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1 Introduction

Continued improvements in processor performance have exposed 1/0 subsystems as a
significant bottleneck, which prevents applications from achieving full system utiliza-
tion [33, 54]. This problem is exacerbated in massively parallel processors (MPPs),
where multiple processors are used together. As a result, I/O subsystems have be-
come the focus of much research, leading to the design of parallel I/O hardware and
matching system software.

The requirement driving the work on I/O subsystems is the desire to achieve a
balanced system [8]. The degree to which a system is balanced is typically expressed
by the F'/b ratio, which is defined as the ratio of the rate of executing floating point
operations (') to the rate of performing I/0O, in bits per second (b). A widely accepted
rule of thumb, attributed to Amdahl, calls for F//b ~ 1. While this was originally
expressed in instructions rather than floating point operations, there is evidence that
this requirement holds for computationally intensive numerical codes as well [20].

Given the high rate of increase in performance of processors, and the lower im-
provement rate of disks, F'/b ~ 1 leads to the use of multiple disks in parallel. This
has the advantage of being able to use multiple heads at once, increasing through-
put, but introduces reliability problems. The common solution is to encode the data
with some level of redundancy, so that if one disk fails the data can be reconstructed
from the others [33]. The resulting organization is called a RAID, for Redundant
Array of Independent Disks. The encoding typically involves calculating the parity of
data striped across a set of disks, and storing the parity itself on another disk. This
approach is now widely accepted in industry [9].

It should be noted that RAID defines how data is stored and protected, but not
the interface for data access. Most systems use a conventional serial interface, where
the whole RAID operates as a single device that just happens to have a larger capacity
and higher bandwidth. In parallel systems such an interface is often limiting, because
the data needs to be accessed in parallel by multiple processors. Therefore parallel
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Figure 1: The I/O architectures of MPPs resembles that of LAN-connected workstations
at two levels: first, there is internal I/O from compute nodes across the MPP’s intercon-
nection network to I/O nodes, and then there is I/O from the MPP as a whole across
high-bandwidth channels to external mass storage systems.

interfaces have been developed for MPPs. The idea of redundant encoding is often
used under the parallel interface, e.g. as a number of independent RAIDs that are
accessed in parallel.

The general trend in recent years is toward network-connected I/O devices [32].
In a typical office environment, this means diskless workstations served by dedicated
file servers. In an MPP, this structure can be seen at two levels (Fig. 1). First,
there is internal I/O from compute nodes to I/O nodes. Compute nodes are the
computation engine of the MPP, and are used to run parallel user applications. In
terms of hardware, they often use the same components as workstations. I/O is then
performed over the MPP’s internal high-performance interconnection network. Such
I/O operations are serviced by dedicated I/O nodes with disks. These nodes do not
run user applications: rather, they are the MPP’s internal dedicated I/O servers, just
like the dedicated file servers found on LANs.

The second level is external I/O to mass storage systems (MSS) that are used



for archival storage. At this level, the MPP as a whole uses some high bandwidth
link (typically HiPPI) to transfer data to and from the MSS. This is often mediated
by special gateway nodes, that are specially configured to support the required high-
bandwidth transfers. The MSS acts as a dedicated I/O server for the MPP, and
possibly for other systems as well.

This chapter is about internal parallel I/O systems in MPPs. Section 2 deals with
the architecture of such parallel I/O subsystems. Section 3 discusses the semantics of
parallel I/O operations, and reviews the interfaces used to express different semantics.
Section 4 is about implementation issues and their performance implications. Finally,
section 5 presents the conclusions.

2 Parallel I/O Architectures

While some parallel machines are dedicated to a single application, most support
multiprogramming. This means that multiple user jobs can execute at once, using
space-slicing, time-slicing, or a combination of both [19]. In such an environment, I/O
devices become a shared resource. Consequently it is undesirable to couple the I/O
resources with any specific application. Rather, I/O devices should be independent
and equally accessible by all. This approach has the added advantage that one job
will not be perturbed by I/O operations of another job, as would be the case if the
I/O devices were tightly coupled to the first job in some way.

Based on such arguments, most vendors of parallel machines elect to have dedi-
cated I/O nodes act as an internal shared I/O server. These I/O nodes are used for
storage of persistent data, i.e. data that is supposed to outlive any single instance
of an application’s execution. Examples include the Connection Machine CM-5 from
Thinking Machines Corp. [65, 40], the nCUBE hypercube [26], the Intel iPSC hy-
percubes [56] and Paragon mesh, the Meiko Computing Surface CS-2, and the IBM
Scalable POWERparallel system SP2. Even the MasPar SIMD array processor has
an internal parallel I/O system. While this is based on a large dedicated memory
buffer that interfaces the computational array to the disk arrays (rather than on I/O
nodes), it is accessible in parallel via the router network [49]. The only major MPPs
that do not have internal I/O nodes are the Cray T3D and Fujitsu VPP500. The
Cray T3D currently uses a Cray Y-MP front-end to service I/O. However, it can have
a number of I/O gateway nodes connected to the front-end, and plans call for the
gateway nodes to connect directly to I/O controllers and through them to devices [34].
The Fujitsu VPP500 also uses a front end, which is also connected via a number of
control processors [48].

In addition to persistent storage, there may be need for temporary storage used
only during a single execution. Examples include swap space for virtual memory, or
temporary storage for explicit overlays and out-of-core computations [64]. This space
can be supplied as part of the shared space on the dedicated I/O nodes. Alternatively,
additional I/O devices can be connected to the compute nodes, reducing the load and
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Figure 2: A CM-51/0 node (called a Disk Storage Node in CM-5 terminology) [44].

congestion on the shared resource. Such additional I/O devices are available on the
IBM SP2 and the Meiko CS-2. I/O devices can also be connected to all nodes of the
KSR1 machine, which can double as both compute nodes and I/O nodes [22].

2.1 Ezample: the CM-5 Scalable Disk Array

The Connection Machine CM-5 is the last model out of Thinking Machines Corpo-
ration, and has been available since 1992 [65]. The compute nodes in this machine
are based on SuperSPARC microprocessors with 4 optional vector units. The inter-
connection network has a fat-tree topology, implemented as a multi-stage network.
The machine can be partitioned into partitions that correspond to sub-trees in the
network. Each partition also has a control workstation.

I/O nodes — called “disk storage nodes” (DSN) in CM-5 terminology — are also
SPARC-based. Each DSN has 8 disks, each with a sustained bandwidth of about 1.5
MB/s (Fig. 2). The aggregate bandwidth is therefore a close match to the 20 MB/s
bandwidth provided by the data network. An 8 MB buffer is used to stream data
between the disks and the network. DSNs are usually packed in groups of 3. The
whole set of DSNs taken together form the I/O partition, which is called the “scalable
disk array” (SDA). This is a partition of the machine just like other partitions, and
also corresponds to a subtree of the network (see Fig. 3).

The system comes in a number of scales, which measure the number of stages in its
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system | network | compute-heavy balanced I/O-heavy
size ports | CN ION F/b| CN ION F/b| CN ION F/b

scale 3 64 32 2 298

scale 4 256 128 6 379 | 64 9 126 32 12 4.7

scale 5 | 1024 |512 12 786|256 24 194|128 48 4.7

Table I: Suggested configurations for the CM-5E. Figures are from Thinking Machines
Corp. sales brochures. CN is the number of compute nodes, ION is the number of I/0
nodes, and F'/b is computed as the ratio of advertised peak flops to data transfer rate.

network. Each scale has a certain number of network ports. These ports can be used
to connect compute nodes, I/O nodes, or other I/O devices (for example, a HiPPI
gateway requires 8 network ports, so as to match the high bandwidth of the HiPPI
channel). By using different numbers of compute nodes and I/O nodes, it is possible to
create different configurations for compute-heavy or I/O-heavy installations. Specific
configurations suggested by Thinking Machines are compared in Table I. Note that
in all cases the provided F'/b ratio is larger than 1.

2.2 I/0 Node Placement

While using dedicated I/O nodes prevents I/O operations from directly influencing
other jobs, the separation is not always complete. Obviously, if multiple jobs perform
I/O operations at the same time, these operations will cause some conflicts at the
shared I/O nodes. But there is also a danger of conflicts in the interconnection
network. I/O is necessarily implemented by messages sent from the compute nodes
to the I/O nodes and vice versa. These messages can interfere with other messages in
the network, thus degrading application performance. Whether or not this happens
depends on the network design (Fig. 3). For example, the CM-5 data network is
designed so that each application executes in a separate partition of compute nodes,
with a dedicated part of the network [40]. The I/O nodes also form a separate
partition. In addition, interpartition traffic (such as I/O traffic from an application
partition to the I/O partition) uses another part of the network, that does not belong
to any partition. Therefore I/O traffic does not have any effect on jobs that are not
performing I/O themselves.

The Intel Paragon design, on the other hand, does not have this feature. While
applications still execute on partitions of compute nodes, messages can sometimes
use links that are external to the partition. In addition, messages from one partition
to another (such as I/O traffic) can pass through partitions that are in the way, using
the same links that are used by the application running in that partition. This can
cause noticeable congestion and degradation in communication performance for such
applications [42].

Other systems, such as the IBM SP2 and Meiko CS-2, do not necessarily con-
centrate all the I/O nodes into an I/O partition. These machines are based on a
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Figure 3: I/O from one job may cause interference with the communication of another
job, depending on the network design.

multi-stage interconnection network. The network is not partitioned as it is in the
CM-5, so message passing traffic and I/O traffic from different jobs can interfere with
each other. As any node in the system can be designated as a compute node or an
I/0 node, there is an opportunity to decrease the interference with I/0O by a judicious
choice of network ports for the I/O nodes. However, it is not yet clear how to do so.

One approach that has been suggested is to spread the I/O devices evenly across
the machine, to provide some degree of locality between compute nodes and 1/0
devices [57, 61]. However, this is questionable for two reasons. First, it imposes
restrictions on the compute nodes used to run applications, because these must match
I/0 nodes that already contain persistent data to be used by the application. Second,
given that interconnection networks in MPPs are much faster than disks, the correct
model is that all the persistent storage is equally distant from all compute nodes [2].
The physical placement is actually immaterial.



However, the physical placement does affect network contention, and specifically,
interference between message passing traflic belonging to applications and that be-
longing to I/O. If either of these patterns creates a significantly higher load than
the other, concentrating the involved nodes in one place will cause contention and
degraded performance [4]. It is then best to distribute the nodes throughout the ma-
chine, thereby also distributing the communication volume throughout the network.

On the other hand, distributing the I/O nodes throughout the system implies
that they come between adjacent compute nodes. This could impair message passing
performance within an application. For example, an IBM SP2 frame can contain up
to 16 nodes. A 16-process parallel job can therefore be loaded onto a single frame,
and use that frame’s high-performance switch exclusively. But if some of the frame’s
nodes are I/O nodes, the 16-process job must span two frames, and use the inter-
frame links. In some configurations (where frames are connected directly to each
other, rather than using an additional switching stage), these have lower aggregate
bandwidth and are therefore more susceptible to contention [63]. Such scenarios are
avoided if I/O nodes are concentrated in a separate frame of their own.

2.8 Sustained vs. Peak Bandwidth

As with computation capabilities, I/O sometimes also exhibits a wide gap between
advertised peak bandwidth and the bandwidth that is sustained in practice by applica-
tions. For example, applications running on the Touchstone Delta typically achieved
only 4 MB/s aggregate bandwidth using CFS (Intel’s Concurrent File System [56]),
even though the system had 32 I/O nodes with a disk bandwidth of about 1 MB/s
each [47].

Various factors can lead to performance problems with parallel I/O. In many cases,
these are related to the fact that multiple processes are performing I/O operations at
the same time, to the same files. Examples include:

e Network contention in accessing the I/O nodes. If there are many more compute
nodes than I/O nodes, the I/O nodes may become network hot spots.

o Lack of buffer space, leading to thrashing [51]. This happens when the buffer
caches on the I/O nodes are insufficient for the combined traffic from all the
compute nodes.

o Inefficient disk scheduling due to interleaved requests for data at different offsets.
This can be offset by appropriate software mechanisms. It is discussed at length
in Section 4.

Some of the problems encountered in various systems can be attributed to evolving
complex software systems, that never quite catch up with hardware developments.
But in many cases it appears that the problem lies with system configuration. Many
installations use the flexibility provided by parallel systems to beef-up the compute
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Figure 4: The bandwidth obtained from an I/O node depends on the component with
the lowest bandwidth.

power and advertised peak Flops of their machine, and do not invest commensurate
resources in I/O. As a result, the systems are unbalanced to begin with. The I/O
nodes are underpowered relative to the compute nodes, and as a result they are over-
whelmed by I/0 requests and performance deteriorates. Thus it is doubly important
to install sufficient I/O capabilities in parallel systems.

It should also be noted that in calculating the peak bandwidth, many components
need to be taken into account. The component with the lowest bandwidth is the
bottleneck that limits the bandwidth of the whole system. An example is given in
Fig. 4. Data is read from two disks attached to the same SCSI string, and stored
in memory using DMA from the SCSI controller. The processor then performs a
memory-to-memory copy, e.g. to pack the data for transfer to the requesting compute
node. Then the network adapter reads the data from the memory, again using DMA,
and injects it into the network.

In many systems, the disks themselves are the slowest component, so the peak
bandwidth is simply the sum of the bandwidths of the disks. But if multiple disks
are used, their aggregate bandwidth can be large enough to saturate some other
component in the transfer. For example, the SCSI bandwidth limits the number of
disks that can profitably be connected to it. Likewise, the SCSI controller cannot
handle an unlimited number of strings or disks. The I/O bus can be a limiting factor,
especially considering that the data must traverse it twice: first in the DMA from
the SCSI controller to the memory, and then in the DMA from the memory to the
network adapter. Therefore the I/O bus bandwidth must be at least twice the peak
disk bandwidth. The memory system may also be a bottleneck. To sustain peak
performance, it must be able to support concurrent DMAs and processor access,



to allow copying from one buffer to another. Finally, the network adapter and the
network itself must have adequate bandwidths.

2.4 RAID Configurations

While not much data is available on disk lifetimes, it is reasonable to model them
as exponential [24, 25]. This means that the probability that a disk’s lifetime is
longer than ¢ is given by e /MTTF where MTTF is the mean time to failure, or
in other words, the mean lifetime of such disks. To give some intuition about this
expression, we note that the probability that a disk survives for half of the MTTF is
0.61, for exactly the MTTF is 0.37, and for twice the MTTF is 0.14. A well-known
characteristic of the exponential distribution is that it is memoryless, so this model
implies that disks have a constant failure rate. As a result, the MTTF of an array of
disks is inversely proportional to the number of disks'. For a single disk it has been
estimated that the MTTF is in the ballpark of 50,000 hours, or 5.7 years. For 100
disks, the MTTF drops to 500 hours, or about 3 weeks, which is unacceptable.

The solution to the problem of short MTTF in disk arrays is to encode data
redundantly [33, 24, 9]. The simplest form of redundant data encoding is mirroring,
that is keeping two copies of all data on separate disks. The obvious drawback of this
solution is that half of the space is wasted. A more efficient encoding is obtained by
computing the parity of the data, and storing it on an additional disk. If the original
data was stored on d disks, the space overhead is reduced from % to di—l. Luckily disk
failures are self-identifying, so the parity information is sufficient for reconstructing
lost data (as opposed to the situation in memory or data transmission, where simple
parity can identify the existence of an error but not its location, and therefore cannot
correct it). The reconstruction is done by computing the parity of the surviving data
and the original parity information. Such schemes form the basis of RAID systems
(33, 24, 9].

The price of parity protection is increased overheads. When new data is written,
its parity has to be computed and stored. When a disk fails, all the other disks have
to be read in order to reconstruct its data. Most of the research on RAID involves
the reduction of this overhead and its even distribution among the different disks
[39, 45, 28, 62, 60]. For example, the RAID 5 scheme improves on the RAID 3 and 4
schemes by distributing the parity information among all the disks, thereby avoiding
a bottleneck for parity updates (Fig. 5).

In parallel systems, RAID is used in two main ways: hardware RAID boxes at-
tached to I/O nodes, or software implementations in a parallel file system. An example
of the RAID box approach is the IBM SP2 [29]. The server nodes in this machine,
which are called “wide” nodes, support a large variety of external connections and
peripherals. One of these is the IBM 7135 RAID device, which is accessible via a
simple SCSI interface. This device can operate in RAID 1 mode (mirroring), RAID

1Strictly speaking, this is based on the assumption that failures of different disks are independent.
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Figure 5: Examples of RAID 4 and RAID 5 organizations. RAID 3 is similar to RAID
4, except for striping by single bytes rather than full blocks.

3 mode, or RAID 5 mode. The disks are arranged in banks of 5 disks each. In the
RAID 3 and 5 modes, one of these is used for parity, so the overhead is 20%. For
additional data protection, the 7135 contains two redundant controllers, and can be
configured in a twin-tailed scheme connected to two distinct wide nodes. This en-
sures data availability even in the face of failures in support components such as the
controller, SCSI channel, or node.

An example of the software approach is the scalable file system (sfs) on the CM-
5 [44]. sfs stripes data across the disks of the SDA in units of 16 bytes (which matches
the CM-5 data network packet size). One disk in the whole SDA is used for parity,
and one as a hot spare. Thus the system creates a RAID 3 configuration in software,
spanning multiple DSNs and multiple disks in each one. Computation of parity and
reconstruction of data are done by the system software, based on conventional SCSI
disks with no hardware protection.

3 Semantics of Parallel I/O Operations

In conventional (Unix) systems, files are nearly never shared at the same time by
more than one process (at least not for writing) [3]. In parallel systems such sharing
is the norm, including extensive sharing at the block level [38]. Thus there is an
urgent need to define what happens when multiple processes open and access the
same file. For example, if p processes write “hello world!” to a file, what should
happen? Options are that p copies be written, that only a single copy be written, or
that the multiple copies be interleaved in some way character by character. All these
options are justifiable and may be useful under certain circumstances. Therefore we
need a mechanism to allow the programmer to specify which one is desired.

The mechanism used by most commercial systems so far is to place each open file
in a certain mode. File modes are an addition to the normal Unix-like file system
interface. When a file is in one of the parallel modes, read and write operations
in the application processes become synchronization points. When such operations
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mode description examples
broadcast all processes collectively Express singl
reduce access the same data PFS global mode
CMMD sync-broadcast
scatter all processes collectively Express multi
gather access a sequence of data CFS modes 2 and 3
blocks, in rank order PFS sync and record modes
CMMD sync-sequential
shared processes operate independently | CFS mode 1
offset but share a common file pointer | PFS log mode
independent | allows programmer complete Express async
freedom CFS mode 0
PFS Unix mode
CMMD local and independent

Table II: File modes used in various parallel I/O systems.

process 1 process 2 process 3

- B )

file

pointer new pointer

Figure 6: Data access pattern for the broadcast/reduce file mode.

are issued, all the processes synchronize, and perform a collective I/O operation to
the file. This allows for the definition of crisp semantics for I/O operations that are
performed in parallel by multiple processes to the same file.

3.1 File Modes

The most common modes and the systems that use them are summarized in Table II.
We first describe the different modes in detail, and then review systems that provide
different selections of such modes.

In the broadcast/reduce mode all processes access the same data (Fig. 6). If the
access is a read, the same data is broadcast to all the processes. This is useful for
reading headers with information that is needed by all processes, or the whole input
if it is parameterized and does not need to be partitioned among the processes. When
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file

pointer new pointer

Figure 7: Data access pattern for the scatter/gather file mode.

process 1 process 2 process 3

file

pointer new pointer

Figure 8: Data access pattern for the scatter/gather file mode, with variable block sizes.

writing, this mode causes only one copy of the data to be written to the file. This
1s useful for writing results that represent the whole computation. The written data
can either come from a selected process, or from an arbitrary one. Some systems also
provide the service of checking whether all processes write identical data or not.

In the scatter/gather mode, processes access contiguous chunks of data according
to their serial numbers. Two variants of this mode have been suggested: either all
chunks are of the same size (Fig. 7), or they can be different (Fig. 8). This mode is
useful for partitioning data among the processes in simple patterns, both for reading
and for writing. More complicated partitioning patterns are considered below.

With a shared pointer, 1/O operations are not collective. Thus this is not a
barrier synchronization point, but rather a mutual exclusion synchronization to access
and update the shared pointer. When the file is in this mode processes also access
contiguous chunks of data, but the order is not predefined. Rather, the order is
determined on the fly by the order in which the processes perform the I/O operations.
The number of operations from different processes can be different. This mode is
useful for writing a log or for self scheduled reading and processing. Fig. 9 shows an

12
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Figure 9: Data access pattern for the shared pointer file mode.

example where the order of accesses happens to be process 2 first, then process 1,
then 3, 1, 2, and 2.

All systems also provide a mode with unrestricted independent access. This can
be used in case the other modes do not match the programmer’s requirements. In
this mode each process has its own private file pointer, and it can seek and perform
I/O operations anywhere in the file. There are no implied interactions with other
processes. The burden of ensuring that the resulting pattern makes sense is left to
the programmer.

Various systems provide different combinations of the above modes, sometimes
with additional variants designed to improve efficiency. File modes were originally
introduced as part of the Cubix environment for programming hypercubes at Cal-
tech [59]. This system was later commercialized as the ParaSoft Express environ-
ment [53], and includes a library of message passing functions usable in SPMD or
MIMD programs. The parallel tasks in Express have access to files using the system
calls of the base system. To define the semantics of parallel access by multiple tasks,
files can be placed in one of three access modes: singl means that all processes syn-
chronize and take part in common I/O operations, with only one copy of the data
in the file itself; multi means that all processes synchronize and their data is inter-
leaved according to the processor IDs; and async grants uncoordinated access by the
different processes.

Intel CF'S is a commercial file system used on Intel iPSC machines, the Touchstone
Delta, and the Paragon [56, 30]. File data is striped across multiple disks in 4 KB
blocks. Four access modes are provided: mode O provides no coordination, and all
accesses are independent; mode 1 provides a shared seek pointer, which is useful for
things like writing a log file asynchronously; mode 2 requires synchronous access, and
interleaves the data according to the process IDs, and mode 3 is the same as mode 2
with the additional requirement that all accesses be of the same size. The reason for
mode 3 is that scatter/gather with fixed sizes can be implemented more efficiently
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than with variable sizes, because the offset accessed by each process can be computed
directly. If variable sizes are allowed, as in mode 2, the implementation requires a
prefix computation to find the offset accessed by each process.

Intel PFS is a new implementation targeted for the Paragon, and providing es-
sentially the same interface [31]. Improvements include control over the striping
parameters (at the file system level, not for each file) and new access modes. Modes
Unix, log, and sync correspond to CFS modes 0, 1, and 2, respectively. Mode record
is similar to CFS mode 3, but uses the fact that access sizes are known in advance to
allow asynchronous access. Finally, global mode provides synchronized access with
only one copy of the data in the file (like Express singl). PFS is mountable in the
system-wide directory hierarchy, and is compatible with other types of file systems.
Thus it can be used to stripe data across the Paragon’s I/O nodes, but also to stripe
across NFS mount-points in a cluster environment.

Thinking Machines sfs (scalable file system) is a Unix-compatible file system for
the CM-5’s scalable disk array [44]. Data is interleaved in 16-byte units to create a
RAID-3 configuration in software. CMMD is a library layered on top of whatever file
systems exist on the compute partition’s control processor, including sfs [5]. Normal
Unix I/O is supported, with four file access modes: local, where accesses from
different processes are completely decoupled from each other; independent, which is
logically like local, but the processes share all the file-descriptor state except for the
seek pointer, in order to reduce the load on the servers; synchronous sequential,
in which accesses are interleaved according to the process IDs, and synchronous
broadcast, which is logically equivalent to one process doing the 1/0 for all of them.

The MasPar I/0 system provides a special version of the scatter/gather mode that
1s suitable for SIMD computations. The main difference from the other systems is that
the participation of each processor is qualified by an “enabled” bit [49]. Processors
that are not enabled for the I/O operation (the enabled bit is 0) do not participate.
Parallel read operations distribute data only to the enabled processors, and parallel
write operations collect data only from the enabled processors. These operations have
two versions. In one the enabled processors access successive data elements in rank
order, and in the other they can each specify an arbitrary offset.

3.2 File Partitioning via Scatter/Gather

An important function of file modes is that they define what part of the data is
accessed by what process. In the broadcast/reduce mode, each process accesses all
the data. In the shared offset mode, the data accessed is determined by the order in
which the different processes perform I/O operations. In the scatter/gather mode,
the data is partitioned according to the serial numbers of the processes.
Partitioning file data among the processes is a very useful feature. In many appli-
cations, the input dataset is partitioned among the processes, and then each process
operates on its part of the data. For example, this is typical when the data repre-
sents a physical domain, and the parallelization is done by domain decomposition.

14
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Figure 10: Two example patterns of partitioning a 2-D matrix.

Consider a weather code operating on a 3-D grid [1, sect. 2.1.1]. The input to such
computations typically includes atmospheric measurements for all the grid points.
As the grid is partitioned across the processes, so is the input. Likewise, the output
is often a concatenation of data produced by different processes. For example, the
output of CFD calculations is typically a pressure surface across the physical domain,
with each part being contributed by the process that owns that part of the domain.

The scatter/gather file mode can express some data decompositions, but not oth-
ers. To keep things simple, we shall use a 2-D matrix as a running example. Assume
the matrix is stored in column-major order in a file. Each element of the file is of
type double. The number of processes (and processors) is p, and the matrix size is
n X n, where n is a multiple of p.

Partitioning the file in a column-cyclic manner means that the first process ac-
cesses the first column, the second process accesses the second column, and so on.
After p columns, the pattern is repeated. In general, process 7 accesses all those
columns whose numbers are equal to ¢ modulo p (Fig. 10 left). This can be expressed
using the scatter/gather file mode by accessing a full column each time. At each
access, all processes synchronize, and then the first process accesses the first chunk of
data, that happens to correspond exactly to a single column, the second accesses the
second chunk of data, and so on. Thus the first set of one access from each process
covers the first p columns. The next set of accesses covers the next p columns, and
this continues until the whole matrix is finished.

Practically all other common access patterns cannot be expressed via the scat-
ter/gather file mode. We use the block-block decomposition as an example. In this
scheme, the matrix is partitioned into p square blocks, which are assigned to the
different processes (Fig. 10 right). This implies that only ,/p of the processes have
data in the first n/,/p columns of the matrix®>. To access the first column, these /p
processes can each access n/,/p data elements, while the other processes access 0

2We assume that p is a square.
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system

advantages

disadvantages

nCUBE [16]

simple partitioning based on
bit permutations

all sizes must be powers of 2

array partiti-
oning library

[7, 6, 23]

supports common array parti-
tioning patterns, high level of
abstraction

must access full array in one op-
eration

nested strided
[50]

supports the common multi-
dimensional access patterns

user needs to compute offsets

and strides in all dimensions,

must access a full multidimen-
sional structure

Vesta [13] supports all rectilinear decom- | only 2-D partitioning, one di-
positions, simple parameter- | mension related to hardware
ized interface, express mapping | more than to data
to hardware

MPI-IO [10] provides highest level of expres- | user has to construct MPI de-
siveness, partitions can overlap, | rived datatypes to describe the
can also distribute data non- | partitioning
contiguously into memory

Table ITI: Comparison of proposed interfaces for expressing file partitioning.

elements each. Note that the other processes have to participate (even though they
are not accessing any data) because the scatter/gather file mode implies that all I/O
operations are collective. This is then repeated n/,/p times. After the first n/,/p
columns are accessed, the next set of ,/p processes takes over. The net effect is that
the access is serialized and involves a lot of redundant synchronization.

The problems in implementing the desired access patterns based on a scatter/gather
file mode has led most programmers to use the independent mode instead [38]. In
this mode, each process can seek to a different offset in the file, and access the desired
data irrespective of what the other processes are doing. For example, each set of
\/P processes can seek ahead to their part of the matrix in the block-block decom-
position, rather than participating in irrelevant I/O operations with other processes.
This eliminates the redundant synchronization, at the expense of a heavier burden on
programmers. However, it may also cause inefliciencies in disk access, as explained
in Section 4. To eliminate these problems, as well as to provide convenient target
interfaces for parallel compilers, such as High Performance Fortran (HPF) [43, 27],
new interfaces have been proposed recently. These are summarized in Table III and
described in the following subsections.

3.3 The nCUBE Partitioning Scheme

An alternative to using the scatter/gather file mode is to define an interface that
allows partitioning to be expressed directly. This approach has been taken in the
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Vesta parallel file system, in the nCUBE system, and in a few libraries. We start
with the nCUBE system.

The nCUBE design is based on the notion of address bit permutations [16, 17].
The bits of the address of each data byte are permuted and divided into two groups.
One of the resulting sets of bits gives the ID of the process that will access this
byte. The other set gives the offset into that process’s buffer. Given that any subset
of address bits can be used to generate the process ID, this provides for flexible
partitioning patterns.

While conceptually elegant, the nCUBE scheme suffers from one major deficiency:
all sizes must be powers of two. This includes the array dimensions, the partition
dimensions, and the number of partitions. It is a direct result of using bit positions
to define the partitioning. As a result, this scheme has not gained wide acceptance.

3.4 Partitioning Induced by Array Decompostition

While there are a number of competing ideas about how to partition file data (as
witnessed by the subsections in this section), there is relative agreement about how
to partition multidimensional arrays. This agreement is captured in the partitioning
directives of HPF [43, 27]. Essentially, this is done by a list of directives, one for
each dimension of the array. There are 3 options: BLOCK divides the array into equal
size blocks and assigns them to successive processes, CYCLIC assigns successive array
elements to processes in round-robin manner, and * means that this dimension should
not be distributed. The example in Fig. 10 uses this terminology.

Given that files are often used to store array data, the same partitioning scheme
can be used. In effect, the distribution of the array data among the processes induces
a partitioning of the file segment that stores the array. This has been suggested in
a number of libraries, especially in the context of providing 1/O for HPF [7, 6, 23].
Naturally, it allows all the common partitioning patterns to be expressed.

The interface supported by these libraries is a high-level interface suitable for
direct use by programmers, and using the same abstraction (i.e. partitioned arrays).
An analogous low-level interface has also been proposed recently. It is based on
viewing the array data as it is in the file, namely a sequence in some canonical order.
Access to a subarray is then expressed as a set of nested strided accesses [50]. This
interface requires its user (a programmer or a compiler) to determine the offsets and
strides that should be used by the different processes.

3.5 The Vesta Partitioning Scheme

All the schemes described so far are based on partitioning the data based on a logical
structure as perceived by the program. The Vesta parallel file system from IBM
Research partitions the data as it is laid out on disks instead [11, 13]. This is done in
two steps. First, structural parameters are defined when the file is created, and used
to map the file to I/O nodes. Then, partitioning parameters are defined when the file
is opened. These are expressed in terms of the structural parameters.
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The structural parameters are the basic striping unit (BSU) and the number of
cells. The choice of each number is arbitrary up to system limits. The number of cells
specifies the maximum parallelism of the file in terms of I/O nodes used. Each cell
looks much like a Unix file, i.e. it is a byte addressable one dimensional array of data
with a defined end point. The cells of the file are maximally distributed in a round
robin fashion among all the I/O nodes, beginning with a randomly chosen 1/O node.
Thus, if the number of cells is chosen to equal the number of I/O nodes, one cell will
be placed on each I/O node, and the maximum level of parallel access is achieved.

The BSU size is the atom of data that is used when defining the striping across cells
within the file. It is also used as the basis for the definition of multiple parameterized
decompositions of the file into disjoint subfiles. The bytes within a BSU will always
be part of the same subfile, but different BSUs of data can be grouped into different
subfiles in a large number of ways, both within cells and across cells. The number of
cells of a file and the size of its BSU are fixed at creation time for the life of the file.

Vesta files are explicitly two dimensional, and this concept of two dimensional
data is preserved at the Vesta user interface. We consider the dimension across cells
to be horizontal, and the dimension within cells to be vertical. At the user interface,
access is made to subfiles of a file, not to the file itself, or to its cells. To access file
data, a process first opens a subfile. The subfile is specified by five parameters of the
open call. Four of these specify a partitioning of the file: Vbs specifies the number
of contiguous BSUs to be grouped into a subfile from within each cell. Vn specifies
the number of subfiles to be interleaved within each cell. Hbs specifies the number
of adjacent cells from which BSUs with the same relative position in each cell will
belong to the same subfile. Hn specifies the number of subfiles to interleave across
the cells of the file.

The product Vbs x Hbs defines a basic block of data mapped onto the two di-
mensional array of cells and BSUs within cells. This block is repeated over the file
Vn times vertically and Hn times horizontally to define a template of data decom-
position into different subfiles (see Fig. 11). This template is repeated as many times
as necessary horizontally over the cells of the file, and vertically until all cells have
been exhausted of data. Each repetition of the template contributes one block of data
to each of the subfiles, except in edge cases where the template extends beyond the
boundaries of the file.

The fifth parameter of the open call specifies which subfile is to be accessed by
the task, given the partitioning specified by the other four parameters. Subfiles are
numbered from 0 to Hn X Vn—1 in row major order of blocks within the template. In
most applications, all processes open a file with the same partitioning parameters, but
each specifying a different subfile to access. The program can then proceed with each
process issuing the same file I/O calls, but working against its own disjoint portion
of the file. Thus it is guaranteed that the accesses are non-conflicting.

Returning to the 2-D matrix example, it is easy to see that Vesta supports all the
common rectilinear decompositions: data can be accessed in rows of BSUs, columns of
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Figure 11: Example of Vesta file structure and partitioning. Subfiles are identified by
different shades of gray.

BSUs, or blocks of BSUs. These are the same decompositions as those supported by
HPF [43]. The specific example used above is obtained by the parameter values Vbs =
n/\/p, Vn = /p, Hbs = n/,/p, and Hn = ,/p. Each process can then access its block
with no required coordination or synchronization with other processes. However, this
requires that cells correspond to columns of the matrix, and BSUs to elements of the
matrix. While this is possible, it might lead to suboptimal performance due to an
excessively large number of cells (if the matrix is large). The alternative is to map
a number of matrix columns to each cell (e.g. n/,/p columns). The exact layout of
data should then be done to match the number of columns or rows that are to be
accessed at once. For example, in order to optimize for partitioning into blocks, it
would be better to organize the data in row-major order within each cell, rather than
using column-major order.

The main difference between partitioning via the scatter/gather file mode and
Vesta partitioning is that in Vesta the partitioning is defined in advance, rather
than being linked to a specific I/O operation. An important by-product of this
distinction is that a single I/O operation can then access multiple disjoint chunks of
data: it is enough that they are contiguous in the partition, and they do not have
to be contiguous in the file. In some cases this can reduce message passing overhead
considerably, by combining a number of small chunks of data into a single message.
An example is given in Fig. 12. Two processes access alternate data items from a
single disk (a cyclic partitioning pattern). Using file modes, a loop accessing one item
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desired partitioning pattern:
file

process 1 buffer process 2 buffer
file mode implementation: Vesta implementation:
fd = open(“file",scat_mode); fd = open(“file",1,2,1,1,my_id);
for (i=0; i<6; i++) fx Vbs=Hbs=Hn=1, Vn=2«/
read(fd,buf,1); read(fd,buf,6);

Figure 12: Predefined partitioning, as done in Vesta, can reduce the number of I/0
operations (and messages used) relative to partitioning based on the scatter/gather file
mode.

at a time is required. With Vesta partitioning, all the data can be accessed in a single
I/O operation.

3.6 Partitioning Using MPI Datatypes

While Vesta partitioning is a significant improvement over the scatter/gather file
mode, it still may not fulfill all user requirements. For example, it does not directly
support the partitioning of 3-D structures. Partitioning based on rectilinear array
decomposition as mentioned above solves this particular problem, but still cannot
express partitions such as diagonals in a matrix. Diagonals and other partitioning
patterns can be expressed by another recent proposal, the MPI-IO interface [10].

In the MPI-IO proposal, partitioning is expressed by using MPI derived datatypes.
MPI derived datatypes are a mechanism for creating complex structures out of simpler
components [46]. For example, it is possible to create a vector where a certain basic
element is repeated a certain number of times with a given stride. If the stride is larger
than the element size, this leaves holes between successive elements. Partitioning is
expressed by conceptually tiling the file with such a derived datatype, called the
filetype. The process then gains access to those parts of the file that correspond to
the basic elements in the filetype, skipping those parts that fall under holes.

As a simple example, consider the implementation of the broadcast/reduce pattern
and the scatter/gather pattern. Broadcast/reduce is achieved when all the processes
use exactly the same filetype. Note that this is a generalization of the conventional
broadcast /reduce file mode, because this filetype may have holes in it. Scatter/gather
is achieved by using complementary filetypes. This means that the present elements
in the filetype used by one process correspond to holes in the filetypes of all other
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Figure 13: Using MPI derived datatypes to partition a matrix into diagonals, in the proposed MPI-IO interface.



processes. Again this is a generalization of the conventional scatter/gather mode,
because some data may be left untouched, and the partitioning is not necessarily in
order of process IDs.

Partitioning to access diagonals of a matrix is a special case of this generalized
scatter/gather. The implementation is shown in Fig. 13. It is assumed that the
matrix is stored in column-major order. Each process starts by creating a derived
datatype that describes a single element followed by n holes, so that the next element
is the next one in the same diagonal. This is then used as a building block for the
filetype that extracts the :** diagonal from the matrix.

The MPI-IO proposal is unique in that it also uses MPI derived datatypes to
express the way data is laid out in memory. Thus the interface allows a non-contiguous
data set in a file to be transferred to or from a non-contiguous dataset in memory.
This i1s useful when the data in memory is also a part of a larger data structure,
e.g. the internal part of a domain that is surrounded by vectors that are shared with
neighboring processes. By using MPI derived datatypes, the extraction of data for
I/0O is expressed by the same mechanism as the extraction of data for inter-process
message passing.

3.7 Relationship to the Physical Location of Data

Of all the partitioning schemes described above, only the Vesta scheme expresses the
partitioning in terms that can be mapped directly to actual I/O devices. All the
others express the partitioning at an abstract level of data structuring, and do not
provide any control over the actual layout. This unique feature of Vesta is both an
advantage and a disadvantage.

The importance of allowing programmers control over data mapping is that such
control is required in order to achieve optimal performance. If users do not know how
the data is mapped, they cannot guarantee that the minimal number of disk accesses
are performed. Such guarantees are important in the context of high-performance
computing, because disk accesses are orders of magnitude slower than floating point
operations and even message passing. Performing an extra disk operation may be
equivalent to performing many thousands of extra computations. Indeed, some re-
searchers have developed algorithms for out-of-core computations where the com-
plexity is measured in disk operations rather than in computational steps [52, 66, 14].
Vesta is the only system to date that provides the required control, at least to some
degree.

On the other hand, the coupling between the partitioning scheme and the physical
layout comes at the expense of a clean abstraction of the data structures. Thus the
two dimensions of the vesta partitioning scheme are not equivalent. The horizontal
dimension (across cells) reflects the parallelism in the data storage, while the vertical
dimension (BSUs in cells) reflects the data. Typically, the hardware extent will be
much smaller than the extent of the data structures. For example, a system with
10 I/O nodes may be called upon to handle matrices of 10000 x 10000 elements.
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Programmers will therefore have to contend with mapping large data structures into
a smaller number of cells. This burden can be eased by using higher level libraries,
such as MPI-10, that will be implemented above Vesta.

The issue of how data is actually arranged on disk may be different for persistent
and transient files. Persistent files may be accessed by programs other than the one
that created them. In particular, it might be advantageous to access such files using
a conventional sequential program, e.g. for debugging or visualization of scientific
results [15, 23]. This implies that the file should be stored in a manner that is
compatible with conventional systems, and their sequential view of files. Transient
files, on the other hand, can be stored in the most convenient manner for parallel
access, sacrificing the compatibility with sequential systems [7, 23].

4 Implementation Issues

The common patterns of partitioning file data among a set of processes imply that
data transfer is broken into small components [38, 35]. First, the data accessed by
any given process is distributed across multiple I/O nodes, so only a fraction of the
transfer is handled by each one. Second, within each I/O node, the data is inter-
leaved with data being accessed by other processes, so it is not contiguous. Actually
implementing an I/O operation as a set of small accesses like this would result in
significant performance penalties, because of startup and latency costs that would be
associated with each component [18, 35]. Therefore it is imperative that parallel I/O
operations be implemented in a way that exploits the fact that in aggregate all the
processes together are performing a large structured 1/O operation.

With interfaces that allow partitioning to be expressed, like those described in the
previous section, it is possible to access non-contiguous data in the file with a single
operation. If a number of these access components are stored on the same I/O node,
then they can be transferred together in a single message. This reduces the total
message passing overhead, and thus improves performance [21, 12].

Additional improvements can be obtained by coordinating the disk accesses that
serve multiple processes. This typically implies that collective I/O operations should
be used. Such operations are performed by all the participating processes at the same
time, and usually include a barrier synchronization point. For example, when files are
in the broadcast/reduce and scatter/gather access modes, read and write operations
are performed collectively.

4.1 Performance Benefits of Collective 1/0O

Disk scheduling is known to have a crucial impact on I/O performance. When multiple
processes running on distinct compute nodes share access to data on a single disk,
their request streams must be coordinated in order to prevent detrimental effects on
the disk scheduling. This is true even if the processes are accessing disjoint data sets
which are interleaved on the same disk.
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Figure 14: Performance of disk access by one and four clients, with and without coordi-
nation.

We have executed the following experiment using Vesta on an IBM SP1 to demon-
strate and quantify this effect. A file of 128 MB is written to and read from a single
I/O node. This is done by either a single compute node, or a set of four compute
nodes. When four compute nodes are used, the data is partitioned into four disjoint
subfiles that are interleaved with each other. All powers of two from 64 bytes up to
256 KB were used as the unit of interleaving. Accesses are always to a single such
unit. The same access sizes are also used in the experiment with a single compute
node.

The experiment with four compute nodes was run twice. In the first case, the
accesses from the four nodes were not coordinated in any way. Each node simply
accesses its subfile sequentially. In the second case, the nodes passed a token among
themselves to ensure that the requests are issued in the order in which the data resides
on disk. The token starts with the first node, which issues the first request. It then
passes the token to the second node, which issues its first request, targeted at the
second interleaved data unit. The third and fourth nodes issue their requests next.
The first node must wait for the token to come back from the fourth node before it
can issue its second request, which is targeted at the fifth data unit.

The results are shown in Fig. 14. The bandwidth achieved for small access sizes
is low, because the overhead per access dominates. For reads, a single compute node

achieves the disk bandwidth of 2.2 MB/s for access sizes of 2 KB and above. For
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writes, the disk bandwidth of 1.5 MB/s is achieved for 4 KB and above. The sharp
transition between 2 KB and 4 KB is due to the fact that the disk block size is 4 KB,
so smaller accesses need to read the block off disk first before it can be modified?.

The measurements for four compute nodes with coordinated access track those
for a single compute node very closely. In some cases, the performance for four
nodes is even slightly superior. When four compute nodes access the data with no
coordination, their performance tracks that of a single node up to access sizes of 1
KB, and then they drop sharply. This is again a result of the 4 KB block size. When
each access is smaller than 1 KB, each compute node touches all the data blocks in
sequence. The first to arrive performs the disk access, then the rest hit the buffer
cache. The sequence of requests seen by the disk is therefore identical to the case of a
single compute node. But if the access size is larger, each compute node only touches
a subset of the data blocks. The sequence of requests seen by the disk then depends
on the order in which the requests arrive from the compute nodes. The performance
then depends on the random interleaving order. The plotted results are averages of
a number of measurements, with error bars that represent the average distance of
individual measurements from this average.

The worst performance is for accesses of 2 KB, which are small enough so that the
overhead for disk seeking is significant, and large enough so that each process does
not touch all the disk blocks. As the access size grows larger, the relative weight of
the disk seek becomes smaller. When the access size is very large, each individual
request is large enough to utilize the disk efficiently. Therefore uncoordinated writes
achieve full performance for 64 KB and above. The trend indicates that reads should
achieve full performance for accesses larger than 512 KB.

4.2 Ezplicit Support for Collective I/0

When collective I/O operations are performed, the system obtains important knowl-
edge about a whole set of I/O operations that occur at the same time. It is then
possible to perform these operations in the order that would optimize disk perfor-
mance.

The performance of disk access is governed by the physical properties of disks. The
magnetic head must seek to the correct track for data to be accessed. The platter
must rotate to the correct position before data can be transferred. Taken together,
these characteristics cause sequential access to full tracks, one after the other, to be
the most efficient access pattern. All other patterns achieve inferior performance, as
measured by both turnaround time and achieved bandwidth.

Message passing among the compute nodes and I/O nodes is orders of magnitude
faster than disk access. It has therefore been proposed that collective I/O operations
representing complicated access patterns by multiple processes be performed in two
phases (Fig. 15) [18]. For reading, first read all the data sequentially off the disk

3This experiment was performed with the initial Vesta implementation, where the server running

on the I/O nodes used AIX JFS to access files. The AIX block size is 4 KB.
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data on disk
at /0 nodes

n? I/O operations

data in memory
on compute nodes

data on disk
at 1/0 nodes

phase 1:
n I/O operations

data in memory
on compute nodes

phase 2:
n«(n-1) messages

data in memory
on compute nodes

Figure 15: Partitioning by rows when a matrix is stored by columns. A two-phase
implementation reduces the number of I/O operations, and performs larger I/Os, at the
expense of additional message passing later.

into the memories of a select subset of compute nodes. Then reorganize the data in
memory, and send each part to the compute node that requested it. For writes, the
order is reversed: first compose all the data in memory, and then write it sequentially.

Experimental results obtained on the Touchstone Delta based on Intel’s CFS have
shown that the two-phase approach can improve performance by more than two orders
of magnitude relative to the naive implementation where each component is accessed
separately [18]. However, this approach also has its drawbacks. First, it requires
extra buffering at the compute nodes, which might come at the expense of memory
available for the user application (the exception is if all reorganization can be done
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Figure 16: Optimal disk access based on reorganization in the memory of the I/O nodes.

in place). Second, it increases network traffic, because most of the data needs to be
transferred twice. Finally, the re-organization phase involves concentrated message
traffic that is more susceptible to congestion, whereas the transfer to and from I/0
nodes is gated by the lower bandwidth of the disks.

The main advantage of two-phase 1/0 is that it can be implemented as a user-level
library above whatever I/O system is available. Further optimizations require changes
to the interface between compute nodes and I/0O nodes. One approach that has been
suggested is disk-directed I/O [35]. In this approach, the data partitioning involved
in the collective I/O operations can be described by a small number of parameters
(as in the Vesta interface). The collective operation itself first involves a barrier
synchronization among the compute nodes, to ensure that all the memory buffers are
ready. Then a representative compute node broadcasts the I/O request to all the I/O
nodes. Each I/O node analyzes the request, and extracts the parts that resides on
its local disks. If the request is a collective read, it then schedules the required disk
access operations in the optimal manner. As each disk block is read off disk, the data
is sent to the relevant compute nodes. Thus there is no extra message passing, no
need for extra memory on compute nodes, no need for extra buffering on I/O nodes,
and no need for heuristics for buffer management and prefetching.

An example is shown in Fig. 16. This is the same type of access as before, with
4 compute nodes accessing the rows of a matrix that is stored by column on 4 1/0
nodes. The difference is that the data is first read into memory on the I/0O nodes,
rather than moved to the memories of the compute nodes. Then n? messages are
used to redistribute the data in the desired pattern.
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4.8 Caching and Prefetching

Caching file data in memory is considered an important feature in many file systems.
In distributed file systems, caching is often done both on the file servers and on the
clients [41]. In parallel file systems, client-side caching is more problematic, because
the interleaved access patterns create significant false sharing of file blocks [38]. How-
ever, it is still possible to use client caching if the access is read only. File systems that
provide partitioning can also support client caching when data is written, provided
that processes are writing to disjoint partitions. The system can later reconstruct the
file blocks using knowledge about the partitioning scheme.

Caching at the I/O nodes can be instrumental for supporting collective I/O oper-
ations, even without using any explicit knowledge. This is based on the observation
that even when each process performs a strided access through the data, considering
all the accesses by all the processes often shows, in aggregate, that all the data is
being accessed (this has been called “interprocess locality” [37]). By using a large
enough buffer cache, it is possible to coalesce the possibly unordered accesses from
the different processes into a sequential access pattern to disk. This happens at each
I/O node individually, and pertains to data stored at that I/O node. For writing
data, the contributions from different processes can come in any order. As each one
is received by the I/O node, it is copied into a frame in the buffer cache. If it relates to
a previously unwritten block, a new frame is allocated. Using a write behind policy,
the data is allowed to accumulate in the buffer cache. Assuming the accesses to the
same area in the file come more or less together, a range of blocks will be filled before
the system runs out of frames. These can then be written sequentially to disk (Fig.
17).

The same principle can be applied to reading, except that here the system is re-
quired to prefetch data based on a read-ahead mechanism. With a large enough buffer
cache and simple prefetching algorithms, strided I/O operations from one process can
pave the way for buffer cache hits for other processes. This requires the access history
to be maintained on a global basis, rather than for each process individually. For ex-
ample, the Vesta prefetching algorithm maintains a list of the last 32 unique blocks
that have been accessed. When a new request comes in, this list is searched for a
sequence of blocks preceding the newly requested one. If they are found, a read-ahead
operation for the following blocks is triggered. This works even if the preceding blocks
were accessed out of order and by different processes.

Buffer cache management algorithms for parallel systems have been designed
with such scenarios in mind [36]. Experiments conducted with the Vesta file sys-
tem have shown that prefetching based on the identification of a sequential pattern
composed of interleaved strided accesses does lead to benefits, even without collective
I/O calls [21]*. But relying exclusively on buffer cache management cannot solve
all problems. For one thing, not all access patterns cover the whole dataset. If the

“These are experiments with the new version of Vesta, which includes buffer cache management.
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Figure 17: A buffer cache can collect writes that come in a random order, aggregate the
data, and then perform sequential writes to disk.

processes are reading a 2-D slice out of a 3-D data structure, then their aggregate
behavior may be a strided access, not a sequential one. This may cause excessive
prefetching of unnecessary data, and tie up important disk bandwidth. A partial so-
lution is to use more sophisticated prefetching algorithms, that can identify a strided
access pattern [37]. However, the problem remains for access patterns that are less
structured. Another example is when old data is overwritten in units that are smaller
than the block size. Global knowledge can reveal that eventually all the data will
be overwritten, but if the requests are received one at a time it is necessary to first
read the old data, and then update it one part at a time. Finally, overagressive buffer
cache management can cause problems by itself. This happened in CFS on Intel
hypercubes, where prefetching sometimes competed with actual application 1/0O for
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limited buffer space, especially in installations that had a high ratio of compute nodes
to I/O nodes [51]. This was the reason for streaming data through the I/O nodes
without any buffering in the Intel PFS design (which is based on the OSF/1 AD file
system [58]).

Explicit support for collective I/O operations can also be combined with prefetch-
ing and buffer management. This is done in TIP (Transparent Informed prefetch-
ing) [55]. The idea is to provide the system with hints that inform it about future
reference patterns. The system can then decide what to prefetch and when. It can
even take into account the conflicting requests of multiple jobs.

5 Conclusions

In massively parallel processors, parallel I/O subsystems are required to balance I/0O
capabilities with computing power. The general trend in recent years is toward dedi-
cated I/0 nodes servicing I/O operations requested by compute nodes executing user
applications. Compute nodes and I/O nodes communicate via the MPP’s internal
high-performance interconnection network, which is used both for I/O operations and
for user application inter-task communication. Depending on the system architecture
and I/O node placement, I/O traffic from a given job may not interfere with other
jobs as long as these jobs do not perform I/O themselves.

In order to define the semantics of parallel I/O operations, different parallel inter-
faces are used. File modes allow one to express broadcast/reduce and uni-dimensional
scatter/gather types of operations on file data. In addition, supporting a shared file
pointer allows for the creation of shared log files or self-scheduled processing. How-
ever, file modes are insufficient for performing many rectilinear partitionings of file
data. Multi-dimensional rectilinear partitioning, which is common in parallel applica-
tions, is supported by libraries based on array decomposition. The Vesta partitioning
scheme permits all types of 2-D partitioning, and ties the partitioning ot physical
data layout. The recent MPI-IO proposal expresses partitioning with MPI derived
datatypes, and the extraction of file data is expressed by the same mechanism as the
extraction of data for inter-process message passing in MPI. This is the most flexible
mechanism to date.

Optimizations are required to implement such parallel interfaces efficiently, and
there is an increasing recognition by the scientific community of the need for explicitly
parallel collective I/O operations. Grouping I/O requests issued by parallel tasks
allows one to minimize the number of disk accesses and to order them according
to the physical location of the data on disk. Caching and prefetching are other
techniques which permit the reuse of file data, and provides a measure of implicit
coordination when inter-process locality exists in the application. All these techniques
are complementary and ongoing research studies ways of combining them efficiently.

Undoubtedly, the field of parallel I/O is in flux, with new interfaces being de-
signed, and new systems being implemented. There is a slow convergence, and a
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move toward standards. We envision a common interface with file partitioning and

collective operations, that will enable efficient and portable implementations across
various platforms.
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