �les. Examples include:� Network contention in accessing the I/O nodes. If there are many more computenodes than I/O nodes, the I/O nodes may become network hot spots.� Lack of bu�er space, leading to thrashing [51]. This happens when the bu�ercaches on the I/O nodes are insu�cient for the combined tra�c from all thecompute nodes.� Ine�cient disk scheduling due to interleaved requests for data at di�erent o�sets.This can be o�set by appropriate software mechanisms. It is discussed at lengthin Section 4.Some of the problems encountered in various systems can be attributed to evolvingcomplex software systems, that never quite catch up with hardware developments.But in many cases it appears that the problem lies with system con�guration. Manyinstallations use the
exibility provided by parallel systems to beef-up the compute7

I/O node
processor

SCSI

controller

network

adapter

SCSI string

I/O bus

memory

Figure 4: The bandwidth obtained from an I/O node depends on the component withthe lowest bandwidth.power and advertised peak Flops of their machine, and do not invest commensurateresources in I/O. As a result, the systems are unbalanced to begin with. The I/Onodes are underpowered relative to the compute nodes, and as a result they are over-whelmed by I/O requests and performance deteriorates. Thus it is doubly importantto install su�cient I/O capabilities in parallel systems.It should also be noted that in calculating the peak bandwidth, many componentsneed to be taken into account. The component with the lowest bandwidth is thebottleneck that limits the bandwidth of the whole system. An example is given inFig. 4. Data is read from two disks attached to the same SCSI string, and storedin memory using DMA from the SCSI controller. The processor then performs amemory-to-memory copy, e.g. to pack the data for transfer to the requesting computenode. Then the network adapter reads the data from the memory, again using DMA,and injects it into the network.In many systems, the disks themselves are the slowest component, so the peakbandwidth is simply the sum of the bandwidths of the disks. But if multiple disksare used, their aggregate bandwidth can be large enough to saturate some othercomponent in the transfer. For example, the SCSI bandwidth limits the number ofdisks that can pro�tably be connected to it. Likewise, the SCSI controller cannothandle an unlimited number of strings or disks. The I/O bus can be a limiting factor,especially considering that the data must traverse it twice: �rst in the DMA fromthe SCSI controller to the memory, and then in the DMA from the memory to thenetwork adapter. Therefore the I/O bus bandwidth must be at least twice the peakdisk bandwidth. The memory system may also be a bottleneck. To sustain peakperformance, it must be able to support concurrent DMAs and processor access,8

to allow copying from one bu�er to another. Finally, the network adapter and thenetwork itself must have adequate bandwidths.2.4 RAID Con�gurationsWhile not much data is available on disk lifetimes, it is reasonable to model themas exponential [24, 25]. This means that the probability that a disk's lifetime islonger than t is given by e�t=MTTF , where MTTF is the mean time to failure, orin other words, the mean lifetime of such disks. To give some intuition about thisexpression, we note that the probability that a disk survives for half of the MTTF is0.61, for exactly the MTTF is 0.37, and for twice the MTTF is 0.14. A well-knowncharacteristic of the exponential distribution is that it is memoryless, so this modelimplies that disks have a constant failure rate. As a result, the MTTF of an array ofdisks is inversely proportional to the number of disks1. For a single disk it has beenestimated that the MTTF is in the ballpark of 50,000 hours, or 5.7 years. For 100disks, the MTTF drops to 500 hours, or about 3 weeks, which is unacceptable.The solution to the problem of short MTTF in disk arrays is to encode dataredundantly [33, 24, 9]. The simplest form of redundant data encoding is mirroring,that is keeping two copies of all data on separate disks. The obvious drawback of thissolution is that half of the space is wasted. A more e�cient encoding is obtained bycomputing the parity of the data, and storing it on an additional disk. If the originaldata was stored on d disks, the space overhead is reduced from 12 to 1d+1 . Luckily diskfailures are self-identifying, so the parity information is su�cient for reconstructinglost data (as opposed to the situation in memory or data transmission, where simpleparity can identify the existence of an error but not its location, and therefore cannotcorrect it). The reconstruction is done by computing the parity of the surviving dataand the original parity information. Such schemes form the basis of RAID systems[33, 24, 9].The price of parity protection is increased overheads. When new data is written,its parity has to be computed and stored. When a disk fails, all the other disks haveto be read in order to reconstruct its data. Most of the research on RAID involvesthe reduction of this overhead and its even distribution among the di�erent disks[39, 45, 28, 62, 60]. For example, the RAID 5 scheme improves on the RAID 3 and 4schemes by distributing the parity information among all the disks, thereby avoidinga bottleneck for parity updates (Fig. 5).In parallel systems, RAID is used in two main ways: hardware RAID boxes at-tached to I/O nodes, or software implementations in a parallel �le system. An exampleof the RAID box approach is the IBM SP2 [29]. The server nodes in this machine,which are called \wide" nodes, support a large variety of external connections andperipherals. One of these is the IBM 7135 RAID device, which is accessible via asimple SCSI interface. This device can operate in RAID 1 mode (mirroring), RAID1Strictly speaking, this is based on the assumption that failures of di�erent disks are independent.9

parity
group

data blocks

RAID 4 RAID 5

parity

Figure 5: Examples of RAID 4 and RAID 5 organizations. RAID 3 is similar to RAID4, except for striping by single bytes rather than full blocks.3 mode, or RAID 5 mode. The disks are arranged in banks of 5 disks each. In theRAID 3 and 5 modes, one of these is used for parity, so the overhead is 20%. Foradditional data protection, the 7135 contains two redundant controllers, and can becon�gured in a twin-tailed scheme connected to two distinct wide nodes. This en-sures data availability even in the face of failures in support components such as thecontroller, SCSI channel, or node.An example of the software approach is the scalable �le system (sfs) on the CM-5 [44]. sfs stripes data across the disks of the SDA in units of 16 bytes (which matchesthe CM-5 data network packet size). One disk in the whole SDA is used for parity,and one as a hot spare. Thus the system creates a RAID 3 con�guration in software,spanning multiple DSNs and multiple disks in each one. Computation of parity andreconstruction of data are done by the system software, based on conventional SCSIdisks with no hardware protection.3 Semantics of Parallel I/O OperationsIn conventional (Unix) systems, �les are nearly never shared at the same time bymore than one process (at least not for writing) [3]. In parallel systems such sharingis the norm, including extensive sharing at the block level [38]. Thus there is anurgent need to de�ne what happens when multiple processes open and access thesame �le. For example, if p processes write \hello world!" to a �le, what shouldhappen? Options are that p copies be written, that only a single copy be written, orthat the multiple copies be interleaved in some way character by character. All theseoptions are justi�able and may be useful under certain circumstances. Therefore weneed a mechanism to allow the programmer to specify which one is desired.The mechanism used by most commercial systems so far is to place each open �lein a certain mode. File modes are an addition to the normal Unix-like �le systeminterface. When a �le is in one of the parallel modes, read and write operationsin the application processes become synchronization points. When such operations10

mode description examplesbroadcast all processes collectively Express singlreduce access the same data PFS global modeCMMD sync-broadcastscatter all processes collectively Express multigather access a sequence of data CFS modes 2 and 3blocks, in rank order PFS sync and record modesCMMD sync-sequentialshared processes operate independently CFS mode 1o�set but share a common �le pointer PFS log modeindependent allows programmer complete Express asyncfreedom CFS mode 0PFS Unix modeCMMD local and independentTable II: File modes used in various parallel I/O systems.
new pointer

file

pointer

process 1 process 2 process 3

Figure 6: Data access pattern for the broadcast/reduce �le mode.are issued, all the processes synchronize, and perform a collective I/O operation tothe �le. This allows for the de�nition of crisp semantics for I/O operations that areperformed in parallel by multiple processes to the same �le.3.1 File ModesThe most common modes and the systems that use them are summarized in Table II.We �rst describe the di�erent modes in detail, and then review systems that providedi�erent selections of such modes.In the broadcast/reduce mode all processes access the same data (Fig. 6). If theaccess is a read, the same data is broadcast to all the processes. This is useful forreading headers with information that is needed by all processes, or the whole inputif it is parameterized and does not need to be partitioned among the processes. When11

new pointer

file

pointer

process 3process 2process 1

Figure 7: Data access pattern for the scatter/gather �le mode.
process 2

file

pointer

process 3process 1

new pointerFigure 8: Data access pattern for the scatter/gather �le mode, with variable block sizes.writing, this mode causes only one copy of the data to be written to the �le. Thisis useful for writing results that represent the whole computation. The written datacan either come from a selected process, or from an arbitrary one. Some systems alsoprovide the service of checking whether all processes write identical data or not.In the scatter/gather mode, processes access contiguous chunks of data accordingto their serial numbers. Two variants of this mode have been suggested: either allchunks are of the same size (Fig. 7), or they can be di�erent (Fig. 8). This mode isuseful for partitioning data among the processes in simple patterns, both for readingand for writing. More complicated partitioning patterns are considered below.With a shared pointer, I/O operations are not collective. Thus this is not abarrier synchronization point, but rather a mutual exclusion synchronization to accessand update the shared pointer. When the �le is in this mode processes also accesscontiguous chunks of data, but the order is not prede�ned. Rather, the order isdetermined on the
y by the order in which the processes perform the I/O operations.The number of operations from di�erent processes can be di�erent. This mode isuseful for writing a log or for self scheduled reading and processing. Fig. 9 shows an12

final pointer position

file

pointer

process 1 process 2 process 3

intermediate pointer positionsFigure 9: Data access pattern for the shared pointer �le mode.example where the order of accesses happens to be process 2 �rst, then process 1,then 3, 1, 2, and 2.All systems also provide a mode with unrestricted independent access. This canbe used in case the other modes do not match the programmer's requirements. Inthis mode each process has its own private �le pointer, and it can seek and performI/O operations anywhere in the �le. There are no implied interactions with otherprocesses. The burden of ensuring that the resulting pattern makes sense is left tothe programmer.Various systems provide di�erent combinations of the above modes, sometimeswith additional variants designed to improve e�ciency. File modes were originallyintroduced as part of the Cubix environment for programming hypercubes at Cal-tech [59]. This system was later commercialized as the ParaSoft Express environ-ment [53], and includes a library of message passing functions usable in SPMD orMIMD programs. The parallel tasks in Express have access to �les using the systemcalls of the base system. To de�ne the semantics of parallel access by multiple tasks,�les can be placed in one of three access modes: singl means that all processes syn-chronize and take part in common I/O operations, with only one copy of the datain the �le itself; multi means that all processes synchronize and their data is inter-leaved according to the processor IDs; and async grants uncoordinated access by thedi�erent processes.Intel CFS is a commercial �le system used on Intel iPSC machines, the TouchstoneDelta, and the Paragon [56, 30]. File data is striped across multiple disks in 4 KBblocks. Four access modes are provided: mode 0 provides no coordination, and allaccesses are independent; mode 1 provides a shared seek pointer, which is useful forthings like writing a log �le asynchronously; mode 2 requires synchronous access, andinterleaves the data according to the process IDs, and mode 3 is the same as mode 2with the additional requirement that all accesses be of the same size. The reason formode 3 is that scatter/gather with �xed sizes can be implemented more e�ciently13

than with variable sizes, because the o�set accessed by each process can be computeddirectly. If variable sizes are allowed, as in mode 2, the implementation requires apre�x computation to �nd the o�set accessed by each process.Intel PFS is a new implementation targeted for the Paragon, and providing es-sentially the same interface [31]. Improvements include control over the stripingparameters (at the �le system level, not for each �le) and new access modes. ModesUnix, log, and sync correspond to CFS modes 0, 1, and 2, respectively. Mode recordis similar to CFS mode 3, but uses the fact that access sizes are known in advance toallow asynchronous access. Finally, global mode provides synchronized access withonly one copy of the data in the �le (like Express singl). PFS is mountable in thesystem-wide directory hierarchy, and is compatible with other types of �le systems.Thus it can be used to stripe data across the Paragon's I/O nodes, but also to stripeacross NFS mount-points in a cluster environment.Thinking Machines sfs (scalable �le system) is a Unix-compatible �le system forthe CM-5's scalable disk array [44]. Data is interleaved in 16-byte units to create aRAID-3 con�guration in software. CMMD is a library layered on top of whatever �lesystems exist on the compute partition's control processor, including sfs [5]. NormalUnix I/O is supported, with four �le access modes: local, where accesses fromdi�erent processes are completely decoupled from each other; independent, which islogically like local, but the processes share all the �le-descriptor state except for theseek pointer, in order to reduce the load on the servers; synchronous sequential,in which accesses are interleaved according to the process IDs, and synchronousbroadcast, which is logically equivalent to one process doing the I/O for all of them.The MasPar I/O system provides a special version of the scatter/gather mode thatis suitable for SIMD computations. The main di�erence from the other systems is thatthe participation of each processor is quali�ed by an \enabled" bit [49]. Processorsthat are not enabled for the I/O operation (the enabled bit is 0) do not participate.Parallel read operations distribute data only to the enabled processors, and parallelwrite operations collect data only from the enabled processors. These operations havetwo versions. In one the enabled processors access successive data elements in rankorder, and in the other they can each specify an arbitrary o�set.3.2 File Partitioning via Scatter/GatherAn important function of �le modes is that they de�ne what part of the data isaccessed by what process. In the broadcast/reduce mode, each process accesses allthe data. In the shared o�set mode, the data accessed is determined by the order inwhich the di�erent processes perform I/O operations. In the scatter/gather mode,the data is partitioned according to the serial numbers of the processes.Partitioning �le data among the processes is a very useful feature. In many appli-cations, the input dataset is partitioned among the processes, and then each processoperates on its part of the data. For example, this is typical when the data repre-sents a physical domain, and the parallelization is done by domain decomposition.14

* block-blockcyclic-Figure 10: Two example patterns of partitioning a 2-D matrix.Consider a weather code operating on a 3-D grid [1, sect. 2.1.1]. The input to suchcomputations typically includes atmospheric measurements for all the grid points.As the grid is partitioned across the processes, so is the input. Likewise, the outputis often a concatenation of data produced by di�erent processes. For example, theoutput of CFD calculations is typically a pressure surface across the physical domain,with each part being contributed by the process that owns that part of the domain.The scatter/gather �le mode can express some data decompositions, but not oth-ers. To keep things simple, we shall use a 2-D matrix as a running example. Assumethe matrix is stored in column-major order in a �le. Each element of the �le is oftype double. The number of processes (and processors) is p, and the matrix size isn� n, where n is a multiple of p.Partitioning the �le in a column-cyclic manner means that the �rst process ac-cesses the �rst column, the second process accesses the second column, and so on.After p columns, the pattern is repeated. In general, process i accesses all thosecolumns whose numbers are equal to i modulo p (Fig. 10 left). This can be expressedusing the scatter/gather �le mode by accessing a full column each time. At eachaccess, all processes synchronize, and then the �rst process accesses the �rst chunk ofdata, that happens to correspond exactly to a single column, the second accesses thesecond chunk of data, and so on. Thus the �rst set of one access from each processcovers the �rst p columns. The next set of accesses covers the next p columns, andthis continues until the whole matrix is �nished.Practically all other common access patterns cannot be expressed via the scat-ter/gather �le mode. We use the block-block decomposition as an example. In thisscheme, the matrix is partitioned into p square blocks, which are assigned to thedi�erent processes (Fig. 10 right). This implies that only pp of the processes havedata in the �rst n=pp columns of the matrix2. To access the �rst column, these ppprocesses can each access n=pp data elements, while the other processes access 02We assume that p is a square. 15

system advantages disadvantagesnCUBE [16] simple partitioning based onbit permutations all sizes must be powers of 2array partiti-oning library[7, 6, 23] supports common array parti-tioning patterns, high level ofabstraction must access full array in one op-erationnested strided[50] supports the common multi-dimensional access patterns user needs to compute o�setsand strides in all dimensions,must access a full multidimen-sional structureVesta [13] supports all rectilinear decom-positions, simple parameter-ized interface, express mappingto hardware only 2-D partitioning, one di-mension related to hardwaremore than to dataMPI-IO [10] provides highest level of expres-siveness, partitions can overlap,can also distribute data non-contiguously into memory user has to construct MPI de-rived datatypes to describe thepartitioningTable III: Comparison of proposed interfaces for expressing �le partitioning.elements each. Note that the other processes have to participate (even though theyare not accessing any data) because the scatter/gather �le mode implies that all I/Ooperations are collective. This is then repeated n=pp times. After the �rst n=ppcolumns are accessed, the next set of pp processes takes over. The net e�ect is thatthe access is serialized and involves a lot of redundant synchronization.The problems in implementing the desired access patterns based on a scatter/gather�le mode has led most programmers to use the independent mode instead [38]. Inthis mode, each process can seek to a di�erent o�set in the �le, and access the desireddata irrespective of what the other processes are doing. For example, each set ofpp processes can seek ahead to their part of the matrix in the block-block decom-position, rather than participating in irrelevant I/O operations with other processes.This eliminates the redundant synchronization, at the expense of a heavier burden onprogrammers. However, it may also cause ine�ciencies in disk access, as explainedin Section 4. To eliminate these problems, as well as to provide convenient targetinterfaces for parallel compilers, such as High Performance Fortran (HPF) [43, 27],new interfaces have been proposed recently. These are summarized in Table III anddescribed in the following subsections.3.3 The nCUBE Partitioning SchemeAn alternative to using the scatter/gather �le mode is to de�ne an interface thatallows partitioning to be expressed directly. This approach has been taken in the16

Vesta parallel �le system, in the nCUBE system, and in a few libraries. We startwith the nCUBE system.The nCUBE design is based on the notion of address bit permutations [16, 17].The bits of the address of each data byte are permuted and divided into two groups.One of the resulting sets of bits gives the ID of the process that will access thisbyte. The other set gives the o�set into that process's bu�er. Given that any subsetof address bits can be used to generate the process ID, this provides for
exiblepartitioning patterns.While conceptually elegant, the nCUBE scheme su�ers from one major de�ciency:all sizes must be powers of two. This includes the array dimensions, the partitiondimensions, and the number of partitions. It is a direct result of using bit positionsto de�ne the partitioning. As a result, this scheme has not gained wide acceptance.3.4 Partitioning Induced by Array DecompositionWhile there are a number of competing ideas about how to partition �le data (aswitnessed by the subsections in this section), there is relative agreement about howto partition multidimensional arrays. This agreement is captured in the partitioningdirectives of HPF [43, 27]. Essentially, this is done by a list of directives, one foreach dimension of the array. There are 3 options: BLOCK divides the array into equalsize blocks and assigns them to successive processes, CYCLIC assigns successive arrayelements to processes in round-robin manner, and * means that this dimension shouldnot be distributed. The example in Fig. 10 uses this terminology.Given that �les are often used to store array data, the same partitioning schemecan be used. In e�ect, the distribution of the array data among the processes inducesa partitioning of the �le segment that stores the array. This has been suggested ina number of libraries, especially in the context of providing I/O for HPF [7, 6, 23].Naturally, it allows all the common partitioning patterns to be expressed.The interface supported by these libraries is a high-level interface suitable fordirect use by programmers, and using the same abstraction (i.e. partitioned arrays).An analogous low-level interface has also been proposed recently. It is based onviewing the array data as it is in the �le, namely a sequence in some canonical order.Access to a subarray is then expressed as a set of nested strided accesses [50]. Thisinterface requires its user (a programmer or a compiler) to determine the o�sets andstrides that should be used by the di�erent processes.3.5 The Vesta Partitioning SchemeAll the schemes described so far are based on partitioning the data based on a logicalstructure as perceived by the program. The Vesta parallel �le system from IBMResearch partitions the data as it is laid out on disks instead [11, 13]. This is done intwo steps. First, structural parameters are de�ned when the �le is created, and usedto map the �le to I/O nodes. Then, partitioning parameters are de�ned when the �leis opened. These are expressed in terms of the structural parameters.17

The structural parameters are the basic striping unit (BSU) and the number ofcells. The choice of each number is arbitrary up to system limits. The number of cellsspeci�es the maximum parallelism of the �le in terms of I/O nodes used. Each celllooks much like a Unix �le, i.e. it is a byte addressable one dimensional array of datawith a de�ned end point. The cells of the �le are maximally distributed in a roundrobin fashion among all the I/O nodes, beginning with a randomly chosen I/O node.Thus, if the number of cells is chosen to equal the number of I/O nodes, one cell willbe placed on each I/O node, and the maximum level of parallel access is achieved.The BSU size is the atom of data that is used when de�ning the striping across cellswithin the �le. It is also used as the basis for the de�nition of multiple parameterizeddecompositions of the �le into disjoint sub�les. The bytes within a BSU will alwaysbe part of the same sub�le, but di�erent BSUs of data can be grouped into di�erentsub�les in a large number of ways, both within cells and across cells. The number ofcells of a �le and the size of its BSU are �xed at creation time for the life of the �le.Vesta �les are explicitly two dimensional, and this concept of two dimensionaldata is preserved at the Vesta user interface. We consider the dimension across cellsto be horizontal, and the dimension within cells to be vertical. At the user interface,access is made to sub�les of a �le, not to the �le itself, or to its cells. To access �ledata, a process �rst opens a sub�le. The sub�le is speci�ed by �ve parameters of theopen call. Four of these specify a partitioning of the �le: V bs speci�es the numberof contiguous BSUs to be grouped into a sub�le from within each cell. V n speci�esthe number of sub�les to be interleaved within each cell. Hbs speci�es the numberof adjacent cells from which BSUs with the same relative position in each cell willbelong to the same sub�le. Hn speci�es the number of sub�les to interleave acrossthe cells of the �le.The product V bs � Hbs de�nes a basic block of data mapped onto the two di-mensional array of cells and BSUs within cells. This block is repeated over the �leV n times vertically and Hn times horizontally to de�ne a template of data decom-position into di�erent sub�les (see Fig. 11). This template is repeated as many timesas necessary horizontally over the cells of the �le, and vertically until all cells havebeen exhausted of data. Each repetition of the template contributes one block of datato each of the sub�les, except in edge cases where the template extends beyond theboundaries of the �le.The �fth parameter of the open call speci�es which sub�le is to be accessed bythe task, given the partitioning speci�ed by the other four parameters. Sub�les arenumbered from 0 to Hn�V n�1 in row major order of blocks within the template. Inmost applications, all processes open a �le with the same partitioning parameters, buteach specifying a di�erent sub�le to access. The program can then proceed with eachprocess issuing the same �le I/O calls, but working against its own disjoint portionof the �le. Thus it is guaranteed that the accesses are non-con
icting.Returning to the 2-D matrix example, it is easy to see that Vesta supports all thecommon rectilinear decompositions: data can be accessed in rows of BSUs, columns of18

Vbs BSUs from Hbs cells

one BSU

template of

cells

Vbs = 3

Vn = 2

Hbs = 2

Hn = 2

Hn x Vn subfiles

basic block (one subfile)

Figure 11: Example of Vesta �le structure and partitioning. Sub�les are identi�ed bydi�erent shades of gray.BSUs, or blocks of BSUs. These are the same decompositions as those supported byHPF [43]. The speci�c example used above is obtained by the parameter values V bs =n=pp, V n = pp, Hbs = n=pp, and Hn = pp. Each process can then access its blockwith no required coordination or synchronization with other processes. However, thisrequires that cells correspond to columns of the matrix, and BSUs to elements of thematrix. While this is possible, it might lead to suboptimal performance due to anexcessively large number of cells (if the matrix is large). The alternative is to mapa number of matrix columns to each cell (e.g. n=pp columns). The exact layout ofdata should then be done to match the number of columns or rows that are to beaccessed at once. For example, in order to optimize for partitioning into blocks, itwould be better to organize the data in row-major order within each cell, rather thanusing column-major order.The main di�erence between partitioning via the scatter/gather �le mode andVesta partitioning is that in Vesta the partitioning is de�ned in advance, ratherthan being linked to a speci�c I/O operation. An important by-product of thisdistinction is that a single I/O operation can then access multiple disjoint chunks ofdata: it is enough that they are contiguous in the partition, and they do not haveto be contiguous in the �le. In some cases this can reduce message passing overheadconsiderably, by combining a number of small chunks of data into a single message.An example is given in Fig. 12. Two processes access alternate data items from asingle disk (a cyclic partitioning pattern). Using �le modes, a loop accessing one item19

*

process 2 bufferprocess 1 buffer

file

desired partitioning pattern:

file mode implementation:

for (i=0; i<6; i++)
 read(fd,buf,1);

fd = open("file",scat_mode);

Vesta implementation:

fd = open("file",1,2,1,1,my_id);

read(fd,buf,6);
/ Vbs=Hbs=Hn=1, Vn=2 /*Figure 12: Prede�ned partitioning, as done in Vesta, can reduce the number of I/Ooperations (and messages used) relative to partitioning based on the scatter/gather �lemode.at a time is required. With Vesta partitioning, all the data can be accessed in a singleI/O operation.3.6 Partitioning Using MPI DatatypesWhile Vesta partitioning is a signi�cant improvement over the scatter/gather �lemode, it still may not ful�ll all user requirements. For example, it does not directlysupport the partitioning of 3-D structures. Partitioning based on rectilinear arraydecomposition as mentioned above solves this particular problem, but still cannotexpress partitions such as diagonals in a matrix. Diagonals and other partitioningpatterns can be expressed by another recent proposal, the MPI-IO interface [10].In the MPI-IO proposal, partitioning is expressed by using MPI derived datatypes.MPI derived datatypes are a mechanism for creating complex structures out of simplercomponents [46]. For example, it is possible to create a vector where a certain basicelement is repeated a certain number of times with a given stride. If the stride is largerthan the element size, this leaves holes between successive elements. Partitioning isexpressed by conceptually tiling the �le with such a derived datatype, called the�letype. The process then gains access to those parts of the �le that correspond tothe basic elements in the �letype, skipping those parts that fall under holes.As a simple example, consider the implementation of the broadcast/reduce patternand the scatter/gather pattern. Broadcast/reduce is achieved when all the processesuse exactly the same �letype. Note that this is a generalization of the conventionalbroadcast/reduce �le mode, because this �letype may have holes in it. Scatter/gatheris achieved by using complementary �letypes. This means that the present elementsin the �letype used by one process correspond to holes in the �letypes of all other20

*

blklens = { 1, 1 }

types = { elem_t, MPI_UB }
MPI_Type_struct(2, blklens, disps, types, &one_elem_t)

step 1: one element and n holes

disps = { 0, (n+1) sizeof(elem) }
creates

sizeof(elem)

(n+1) sizeof(elem)*

blklens = { n-i, i }

MPI_Type_struct(2, blklens, disps, types, &diag_t)

for n=6 and i=2, this creates

(n-i) repetitions of one_elem_t
i repetitions of one_elem_t

when the data is viewed as a 6x6 matrix
in column-major order, this becomes

i

n-i i

step 2: create the filetype for process i

i sizeof(elem)*

*

*

*
types = { one_elem_t, one_elem_t }
disps = { i sizeof(elem), (n-i) n sizeof(elem) }

Figure 13: Using MPI derived datatypes to partition a matrix into diagonals, in the proposed MPI-IO interface.

21

processes. Again this is a generalization of the conventional scatter/gather mode,because some data may be left untouched, and the partitioning is not necessarily inorder of process IDs.Partitioning to access diagonals of a matrix is a special case of this generalizedscatter/gather. The implementation is shown in Fig. 13. It is assumed that thematrix is stored in column-major order. Each process starts by creating a deriveddatatype that describes a single element followed by n holes, so that the next elementis the next one in the same diagonal. This is then used as a building block for the�letype that extracts the ith diagonal from the matrix.The MPI-IO proposal is unique in that it also uses MPI derived datatypes toexpress the way data is laid out in memory. Thus the interface allows a non-contiguousdata set in a �le to be transferred to or from a non-contiguous dataset in memory.This is useful when the data in memory is also a part of a larger data structure,e.g. the internal part of a domain that is surrounded by vectors that are shared withneighboring processes. By using MPI derived datatypes, the extraction of data forI/O is expressed by the same mechanism as the extraction of data for inter-processmessage passing.3.7 Relationship to the Physical Location of DataOf all the partitioning schemes described above, only the Vesta scheme expresses thepartitioning in terms that can be mapped directly to actual I/O devices. All theothers express the partitioning at an abstract level of data structuring, and do notprovide any control over the actual layout. This unique feature of Vesta is both anadvantage and a disadvantage.The importance of allowing programmers control over data mapping is that suchcontrol is required in order to achieve optimal performance. If users do not know howthe data is mapped, they cannot guarantee that the minimal number of disk accessesare performed. Such guarantees are important in the context of high-performancecomputing, because disk accesses are orders of magnitude slower than
oating pointoperations and even message passing. Performing an extra disk operation may beequivalent to performing many thousands of extra computations. Indeed, some re-searchers have developed algorithms for out-of-core computations where the com-plexity is measured in disk operations rather than in computational steps [52, 66, 14].Vesta is the only system to date that provides the required control, at least to somedegree.On the other hand, the coupling between the partitioning scheme and the physicallayout comes at the expense of a clean abstraction of the data structures. Thus thetwo dimensions of the vesta partitioning scheme are not equivalent. The horizontaldimension (across cells) re
ects the parallelism in the data storage, while the verticaldimension (BSUs in cells) re
ects the data. Typically, the hardware extent will bemuch smaller than the extent of the data structures. For example, a system with10 I/O nodes may be called upon to handle matrices of 10000 � 10000 elements.22

Programmers will therefore have to contend with mapping large data structures intoa smaller number of cells. This burden can be eased by using higher level libraries,such as MPI-IO, that will be implemented above Vesta.The issue of how data is actually arranged on disk may be di�erent for persistentand transient �les. Persistent �les may be accessed by programs other than the onethat created them. In particular, it might be advantageous to access such �les usinga conventional sequential program, e.g. for debugging or visualization of scienti�cresults [15, 23]. This implies that the �le should be stored in a manner that iscompatible with conventional systems, and their sequential view of �les. Transient�les, on the other hand, can be stored in the most convenient manner for parallelaccess, sacri�cing the compatibility with sequential systems [7, 23].4 Implementation IssuesThe common patterns of partitioning �le data among a set of processes imply thatdata transfer is broken into small components [38, 35]. First, the data accessed byany given process is distributed across multiple I/O nodes, so only a fraction of thetransfer is handled by each one. Second, within each I/O node, the data is inter-leaved with data being accessed by other processes, so it is not contiguous. Actuallyimplementing an I/O operation as a set of small accesses like this would result insigni�cant performance penalties, because of startup and latency costs that would beassociated with each component [18, 35]. Therefore it is imperative that parallel I/Ooperations be implemented in a way that exploits the fact that in aggregate all theprocesses together are performing a large structured I/O operation.With interfaces that allow partitioning to be expressed, like those described in theprevious section, it is possible to access non-contiguous data in the �le with a singleoperation. If a number of these access components are stored on the same I/O node,then they can be transferred together in a single message. This reduces the totalmessage passing overhead, and thus improves performance [21, 12].Additional improvements can be obtained by coordinating the disk accesses thatserve multiple processes. This typically implies that collective I/O operations shouldbe used. Such operations are performed by all the participating processes at the sametime, and usually include a barrier synchronization point. For example, when �les arein the broadcast/reduce and scatter/gather access modes, read and write operationsare performed collectively.4.1 Performance Bene�ts of Collective I/ODisk scheduling is known to have a crucial impact on I/O performance. When multipleprocesses running on distinct compute nodes share access to data on a single disk,their request streams must be coordinated in order to prevent detrimental e�ects onthe disk scheduling. This is true even if the processes are accessing disjoint data setswhich are interleaved on the same disk. 23

0

0.5

1

1.5

2

2.5

64 256 1K 4K 16K 64K 256K

ag
gr

eg
at

e
ba

nd
w

id
th

 [M
B

/s
]

access size [bytes]

1 rd
1 wrt

4 rd, unc
4 wrt, unc

4 rd, co
4 wrt, co

Figure 14: Performance of disk access by one and four clients, with and without coordi-nation.We have executed the following experiment using Vesta on an IBM SP1 to demon-strate and quantify this e�ect. A �le of 128 MB is written to and read from a singleI/O node. This is done by either a single compute node, or a set of four computenodes. When four compute nodes are used, the data is partitioned into four disjointsub�les that are interleaved with each other. All powers of two from 64 bytes up to256 KB were used as the unit of interleaving. Accesses are always to a single suchunit. The same access sizes are also used in the experiment with a single computenode.The experiment with four compute nodes was run twice. In the �rst case, theaccesses from the four nodes were not coordinated in any way. Each node simplyaccesses its sub�le sequentially. In the second case, the nodes passed a token amongthemselves to ensure that the requests are issued in the order in which the data resideson disk. The token starts with the �rst node, which issues the �rst request. It thenpasses the token to the second node, which issues its �rst request, targeted at thesecond interleaved data unit. The third and fourth nodes issue their requests next.The �rst node must wait for the token to come back from the fourth node before itcan issue its second request, which is targeted at the �fth data unit.The results are shown in Fig. 14. The bandwidth achieved for small access sizesis low, because the overhead per access dominates. For reads, a single compute nodeachieves the disk bandwidth of 2.2 MB/s for access sizes of 2 KB and above. For24

writes, the disk bandwidth of 1.5 MB/s is achieved for 4 KB and above. The sharptransition between 2 KB and 4 KB is due to the fact that the disk block size is 4 KB,so smaller accesses need to read the block o� disk �rst before it can be modi�ed3.The measurements for four compute nodes with coordinated access track thosefor a single compute node very closely. In some cases, the performance for fournodes is even slightly superior. When four compute nodes access the data with nocoordination, their performance tracks that of a single node up to access sizes of 1KB, and then they drop sharply. This is again a result of the 4 KB block size. Wheneach access is smaller than 1 KB, each compute node touches all the data blocks insequence. The �rst to arrive performs the disk access, then the rest hit the bu�ercache. The sequence of requests seen by the disk is therefore identical to the case of asingle compute node. But if the access size is larger, each compute node only touchesa subset of the data blocks. The sequence of requests seen by the disk then dependson the order in which the requests arrive from the compute nodes. The performancethen depends on the random interleaving order. The plotted results are averages ofa number of measurements, with error bars that represent the average distance ofindividual measurements from this average.The worst performance is for accesses of 2 KB, which are small enough so that theoverhead for disk seeking is signi�cant, and large enough so that each process doesnot touch all the disk blocks. As the access size grows larger, the relative weight ofthe disk seek becomes smaller. When the access size is very large, each individualrequest is large enough to utilize the disk e�ciently. Therefore uncoordinated writesachieve full performance for 64 KB and above. The trend indicates that reads shouldachieve full performance for accesses larger than 512 KB.4.2 Explicit Support for Collective I/OWhen collective I/O operations are performed, the system obtains important knowl-edge about a whole set of I/O operations that occur at the same time. It is thenpossible to perform these operations in the order that would optimize disk perfor-mance.The performance of disk access is governed by the physical properties of disks. Themagnetic head must seek to the correct track for data to be accessed. The plattermust rotate to the correct position before data can be transferred. Taken together,these characteristics cause sequential access to full tracks, one after the other, to bethe most e�cient access pattern. All other patterns achieve inferior performance, asmeasured by both turnaround time and achieved bandwidth.Message passing among the compute nodes and I/O nodes is orders of magnitudefaster than disk access. It has therefore been proposed that collective I/O operationsrepresenting complicated access patterns by multiple processes be performed in twophases (Fig. 15) [18]. For reading, �rst read all the data sequentially o� the disk3This experiment was performed with the initial Vesta implementation, where the server runningon the I/O nodes used AIX JFS to access �les. The AIX block size is 4 KB.25

*

naive implementation

two-phase implementation

n I/O operations2

n I/O operations

phase 1:

phase 2:

n (n-1) messages

data on disk
at I/O nodes

data in memory
on compute nodes

data on disk
at I/O nodes

data in memory
on compute nodes

data in memory
on compute nodesFigure 15: Partitioning by rows when a matrix is stored by columns. A two-phaseimplementation reduces the number of I/O operations, and performs larger I/Os, at theexpense of additional message passing later.into the memories of a select subset of compute nodes. Then reorganize the data inmemory, and send each part to the compute node that requested it. For writes, theorder is reversed: �rst compose all the data in memory, and then write it sequentially.Experimental results obtained on the Touchstone Delta based on Intel's CFS haveshown that the two-phase approach can improve performance by more than two ordersof magnitude relative to the naive implementation where each component is accessedseparately [18]. However, this approach also has its drawbacks. First, it requiresextra bu�ering at the compute nodes, which might come at the expense of memoryavailable for the user application (the exception is if all reorganization can be done26

n messages2

data on disk
at I/O nodes

data in memory
on I/O nodes

n I/O operations

data in memory
on compute nodesFigure 16: Optimal disk access based on reorganization in the memory of the I/O nodes.in place). Second, it increases network tra�c, because most of the data needs to betransferred twice. Finally, the re-organization phase involves concentrated messagetra�c that is more susceptible to congestion, whereas the transfer to and from I/Onodes is gated by the lower bandwidth of the disks.The main advantage of two-phase I/O is that it can be implemented as a user-levellibrary above whatever I/O system is available. Further optimizations require changesto the interface between compute nodes and I/O nodes. One approach that has beensuggested is disk-directed I/O [35]. In this approach, the data partitioning involvedin the collective I/O operations can be described by a small number of parameters(as in the Vesta interface). The collective operation itself �rst involves a barriersynchronization among the compute nodes, to ensure that all the memory bu�ers areready. Then a representative compute node broadcasts the I/O request to all the I/Onodes. Each I/O node analyzes the request, and extracts the parts that resides onits local disks. If the request is a collective read, it then schedules the required diskaccess operations in the optimal manner. As each disk block is read o� disk, the datais sent to the relevant compute nodes. Thus there is no extra message passing, noneed for extra memory on compute nodes, no need for extra bu�ering on I/O nodes,and no need for heuristics for bu�er management and prefetching.An example is shown in Fig. 16. This is the same type of access as before, with4 compute nodes accessing the rows of a matrix that is stored by column on 4 I/Onodes. The di�erence is that the data is �rst read into memory on the I/O nodes,rather than moved to the memories of the compute nodes. Then n2 messages areused to redistribute the data in the desired pattern.27

4.3 Caching and PrefetchingCaching �le data in memory is considered an important feature in many �le systems.In distributed �le systems, caching is often done both on the �le servers and on theclients [41]. In parallel �le systems, client-side caching is more problematic, becausethe interleaved access patterns create signi�cant false sharing of �le blocks [38]. How-ever, it is still possible to use client caching if the access is read only. File systems thatprovide partitioning can also support client caching when data is written, providedthat processes are writing to disjoint partitions. The system can later reconstruct the�le blocks using knowledge about the partitioning scheme.Caching at the I/O nodes can be instrumental for supporting collective I/O oper-ations, even without using any explicit knowledge. This is based on the observationthat even when each process performs a strided access through the data, consideringall the accesses by all the processes often shows, in aggregate, that all the data isbeing accessed (this has been called \interprocess locality" [37]). By using a largeenough bu�er cache, it is possible to coalesce the possibly unordered accesses fromthe di�erent processes into a sequential access pattern to disk. This happens at eachI/O node individually, and pertains to data stored at that I/O node. For writingdata, the contributions from di�erent processes can come in any order. As each oneis received by the I/O node, it is copied into a frame in the bu�er cache. If it relates toa previously unwritten block, a new frame is allocated. Using a write behind policy,the data is allowed to accumulate in the bu�er cache. Assuming the accesses to thesame area in the �le come more or less together, a range of blocks will be �lled beforethe system runs out of frames. These can then be written sequentially to disk (Fig.17).The same principle can be applied to reading, except that here the system is re-quired to prefetch data based on a read-ahead mechanism. With a large enough bu�ercache and simple prefetching algorithms, strided I/O operations from one process canpave the way for bu�er cache hits for other processes. This requires the access historyto be maintained on a global basis, rather than for each process individually. For ex-ample, the Vesta prefetching algorithm maintains a list of the last 32 unique blocksthat have been accessed. When a new request comes in, this list is searched for asequence of blocks preceding the newly requested one. If they are found, a read-aheadoperation for the following blocks is triggered. This works even if the preceding blockswere accessed out of order and by di�erent processes.Bu�er cache management algorithms for parallel systems have been designedwith such scenarios in mind [36]. Experiments conducted with the Vesta �le sys-tem have shown that prefetching based on the identi�cation of a sequential patterncomposed of interleaved strided accesses does lead to bene�ts, even without collectiveI/O calls [21]4. But relying exclusively on bu�er cache management cannot solveall problems. For one thing, not all access patterns cover the whole dataset. If the4These are experiments with the new version of Vesta, which includes bu�er cache management.28

different processes

tim
e buffer cache

residence time

of data

extent of file

data written by

frames allocated

time to write

blocks written

a block

sequentially to disk

block size

Figure 17: A bu�er cache can collect writes that come in a random order, aggregate thedata, and then perform sequential writes to disk.processes are reading a 2-D slice out of a 3-D data structure, then their aggregatebehavior may be a strided access, not a sequential one. This may cause excessiveprefetching of unnecessary data, and tie up important disk bandwidth. A partial so-lution is to use more sophisticated prefetching algorithms, that can identify a stridedaccess pattern [37]. However, the problem remains for access patterns that are lessstructured. Another example is when old data is overwritten in units that are smallerthan the block size. Global knowledge can reveal that eventually all the data willbe overwritten, but if the requests are received one at a time it is necessary to �rstread the old data, and then update it one part at a time. Finally, overagressive bu�ercache management can cause problems by itself. This happened in CFS on Intelhypercubes, where prefetching sometimes competed with actual application I/O for29

limited bu�er space, especially in installations that had a high ratio of compute nodesto I/O nodes [51]. This was the reason for streaming data through the I/O nodeswithout any bu�ering in the Intel PFS design (which is based on the OSF/1 AD �lesystem [58]).Explicit support for collective I/O operations can also be combined with prefetch-ing and bu�er management. This is done in TIP (Transparent Informed prefetch-ing) [55]. The idea is to provide the system with hints that inform it about futurereference patterns. The system can then decide what to prefetch and when. It caneven take into account the con
icting requests of multiple jobs.5 ConclusionsIn massively parallel processors, parallel I/O subsystems are required to balance I/Ocapabilities with computing power. The general trend in recent years is toward dedi-cated I/O nodes servicing I/O operations requested by compute nodes executing userapplications. Compute nodes and I/O nodes communicate via the MPP's internalhigh-performance interconnection network, which is used both for I/O operations andfor user application inter-task communication. Depending on the system architectureand I/O node placement, I/O tra�c from a given job may not interfere with otherjobs as long as these jobs do not perform I/O themselves.In order to de�ne the semantics of parallel I/O operations, di�erent parallel inter-faces are used. File modes allow one to express broadcast/reduce and uni-dimensionalscatter/gather types of operations on �le data. In addition, supporting a shared �lepointer allows for the creation of shared log �les or self-scheduled processing. How-ever, �le modes are insu�cient for performing many rectilinear partitionings of �ledata. Multi-dimensional rectilinear partitioning, which is common in parallel applica-tions, is supported by libraries based on array decomposition. The Vesta partitioningscheme permits all types of 2-D partitioning, and ties the partitioning ot physicaldata layout. The recent MPI-IO proposal expresses partitioning with MPI deriveddatatypes, and the extraction of �le data is expressed by the same mechanism as theextraction of data for inter-process message passing in MPI. This is the most
exiblemechanism to date.Optimizations are required to implement such parallel interfaces e�ciently, andthere is an increasing recognition by the scienti�c community of the need for explicitlyparallel collective I/O operations. Grouping I/O requests issued by parallel tasksallows one to minimize the number of disk accesses and to order them accordingto the physical location of the data on disk. Caching and prefetching are othertechniques which permit the reuse of �le data, and provides a measure of implicitcoordination when inter-process locality exists in the application. All these techniquesare complementary and ongoing research studies ways of combining them e�ciently.Undoubtedly, the �eld of parallel I/O is in
ux, with new interfaces being de-signed, and new systems being implemented. There is a slow convergence, and a30

move toward standards. We envision a common interface with �le partitioning andcollective operations, that will enable e�cient and portable implementations acrossvarious platforms.References[1] G. S. Almasi and A. Gottlieb, Highly Parallel Computing. Benjamin/Cummings, 1989.[2] B. Alpern, L. Carter, and J. Ferrante, \Modeling parallel computers as memory hi-erarchies". In Programming Models for Massively Parallel Computers, W. K. Gilio,S. Jahnichen, and B. D. Shriver (eds.), pp. 116{123, IEEE Press, 1993.[3] M. G. Baker, J. H. Hartman, M. D. Kupfer, K. W. Shirri�, and J. K. Ousterhout,\Measurements of a distributed �le system". In 13th Symp. Operating Systems Prin-ciples, pp. 198{212, Oct 1991. Correction in Operating Systems Rev. 27(1), pp. 7{10,Jan 1993.[4] S. J. Baylor, C. Benveniste, and Y. Hsu, \Performance evaluation of a massively parallelI/O subsystem". In IPPS '94 Workshop on I/O in Parallel Computer Systems, pp. 1{15, Apr 1994. (Reprinted in Comput. Arch. News 22(4), pp. 3{10, Sep 1994).[5] M. L. Best, A. Greenberg, C. Stan�ll, and L. W. Tucker, \CMMD I/O: a parallel UnixI/O". In 7th Intl. Parallel Processing Symp., pp. 489{495, Apr 1993.[6] R. Bordawekar, J. M. del Rosario, and A. Choudhary, \Design and evaluation of prim-itives for parallel I/O". In Supercomputing '93, pp. 452{461, Nov 1993.[7] P. Brezany, M. Gerndt, P. Mehrotra, and H. Zima, \Concurrent �le operations in ahigh performance FORTRAN". In Supercomputing '92, pp. 230{237, Nov 1992.[8] C. E. Catlett, \Balancing resources". IEEE Spectrum 29(9), pp. 48{55, Sep 1992.[9] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson, \RAID: high-performance, reliable secondary storage". ACM Comput. Surv. 26(2), pp. 145{185,Jun 1994.[10] P. Corbett, D. Feitelson, Y. Hsu, J-P. Prost, M. Snir, S. Fineberg, B. Nitzberg, B. Tra-versat, and P. Wong, MPI-IO: A Parallel File I/O Interface for MPI, Version 0.2.Research Report 19841 (87784), IBM T. J. Watson Research Center, Nov 1994.[11] P. F. Corbett, S. J. Baylor, and D. G. Feitelson, \Overview of the Vesta parallel �lesystem". In Proc. IPPS '93 Workshop on I/O in Parallel Computer Systems, pp. 1{16,Apr 1993. (Reprinted in Comput. Arch. News 21(5), pp. 7{14, Dec 1993).[12] P. F. Corbett and D. G. Feitelson, \Design and implementation of the Vesta parallel�le system". In Scalable High-Performance Comput. Conf., pp. 63{70, May 1994.[13] P. F. Corbett, D. G. Feitelson, J-P. Prost, and S. J. Baylor, \Parallel access to �les inthe Vesta �le system". In Supercomputing '93, pp. 472{481, Nov 1993.31

[14] T. H. Cormen, \Fast permuting on disk arrays". J. Parallel & Distributed Comput.17(1&2), pp. 41{57, Jan/Feb 1993.[15] T. W. Crockett, \File concepts for parallel I/O". In Supercomputing '89, pp. 574{579,Nov 1989.[16] E. DeBenedictis and J. M. del Rosario, \nCUBE parallel I/O software". In 11th Intl.Phoenix Conf. Computers & Communications, pp. 117{124, Apr 1992.[17] E. P. DeBenedictis and S. C. Johnson, \Extending Unix for scalable computing".Computer 26(11), pp. 43{53, Nov 1993.[18] J. M. del Rosario, R. Bordawekar, and A. Choudhary, \Improved parallel I/O via atwo-phase run-time access strategy". In Proc. IPPS '93 Workshop on I/O in ParallelComputer Systems, pp. 56{70, Apr 1993. (Reprinted in Comput. Arch. News 21(5),pp. 31{38, Dec 1993).[19] D. G. Feitelson, A Survey of Scheduling in Multiprogrammed Parallel Systems. Re-search Report RC 19790 (87657), IBM T. J. Watson Research Center, Oct 1994.[20] D. G. Feitelson, P. F. Corbett, S. J. Baylor, and Y. Hsu, Satisfying the I/O Require-ments of Massively Parallel Supercomputers. Research Report RC 19008 (83016), IBMT. J. Watson Research Center, Jul 1993.[21] D. G. Feitelson, P. F. Corbett, and J-P. Prost, \Performance of the Vesta parallel �lesystem". In 9th Intl. Parallel Processing Symp., Apr 1995.[22] S. Frank, H. Burkhardt, III, and J. Rothnie, \The KSR1: bridging the gap betweenshared memory and MPPs". In 38th IEEE Comput. Soc. Intl. Conf. (COMPCON),pp. 285{294, Feb 1993.[23] N. Galbreath, W. Gropp, and D. Levine, \Applications-driven parallel I/O". In Su-percomputing '93, pp. 462{471, Nov 1993.[24] G. A. Gibson, Redundant Disk Arrays: Reliable, Parallel Secondary Storage. MITPress, 1992.[25] G. A. Gibson and D. A. Patterson, \Designing disk arrays for high data reliability".J. Parallel & Distributed Comput. 17(1&2), pp. 4{27, Jan/Feb 1993.[26] J. P. Hayes, T. Mudge, Q. F. Stout, S. Colley, and J. Palmer, \A microprocessor-basedhypercube supercomputer". IEEE Micro 6(5), pp. 6{17, Oct 1986.[27] High Performance Fortran Forum, \High performance fortran language speci�cation".May 1993.[28] M. Holland and G. A. Gibson, \Parity declustering for continuous operation in redun-dant disk arrays". In 5th Intl. Conf. Architect. Support for Prog. Lang. & OperatingSyst., pp. 23{35, Sep 1992. 32

[29] IBM Corp., Introduction to Parallel Processing and Scalable POWERparallel Systems9076 SP1 and 9076 SP2. Order number GG24-4344-00, May 1994.[30] Intel Supercomputer Systems Division, iPSC/2 and iPSC/860 User's guide. Ordernumber 311532-007, Apr 1991.[31] Intel Supercomputer Systems Division, Paragon User's Guide. Order number 312489-003, Jun 1994.[32] R. H. Katz, \High-performance network and channel based storage". Proc. IEEE80(8), pp. 1238{1261, Aug 1992.[33] R. H. Katz, G. A. Gibson, and D. A. Patterson, \Disk system architectures for highperformance computing". Proc. IEEE 77(12), pp. 1842{1858, Dec 1989.[34] R. E. Kessler and J. L. Schwarzmeier, \Cray T3D: a new dimension for Cray Research".In 38th IEEE Comput. Soc. Intl. Conf. (COMPCON), pp. 176{182, Feb 1993.[35] D. Kotz, \Disk-directed I/O for MIMD multiprocessors". In 1st Symp. OperatingSystems Design & Implementation, pp. 61{74, USENIX, Nov 1994.[36] D. Kotz and C. S. Ellis, \Caching and writeback policies in parallel �le systems". J.Parallel & Distributed Comput. 17(1&2), pp. 140{145, Jan/Feb 1993.[37] D. Kotz and C. S. Ellis, \Practical prefetching techniques for parallel �le systems". In1st Intl. Conf. Parallel & Distributed Inf. Syst., pp. 182{189, Dec 1991.[38] D. Kotz and N. Nieuwejaar, \Dynamic �le-access characteristics of a production parallelscienti�c workload". In Supercomputing '94, pp. 640{649, Nov 1994.[39] E. K. Lee and R. H. Katz, \The performance of parity placements in disk arrays".IEEE Trans. Comput. 42(6), pp. 651{664, Jun 1993.[40] C. E. Leiserson, Z. S. Abuhamdeh, D. C. Douglas, C. R. Feynman, M. N. Ganmukhi,J. V. Hill, W. D. Hillis, B. C. Kuszmaul, M. A. St. Pierre, D. S. Wells, M. C. Wong,S-W. Yang, and R. Zak, \The network architecture of the Connection Machine CM-5".In 4th Symp. Parallel Algorithms & Architectures, pp. 272{285, Jun 1992.[41] E. Levy and A. Silberschatz, \Distributed �le systems: concepts and examples". ACMComput. Surv. 22(4), pp. 321{374, Dec 1990.[42] W. Liu, V. Lo, K. Windisch, and B. Nitzberg, \Non-contiguous processor allocationalgorithms for distributed memory multicomputers". In Supercomputing '94, pp. 227{236, Nov 1994.[43] D. B. Loveman, \High Performance Fortran". IEEE Parallel & Distributed Technology1(1), pp. 25{42, Feb 1993.[44] S. J. LoVerso, M. Isman, A. Nanopoulos, W. Nesheim, E. D. Milne, and R. Wheeler,\sfs: a parallel �le system for the CM-5". In Proc. Summer USENIX Conf., pp. 291{305, Jun 1993. 33

[45] J. Menon and D. Mattson, \Comparison of sparing alternatives for disk arrays". In19th Ann. Intl. Symp. Computer Architecture Conf. Proc., pp. 318{329, May 1992.[46] Message Passing Interface Forum, MPI: A Message-Passing Interface Standard. May1994.[47] P. Messina, \The Concurrent Supercomputing Consortium: year 1". IEEE Parallel &Distributed Technology 1(1), pp. 9{16, Feb 1993.[48] K. Miura, M. Takamura, Y. Sakamoto, and S. Okada, \Overview of the Fujitsu VPP500supercomputer". In 38th IEEE Comput. Soc. Intl. Conf. (COMPCON), pp. 128{130,Feb 1993.[49] J. R. Nickolls, \The MasPar scalable Unix I/O system". In 8th Intl. Parallel ProcessingSymp., pp. 390{395, Apr 1994.[50] N. Nieuwejaar and D. Kotz, A Multiprocessor Extension to the Conventional File Sys-tem Interface. Technical Report PCS-TR94-230, Dept. Computer Science, DartmouthCollege, Sep 1994.[51] B. Nitzberg, Performance of the iPSC/860 Concurrent File System. Technical Re-port RND-92-020, NASA Ames Research Center, Dec 1992.[52] M. H. Nodine and J. S. Vitter, \Large-scale sorting in parallel memories". In 3rdSymp. Parallel Algorithms & Architectures, pp. 29{39, Jul 1991.[53] Parasoft Corp., Express Version 1.0: A Communication Environment for ParallelComputers. 1988.[54] Y. N. Patt, \The I/O subsystem: a candidate for improvement". Computer 27(3),pp. 15{16, Mar 1994. (guest editor's introduction to special issue).[55] R. H. Patterson and G. A. Gibson, \Exposing I/O concurrency with informed prefetch-ing". In 3rd Intl. Conf. Parallel & Distributed Information Syst., pp. 7{16, Sep 1994.[56] P. Pierce, \A concurrent �le system for a highly parallel mass storage subsystem". In4th Conf. Hypercubes, Concurrent Comput., & Appl., vol. I, pp. 155{160, Mar 1989.[57] A. L. N. Reddy, P. Banerjee, and S. G. Abraham, \I/O embedding in hypercubes". InIntl. Conf. Parallel Processing, vol. I, pp. 331{338, Aug 1988.[58] P. J. Roy, \Unix �le access and caching in a multicomputer environment". In USENIXMach III Symp., pp. 21{37, Apr 1993.[59] J. Salmon, \CUBIX: programming hypercubes without programming hosts". In Hy-percube Multiprocessors 1987, M. T. Heath (ed.), pp. 3{9, SIAM, 1987.[60] E. J. Schwabe and I. M. Sutherland, \Improved parity-declustered layouts for diskarrays". In 6th Symp. Parallel Algorithms & Architectures, pp. 76{84, Jun 1994.34

[61] K. G. Shin and G. Dykema, \A distributed I/O architecture for HARTS". In 17thAnn. Intl. Symp. Computer Architecture Conf. Proc., pp. 332{342, May 1990.[62] D. Stodolsky, G. Gibson, and M. Holland, \Parity logging: overcoming the small writeproblem in redundant disk arrays". In 20th Ann. Intl. Symp. Computer ArchitectureConf. Proc., pp. 64{75, May 1993.[63] C. B. Stunkel et al., The SP2 Communication Subsystem. Research Report RC 19914,IBM T. J. Watson Research Center, Jan 1995.[64] R. Thakur, R. Bordawekar, and A. Choudhary, \Compilation of out-of-core data par-allel programs for distributed memory machines". In IPPS '94 Workshop on I/O inParallel Computer Systems, pp. 54{72, Apr 1994. (Reprinted in Comput. Arch. News22(4), pp. 23{28, Sep 1994).[65] Thinking Machines Corp., Connection Machine CM-5 Technical Summary. Nov 1992.[66] J. S. Vitter and E. A. M. Shriver, \Optimal disk I/O with parallel block transfer". In22nd Ann. Symp. Theory of Computing, pp. 159{169, May 1990.

35

