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Abstract Understanding program code is a complicated endeavor. As a re-
sult, studying code comprehension is also hard. The prevailing approach for
such studies is to use controlled experiments, where the difference between
treatments sheds light on factors which affect comprehension. But it is hard
to conduct controlled experiments with human developers, and we also need to
find a way to operationalize what “comprehension” actually means. In addi-
tion, myriad different factors can influence the outcome, and seemingly small
nuances may be detrimental to the study’s validity. In order to promote the
development and use of sound experimental methodology, we discuss both
considerations which need to be applied and potential problems that might
occur, with regard to the experimental subjects, the code they work on, the
tasks they are asked to perform, and the metrics for their performance. A com-
mon thread is that decisions that were taken in an effort to avoid one threat
to validity may pose a larger threat than the one they removed.

Keywords Controlled experiment - Code comprehension - Experimental
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1 Introduction

Code comprehension is a major element of software development. According
to Robert Martin, developers read 10 times more code than they write [87].
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In one survey, 95% of developers said understanding code was an important
part of their job, and a large majority said they do it every day [32]. Most
developers also agree that understanding code written by others is hard. As
researchers, we are interested in exactly what makes it hard, and what can be
done about it.

Controlled experiments are at the heart of research on code comprehension
[157,131]. In such experiments the participants are asked to perform a pro-
gramming task based on some code. The task is crafted so that performing it
successfully requires the code to be understood. By measuring the effort and
success of performing the task, one can therefore obtain some information on
the difficulty of understanding the code. Repeating the measurements on mod-
ified code or using various tools then sheds light on the effect of code features
and tools on program comprehension.

While the general framework of code comprehension experiments is well
known, there are many variations in the details. This is a natural result of the
combination of the many decisions that have to be taken:

— One has to select the code on which the subjects will work. The code often
reflects the nature of the study, e.g. using a certain style of identifiers if
the effect of such styles on comprehension is the focus of the study. How-
ever, many other attributes of the code may also affect the comprehension
process. It is therefore important to select code that does not introduce
threats to the validity of the study.

— One has to select the tasks to be performed. The tasks are supposed to
require understanding, but what does “understanding” mean? A particular
risk is that subjects may be able to find shortcuts and perform the task
without actually understanding the code, thereby undermining the whole
experiment.

— One has to select the metrics by which performance will be measured. Dif-
ferent metrics may actually measure different things, and reflect different
aspects of the difficulties in understanding code — or some factor that is
unrelated to understanding the code.

— One also has to select the subjects themselves. A much-cited threat is the
use of students as experimental subjects. But when are students indeed a
problem, and when can they be used safely? And is the student /professional
dichotomy indeed the correct one to be concerned about?

Most work on the methodology of empirical software engineering focuses on
experimental design, statistical tests, and reporting guidelines [8,74,159,130,
73,135]. But it is also important to get the domain-specific core features right
[23]. For program comprehension our focus will be on general attributes of
the code, the tasks, and the measurements. We will discuss the manipulations
that are part of a specific research agenda only so far as they interact with
such attributes. Our goal is to review the choices that have been made in
experimental studies, and the threats to validity involved in them. This should
be considered as a basis for discussion, not a comprehensive listing. Hopefully
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this will encourage additional work on the methodological aspects of code
comprehension research.

Some previous work in this domain includes the following. In an early work
Brooks identified four factors which affect comprehension: what the program
does, the program text, the programmer’s task, and individual differences [22].
These foreshadow some of our observations on the code, the task, and the
experimental subjects. Littman et al. defined understanding at a somewhat
higher level of abstraction [84]. According to them, understanding a program
comprises knowing the objects the program manipulates and the actions it
performs, as well as its functional components and the causal interactions
between them. Note that this description relates to systems, and not to smaller
elements of code.

To the best of our knowledge the only empirical evaluation of methods
to measure code comprehension was conducted by Dunsmore and Roper more
than 20 years ago [44]. Their conclusion was that tasks performed using mental
simulation of the code provided the best results, and that a simple question
regarding perceived comprehension was also a good indicator. However, these
results are of only a preliminary nature.

Siegmund et al. report on their experiences with conducting controlled
experiments on program comprehension, placing an emphasis on the need to
control for programming experience [132]. Perhaps the closest to our work
is Siegmund and Schumann’s review of confounding parameters in program
comprehension [137]. This includes a catalog of 39 factors that may influence
the results of program comprehension studies. Many of them have parallels in
our discussion. However, we place greater focus on the considerations involved
in the technical aspects of the experiment, such as the code used and the tasks
performed: for example, Siegmund and Schumann spend only one paragraph
on the task, saying it may be a confounding factor, while we devote a whole
section to considerations in selecting a task and how this interacts with levels
of understanding the code. At the same time, many of the factors identified by
Siegmund and Schumann, especially considerations involving the experimental
subjects, are not repeated here. As a result the two papers largely complement
each other. Another close paper is Oliveira et al. [98]. This paper presents a
literature survey of code readability and understanding, with an emphasis on
the tasks performed and the metrics used to assess understanding. It then
relates them to a taxonomy of learning. Our focus is narrower: we perform an
in-depth analysis of the factors involved in only the “understanding” level of
the taxonomy, and on concrete activities performed by developers.

Finally, von Mayrhauser and Vans [152] and Storey [149] emphasize the
theoretical underpinnings of program comprehension research. The most-often
cited cognitive models of code comprehension are the top-down model [22]
and the bottom-up model [129]. Another distinction is between the systematic
strategy and the as-needed strategy [84]. While this is obviously important
and worthy, our work is focused on the more technical aspects of making the
experimental observations in the first place.
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The following sections review issues related to the code, the task, the met-
rics, and the experimental subjects. In each the pertinent considerations are
listed first, and then the potential pitfalls. This paper is an extended version
of a paper from the 29" International Conference on Program Comprehension
[53]. The extensions added to this version fall into two categories. First, the
discussions of many of the points made throughout the paper have been fleshed
out. The original conference version naturally suffered from space limitations,
while in the present version it was possible to present the arguments more
fully and give more examples. In addition, several figures were added. Second,
a few considerations and pitfalls that were completely missing in the original
version have been added. A checklist summarizing the main points that need
to be attended to in conducting a code comprehension study has also been
added.

2 The Code

Experiments on code comprehension necessarily start with code. But finding
suitable code is not easy. Things to consider are the scope of the code, its
level of difficulty so it will be challenging enough but not too hard for an
experiment, and whether to use real code or write code specifically for the
experiment. Pitfalls include the danger of misleading code on the one hand, or
code that will give the task away on the other hand, including the danger of
using well-known code that may be recognized, and problems with obfuscating
variable and function names and how the code is presented.

2.1 Considerations
2.1.1 Code Scope

A central question regarding the code to use in a program comprehension
study is how much code to use. There is a wide spectrum of options: a short
snippet of a few lines, a method, a complete class, a package, or a full system.

The main consideration in favor of a limited scope is in cases where such a
scope corresponds to the focus of the study. For example, when investigating
the effect of the names of parameters on the understanding of a function, it
is natural to use complete functions [6]. If investigating control structures, fo-
cused snippets containing a single program element reduce confounding effects.
For example, this was done by Ajami et al. in a study that found differences
in understanding loops that count up and loops that count down [4]. An addi-
tional consideration is that a limited scope allows for a manageable experiment,
for example not extending beyond a single hour of the experimental subject’s
time and sometimes as short as 10 or 15 minutes.

Scope is also an important confounding factor [59]. If you want to compare
two constructs, and one requires more lines of code than the other, should
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differences in performance be interpreted as resulting from the constructs or
from the amount of code involved? This has no good solution, as artificially
padding the shorter version may compromise the integrity of the code and
cause a confounding effect worse than the difference in length. However, if the
longer code turns out to be beneficial, this strengthens the results [71].

If the focus is on understanding as it is done during real development,
e.g. to fix a reported bug, a large volume of code should be used. Ideally,
the whole system should be available, just as it would be in a real-world
setting [1]. This is important since understanding a full system is quite different
from understanding a limited amount of code [82]. Brooks suggests that this
difficulty is due to the software’s myriad possible states [21].

In the past something that passes for a full system could involve relatively
little code, thereby enabling practical experiments on “complete systems”.
For example, in the mid 1980s Littman et al. used a 250-line, 14-subroutine
Fortran program that maintains a database of personnel records. Today such
a volume more realistically represents a single class. As a result, experiments
often make compromises. For example, a bug fixing task may skip the stage
of locating the relevant code in the system, and focus only on the actual fix of
the function in which the bug occurs.

The alternative is to conduct large scale experiments. For example, Wilson
et al. asked graduate students to implement change requests in programs com-
prising about 100 Kloc, 800 classes, and 500 files [158]. Sjoberg et al. suggest
that realistic experiments should be based on hiring professional programmers
for relatively long periods of days to months [139,140]. In such a setting, sub-
jects can work in a realistic environment, including having access to all the
relevant code. This is important because comprehension—Ilike development—is
an incremental process. It takes time and accumulates, and short experiments
cannot evaluate this. At best they can focus on a well-defined single step.

Another alternative is to observe professionals during their work. This ap-
proach was taken by von Mayrhauser and Vans, who analyzed maintenance
sessions of professionals working on large-scale full systems. For example, in
one paper they report in detail on a 2-hour session devoted to porting client
programs to a new operating system [153], and in another they report on two
2-hour sessions, one fixing a bug and the other searching for the location to
insert new code [155].

2.1.2 Code Difficulty

Probably the most important characteristic of code used in an experiment
is that the code should be appropriate for the task and the subjects. It should
not be too easy and not too hard.

As an example of easy code, consider Fig. 1 (Listing 1 from Busjahn et
al. [26]). This listing comprises 22 lines of code. It defines a class Vehicle
with a constructor and a method, followed by a main function that creates
a Vehicle object and calls the method. The method increments the vehicle’s
speed, subject to not going over a maximal value. So essentially all this code
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public class Vehicle {

String producer, type;

int topSpeed, currentSpeed;

public Vehicle(String p, String t, int tp) {
this.producer = p;
this.type = t;
this.topSpeed = tp;
this.currentSpeed = 0;

¥

public int accelerate(int kmh) {
if ((this.currentSpeed + kmh) > this.topSpeed) {

this.currentSpeed = this.topSpeed;

} else {

this.currentSpeed = this.currentSpeed + kmh;
}

return this.currentSpeed;

}

public static void main (String args[ ]) {
Vehicle v = new Vehicle(”"Audi”,”A6" ,200);
v.accelerate(10);

}

Fig. 1 Example of trivial code. (©2015 IEEE. Reprinted, with permission, from Busjahn et
al. [26])

does is to increment an integer. Whether this is a problem depends on its
use in the experiment. The original experiment was to use an eye tracker to
follow the code reading order, so very simple code is a suitable base case. But
using such code in a comprehension study would probably actually measure
the ability to find the one line that does something.

As an example of hard code consider Fig. 2 (Figure 3 of Beniamini et al.
[14]). This is 11 lines long, comprising an initialized array and a function. The
array is a lookup table. The function calculates the number of 1 bits in an
input buffer by using the top and bottom halves of each byte as indexes to the
lookup table and summing. While short, this code is non-trivial due to the use
of bitwise operations to manipulate array accesses.

The issue of difficulty is closely associated with code complexity. Unfortu-
nately the term “complexity” is used in three different meanings in the context
of software:

— The simplest, which we emphasize here, is code complexity. This is a direct
property of the code—as text which expresses a set of instructions—that
makes it hard to understand. For example, McCabe suggested that the
number of branch points in a function is a measure of such complexity
[88], and Dijkstra claimed that goto statements are especially harmful [41].
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}

Fig. 2 Example of difficult code using bit operations to index an array. ((©)2017 IEEE.
Reprinted, with permission, from Beniamini et al. [14])

However, more recent research has questioned whether such code metrics
indeed predict comprehension difficulty [40,94,51,93,59].

— A completely different issue is the conceptual complexity of the software.
This is what Brooks calls “essential complexity”, and is what makes soft-
ware development hard [21]. Naturally it may also affect code comprehen-
sion studies.

— the third meaning is algorithmic or computational complexity, as in the
number of steps required to perform some computation. This is unrelated
to our interests here.

As noted above, code difficulty may be related to the use of specific code
constructs — such as goto or bitwise operations. Pointers have also been ob-
served to be hard to master [100,147]. More generally, code smells and anti-
patterns can make code harder to understand [127,1,106]. All these obviously
justify being studied, but should probably be avoided when they are not the
focus of the study.

Assessing whether code is of suitable difficulty is hard, because this issue
interacts with the subjects. For example, if subjects don’t know about bitwise
operations, code using such operations becomes impenetrable. A similar prob-
lem occurs when understanding the code requires specific domain knowledge.
This needs to be checked in pilot studies and during subject recruitment.

2.1.3 Code Source

The considerations regarding what code to use depend on the type of exper-
iment being conducted. When style or tools are being investigated, the code
should be “representative” of code in general. However, given the vast amount
of code that exists—much of which is closed source—it is unrealistic to try to
create a statistically representative sample of code. But we can at least use
some sample of real code.
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Volumes of real code are now freely available in open source repositories.
An unanswered question is whether this is also representative of proprietary
code. There are dissenting opinions on which approach produces better code
(and by implication, also clearer code) [103,109]. Proponents of open source
cite Linus’s law, and claim that open source is better due to being subject
to review by multiple users [112]. Alternatively, proprietary code has been
claimed to be better because it is more managed in terms of testing and
documentation.

One major concern with using real code is that the code was written by
people who know what it is for. So the code may rely on implicit domain
knowledge or reflect unknown assumptions and constraints. If experimental
subjects in code comprehension experiments lack this knowledge, they will be
unable to understand the code. A possible solution is to use code from utility
libraries (e.g. performing array or string operations) [6], or to otherwise ensure
that domain knowledge is not required.

The quest for self-contained code may suggest the use of functions that
perform some computation that is completely devoid of any context. A good
source for such functions is web sites with programming exercises for job in-
terviews, such as leetcode.com. The advantage of such sites is that hundreds of
exercises are available, often with dozens of solutions for each. However, many
of the problems are unrealistic, for example implementing a contrived compli-
cated rule to distribute candy among children. It is highly unlikely that anyone
would actually be required to write such code except in a coding exercise. As a
result understanding the code can be difficult simply because it does not have
a clear purpose and does not make sense. It is therefore recommended to vet
candidate codes carefully, and use only codes for realistic problems.

In experiments focused on particular features of the code, using real code
may provide only imperfect examples, and at the same time it may intro-
duce unwanted confounding factors. It may therefore be necessary to write
code snippets specifically for the experiment to better control the different
treatments. For example, Ajami et al. wrote code snippets with exactly the
same functionality using different programming constructs, to investigate the
effect of these constructs on understanding [4]. Note, however, that different
treatments can also be based on real code. Abbes et al. used 6 large systems
that contained specific antipatterns in an experiment on the effect of these
antipatterns on comprehension [1]. To create the alternative treatment they
refactored the systems to remove the antipatterns, without changing the rest
of the design.

An extreme case is using randomly-generated code [68]. This is by definition
devoid of meaning, which raises the question of what we are asking subjects to
understand. It can perhaps be used to study very technical aspects of reading,
as a way to separate them from the effect of semantics. For example, Stefik
and Siebert used randomly-generated keywords as a baseline (like a placebo)
for studying the effect of syntax on understanding [148].

In any case, regardless of the source of the code, one should ensure that
it compiles and runs correctly. Few things are more embarrassing than having
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public static int[] Cnc(int[] str, int[] end)
{
int len = str.length;
var rsl = new int[len % 2];
for (int idx = 0; idx < len; idx++)
{
int frs = str[idx];
int scn = end[idx];
rsl[idx] = frs;
rsl[idx + 1] = scn;
}

return rsl;

}

Fig. 3 Example of mechanistic abbreviations. (Reprinted by permission from Springer Nature
from Hofmeister et al. [67], (©2019)

subjects in an experiment point out a bug (where this is not part of the
experiment).

2.2 Pitfalls

Even when all the considerations are taken into account, problems with the
code can threaten the validity of the study.

2.2.1 Misleading Code

Perhaps the biggest problem is unintentionally misleading code. If the code is
misleading, subjects may make mistakes not because of the studied effect but
because they were misled. Gopstein et al. have identified 15 coding practices
that may be misleading [60]. Examples include using an assignment as a value,
using short-circuit logic for control flow (in A||B, if A is true B is not evaluated),
or presenting literals in an unnatural encoding like octal. Scalabrino et al.
suggest code consistency as another attribute which affects readability and
understanding [117]. This refers to the consistent use of terms in variable
names and in comments. In other work, Scalabrino et al. define a metric for the
deceptiveness of code based on the discord between perceived comprehension
and actual comprehension [116].

A major factor in misleading code appears to be names. Arnaoudova et al.
call this “linguistic antipatterns”, e.g. when a variable’s name does not match
its type, or when its plurality does not match its use [5]. A simple example
appears in Fig. 3 (Listing 4 of Hofmeister et al. [67]). This includes an array
named str, and a line int len = str.Length. But contrary to what might be
expected, str is not a string. Rather, “str” is an abbreviation for “start”, and



10 Dror G. Feitelson

PROGRAM Purple (input, output),
VAR Max, |, Num : INTEGER,
BEGIN
Max = 999999,
FOR | =1 TO 10 DO
BEGIN
READLN (Num) ,
IF Num [ ] Max THEN Max = Num
END
WRITELN (Max) ,
END

Fig. 4 Example of misleading code. The task was to decide whether to put a < or a > in
the box. (©1984 IEEE. Reprinted, with permission, from Soloway and Ehrlich [144])

is used to denote the initial array of integers passed to a function that will
change it. To further confuse matters, the array that will be appended to str
is called end, a name that may be more suitable for the final result.

A striking example of the effect of misleading names was given by Avidan
and Feitelson [6]. In a study about variable naming they used 6 real functions
from utility libraries. Each function was presented either as it was originally
written, or with variable names changed to a, b, ¢, etc. in order of appearance.
The unexpected result was that in 3 of the functions there was no signifi-
cant difference in the time to understand the different versions, and moreover,
several subjects made mistakes — and all the mistakes were in the versions
with the original names. The conclusion was that the names were misleading,
to the degree of being worse than meaningless names like consecutive letters
of the alphabet. But presumably the original developers did not intentionally
choose misleading names. So the real threat is that names that look OK to
the experiment designer would turn out to be misleading for the experimental
subjects.

A more insidious example comes from Soloway and Ehrlich’s seminal paper
on programming knowledge [144]. The code samples shown in Figure 1 of that
paper were meant to investigate the rule that “a variable’s name should reflect
its function”. This was done by writing code that calculates the maximum or
the minimum of a set of input numbers. The experimental subjects’ task was
to insert the correct relation symbol (< or >) in the expression comparing the
result so far with each new input.

But in the version calculating the minimum, the code used the name max
instead of min (Fig. 4). This left the initialization to a large number! instead
of to 0 as the only clue that the code actually calculates the minimum; if one
assumes that the code calculates the maximum, as the variable name suggests,
such an initialization would be erroneous. In other words, the experiment

1 They used 999999, which today looks unjustifiable; it should have been MAXINT.
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did not present its subjects with a situation in which the name does not
reflect its function — it presented them with a downright contradiction. And
this contradiction pitted a central variable name against a not so prominent
initialization. Subjects would have to be especially diligent to get this right.

2.2.2 Recognized Code

The opposite of misleading code is easily recognized code. This may occur if
textbook examples are used, e.g. a well-known sorting algorithm. Using such
code may end up measuring how well-versed subjects are in the cannon of
programming examples. This also applies to many of the problems available
on web sites with job-interview programming exercises.

It may be tempting to nevertheless use a well-known example but modify
it in some way. This is a dangerous practice, as modifying such code risks
turning it into misleading code, because subjects who recognize it expect the
conventional unaltered functionality. For example, altering the initialization
or termination of a canonical for loop leads to a large increase in the errors
made in interpreting what it does [4].

2.2.83 Code Structure Giveaways

Code used in experiments should be realistic, in the sense that it could have
been written in the context of a real project. Code written specifically for
experiments sometimes violates this requirement. For example, it should not
include parts that do not make sense, especially if such unnecessary additions
may give the experiment away.

An example is shown in Fig. 5 (Figure 1 in Schankin et al. [118]). This is
a class that converts variable names in under_score style to camelCase style.
The class contains two helper functions, to lowercase the first letter of a word
and to capitalize it. The point of the experiment is to notice that lowercase is
called instead of capitalize, which is an error. But in fact there is no reason for
the lowercase function to exist at all, because the class as presented supports
only one-way conversion. And in the original (erroneous) code capitalize is dead
code that is never called, which may provide a hint.

Another example is when the code allows the answer to be guessed. For
example, Sharif and Maletic studied name recall using a multiple-choice ques-
tion with the following options: fill_pathname, full_mathname, full_pathname,
and full_pathnum [126]. The distractors were selected to be as similar as possi-
ble to the original name. But the first of them contains a verb, and is therefore
more likely to be a function name. Two others contain unlikely word conjuga-
tions, mathname and pathnum. This leaves only one option which makes sense
as a variable name, and indeed this is the correct answer.
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public class NotationConverter {
public String camelcase(String input) {
String [] parts = input.split(”.");
String result = parts[0];
for (int i = 1; i < parts.length; i++) {
result += lowercase(parts[i]);
}

return result;

}
private String capitalize(String input) {
String first = input.substring (0, 1);
String other = input.substring(1);
String converted = first.toUpperCase().concat(other);
return converted ;

}

private String lowercase(String input) {
String first = input.substring (0, 1);
String other = input.substring(1);
String converted = first.toLowerCase().concat(other);
return converted;

Fig. 5 Example of problematic code. The task was to find the bug, which is that the wrong
function is called. (Republished with permission of ACM, from Schankin et al. [118], (©)2018)

2.2.4 Problematic Code Presentation

A potential problem in presenting code in the context of comprehension stud-
ies is what to do with comments and descriptive names. For example, header
comments and method names are specifically designed to allow readers to un-
derstand what a function does without reading its code. Leaving them intact
may therefore undermine an experiment where subjects are supposed to de-
duce just that. But given that they normally exist, removing them creates an
unnatural situation. Thus it is suggested that this be done only in experiments
using short code segments, where the focus justifies using an unrealistic set-
ting. If a large body of code is used, names and comments should probably be
retained. Likewise, in experiments where the task is not to understand what
the code does there is no problem. An example is superficial debugging tasks,
as explained below in Section 3.1.6.

As a side note, care should be taken that the comments do not directly
interact with the task. For example, Figure 1 in a paper by Buse and Weimer
[25] shows a short code snippet preceded by the comment “this is hard to read”,
from an experiment where subjects are asked to assess readability. Providing
such overt hints regarding the expected answer should be avoided.

A more delicate issue is how to handle mathematical and logical expres-
sions. For example, should one rely on operator precedence, or use parentheses
to clarify the order of evaluation? Again, if this is not the issue being stud-
ied, the best approach is probably to make it as unobtrusive as possible. Any
effort that subjects spend on understanding expressions, and any mistakes
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they make, dilute the results that the experiment was designed to produce. In
practical terms, this means to make the expressions as simple and obvious as
possible, including by using parentheses.

More generally, all aspects of code readability affect its comprehension.
If they are not the issue being studied (e.g. [99]), they should be controlled.
When using real code it may be tempting to present the code as it was written.
But if the original code is not laid out properly, or uses an idiosyncratic style,
this could introduce a confounding effect. A good practice is to use an IDE’s
default indentation and syntax highlighting, as inconsistent presentation leads
to cognitive load and therefore constitutes a confounding factor [49]. Methods
within a class should be listed in calling order, meaning that called methods
are placed after methods that call them [58].

Another aspect of code presentation is coding style. Fashions change, and
different people write in different styles. A mismatch between the writing style
and the preferences (or experience) of the experimental subject may cause bias
and a confounding effect. Two things can be done to reduce such problems.
First, adopt the style that matches the prevailing culture (e.g. snake_case for
Python but CamelCase for Java). Second, be consistent and use the same style
throughout.

2.2.5 Variable Naming Side-Effects

Variable names and function names are instrumental for comprehension, and
in many cases they provide the main clues regarding what the code is about.
In the context of comprehension studies this may be undesirable, so the names
have to be stripped of meaning. Some of the ways that this has been done are
problematic:

— Simple options are using arbitrary strings (asdf, getmji) or unrelated words
(superman, purple). These are distracting, and may be useful only in relation
to extreme research questions on reading or the possible detrimental effect
of extremely bad (distracting) names. They should not be used if this is
not the research issue.

— Another approach is to use obfuscation, e.g. by applying a simple letter-
exchange cipher [136]. This leads to names that are long and distracting
non-words. For example, the function name countSameCharsAtSamePosition
can change into ecoamKayiEoaikAmKayiEckgmqca. Long names like this
that differ in just a couple of letters may become very hard to distinguish.
Note too that obfuscation may deeply affect how subjects perform tasks.
Variable names convey meaning, and thus enable a measure of top-down
comprehension. Siegmund et al. therefore used obfuscated variable names
to force subjects to use bottom-up comprehension based on the syntax [133,
136]. Such an effect may happen with problematic code also when this is
not intentional.

Alternative better ways to obfuscate variable names are the following:
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— One option is to use words that represent the technical use of the variables,
but do not reveal the intent — exactly the opposite of what we usually try
to do. For example, one could use numl and num?2 instead of base and
exponent in a function that calculates a power [133].

— Perhaps the simplest and most straightforward approach is to just use
consecutive letters of the alphabet in order of appearance [6,67]. Note that
this is different from using the first letter of the “good” name, as that may
still convey information [14].

A related case is when names are abbreviated to see the effect of such
abbreviations. This is sometimes done in a mechanical manner in an attempt to
be more scientific and reduce the reliance on individual judgment. For example
a possible approach is to concatenate the first 3 consonants in the name (as
shown in Fig. 3 above) [67]. However, this may lead to unnatural or misleading
names, such as str for start or rsl for result. Consequently the gain in rigorosity
may come at the expense of reduced validity. It is better to use judgment rather
than a mechanical approach, e.g. allowing res for result and the 4-letter conc for
concatenate. To reduce the danger of mistakes in judgment, the abbreviations
can be derived independently by two people, and then compared.

2.2.6 Inappropriate Code for the Task

Importantly, the task subjects are required to perform and the code must be
compatible. For example, when studying whether indentation aids compre-
hension, one needs a task that depends on the block structure of the code.
Otherwise indentation is indeed not an important feature, and the results will
show that it does not matter. But this would be wrong, because maybe inden-
tation does indeed matter for another task — for example, one that is related
to navigation and identification of code blocks.

For example, Miara et al. conducted a study on indentation using 102-line
long code with a main and two functions, and a maximal nesting level of 3
[92]. The result was that nesting had some effect, based on questions such as
whether all variables were global, which require the definition of variables at
the beginning of functions to be identified (the study is from 1983 and the code
was written in Pascal). Many years later Bauer et al. replicated this study, but
the code used was 17-line single functions with a maximal nesting of 2, and
the task was to anticipate what the program would print [10]. In this setting
indentation was not found to be important, but maybe the reason was that
the code structure was too simple.

3 The Task

If we focus on comprehension per se, experiments on code comprehension are
a sort of challenge-response game. The experimenter challenges the subject to
understand some code. A subject that claims to have achieved such under-
standing must prove it by performing some task. It is therefore vital that the
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task really reflect comprehension. In a sense, the task defines what “compre-
hension” means. The main considerations are therefore what level of compre-
hension is reflected by each task. And the main pitfall is that the link between
the task and the understanding might be compromised, e.g. if subjects can
guess the correct answer without actually understanding the code.

3.1 Considerations

In real life, program comprehension is rarely an end in itself. Rather, compre-
hension is a prerequisite to performing some programming task, such as fixing
a bug or adding a feature. So experiments can use such tasks directly.

Alternatively, one can consider comprehension itself. In this case the main
consideration in selecting the task to perform is that the task reflects the
level of understanding which is at the focus of the experiment. Should the
subjects just know the variables and data structures? Maybe the behavior at
runtime? Or perhaps also the underlying algorithms? The following subsections
detail several such possible levels. We name them using the straightforward
dictionary meaning of different words. Note, however, that this is not universal,
and over the years some of these names and others have been used in various
non-compatible ways.

It is also interesting to consider the relationship of code comprehension to
reading natural language texts, and to the terminology used there. Being able
to read at all depends on the legibility of the text — that the letters stand out
clearly. This is more a matter of design (e.g. fonts and color contrast) than
of reading. Reading is commonly referred to as combining the acts of identi-
fying letters and words and gleaning the meaning conveyed by them. While
this terminology is not universal (for example, Smith and Taffler advocate
distinguishing between “reading” and “understanding” [142]), it is often also
adopted in studies on reading code. For example, the first sentence in Buse
and Weimer [25] is “we define readability as a human judgment of how easy a
text is to understand”. But code is actually somewhat different from text. For
example, the difficulty of text can be approximated based on simple metrics
like sentence lengths and word lengths [43,142], but at the same time text may
be ambiguous (which may be used to advantage in both prose and poetry). In
code such metrics are not very meaningful, and the semantics are unique and
well defined. Our goal is to describe how levels of the semantics relate to levels
of reading the code. The relationship between the different levels is shown in
Fig. 6.

3.1.1 Recognition Task (tokens and structure)

The most basic level is just recognizing the elements of the code, such as
tokens and structure. Note that this has two facets. Recognizing tokens is
a localized task. It is aided by programming practices such as surrounding
the assignment operator with spaces, and by IDE options such as colorizing
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Fig. 6 Relationships between tasks used in comprehension experiments.

keywords. Recognizing structure is a more global issue, which has a strong
influence on navigation in the code and on the findability of key elements in
t [99]. In addition to colorized keywords, this is aided by practices such as
consistent indentation.

The above considerations indicate what type of tasks may be used to assess
recognition. Such tasks include:

— Find a certain word, e.g. the use of a variable.
— Identify nesting of constructs, e.g. the most deeply nested one.
— Verify whether two expressions have the same syntactic structure.

But studies that focus on mere recognition are few, such as those targeting
notation or syntax highlighting [99,108,68,65]. In addition, disrupted layout
has been used as a control and to force subjects to employ bottom-up com-
prehension [136].

3.1.2 Parsing Task (understand syntaz)

The next level up is to be able to parse the code. This shows that you are able
to understand the syntax: what are legal expressions, and what their relations
may be. Example tasks can include

— Find the type of a variable (in a typed language).

— Find a syntax error in a function.

— At a larger scale, draw a basic UML class diagram of a project, or compare
a UML diagram with code that is supposed to implement it. “Basic” here
means without some details that require deeper understanding, such as
using type inference and defining the cardinality of associations.

Note that these tasks do not require any understanding of what the code
does. This is intentional, as such understanding is detailed in subsequent
higher-level tasks. It is sometimes claimed that this level of understanding
is not very important or interesting in itself, as syntax issues are typically
delegated to a compiler. It is therefore not commonly used in comprehension
experiments, and when it is, it may be used as a control, to show the difference
between understanding syntax and semantics (e.g. [133,118]).
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3.1.3 Interpretation Task (local semantics)

While parsing requires understanding the structure of the code, interpreta-
tion requires understanding the semantics of the individual instructions. Tasks
which reflect the ability to interpret code include

— Find what the code prints for a certain input. This can be done by sim-
ulating the execution one instruction at a time, much like an interpreter
would.

— Answer simple questions about the code. For example, Pennington sug-
gested using questions on the program’s control flow (will the last record
be counted?) and data flow (does the value of variable a affect that of
b?), its states (will ¢ have a certain value after the loop?), and specific
operations (is d initialized to 07) [105].

— Write tests that provide statement coverage or branch coverage. This only
requires one to understand individual condition statements.

— Identify and remove dead code which will never be executed (e.g. a function
that is not called, or a condition that is always false).

— Draw a UML sequence diagram. To do so one just needs to understand
which functions call each other.

Interpretation is on the verge of “real” understanding. On the one hand,
one can hand-simulate the execution of code and figure out what it will print
without forming a general understanding of what the code actually does. But
this is nevertheless appropriate for very short snippets of code comprising a
single control block and nothing else. For example, Ajami et al. use this for
comparisons of different formulations of a predicate used in an if construct [4].

On the other hand, there are cases where it is actually easier to figure out
what the code does rather than to simulate its execution. A case in point is
code with loops, especially when many iterations are performed. For example,
Hannebauer et al. suggest this is the case in an experiment they perform on
code that implements bubble sort [65, Figure 2].

Interpretation tasks are quite popular in comprehension experiments, be-
cause they are easy to create and to check: you just compare the given answer
to the known correct answer. However, one must carefully consider the details
to determine whether an answer based on tracing the execution is likely, and
whether this affects the validity of the experimental results.

3.1.4 Comprehension Task (global semantics)

Comprehension is understanding the underlying concepts of the code, and
grasping its functionality in abstract terms. This is the general goal of code
comprehension. The difference between comprehending semantics and parsing
syntax is real. fMRI studies show that comprehension tasks activate differ-
ent parts of the brain than syntax-related tasks — parts related to working
memory, attention, and language processing [133].



18 Dror G. Feitelson

The most common way to assess comprehension is to ask questions about
the program. Specific questions and tasks which are thought to reflect com-
prehension are:

— After reading and understanding the code, answer a question about the
expected output for a given input without seeing the code again — that
is, without the ability to simulate its execution (this assumes the code is
non-trivial and cannot be remembered easily).

— Describe the functionality of the code. More concretely, this can be achieved
in several ways:

— Ask subjects to suggest a suitable meaningful name for a function.

— Ask subjects to summarize the purpose of the code.

— Ask subjects to add documentation to the code, for example header
comments for functions.

— More formally, ask subjects to articulate the contract of a function or
API: what are the preconditions and postconditions when using it [91].

— Describe the flow of the code, namely how it transforms its input into its
output. Or more generally, perform a code summarization task. Answers
to such questions must be carefully analyzed to ascertain that they indeed
reflect comprehension. For example, saying that the code loops over all
numbers smaller than the input and checks for cases where they divide the
input number with no remainder may be precise, but it is just a technical
description of the code. True comprehension is to say that the code checks
whether the input number is a prime.

— Answer questions about specific elements of the code, for example the
purpose of a certain variable, or why a certain function is called. Note
however that such questions do not necessarily assess global understanding.

— Write a test suite for a function. As this requires the expected results to
be given, it shows you know what the tested code does. A comprehensive
test suite specifically shows understanding of semantic corner cases.

— Another possible task is to explain the limitations of a function or API —
when should it be used, and when can’t it be used. This is related to the
question of writing the contracts for functions mentioned above.

It is advisable to use questions of several types, so as to cover different aspects
of understanding the code [105,34]. But in many cases, assessing the answers
given to comprehension tasks is not easy (as discussed in Section 4.1.2 below).
Therefore other tasks which assess comprehension indirectly are sometimes
used. Such options are described in the following subsections.

3.1.5 Code Completion or Recall Task

A common exercise when learning foreign languages is “fill in the blanks” (the
so-called cloze test): the students are given a text with some parts missing,
and need to complete them either on their own or using a list of options, based
on their understanding of the text and of how different options fit in. This can
also be done with code [34]. For example, Soloway and Ehrlich used this to
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study the effect of a mismatch between a variable’s name and its function [144],
and Hannebauer et al. used it to study the understanding of an inheritance
hierarchy [65]. However, finding the right balance between trivial cases and
misleading cases appears to be hard. As noted above, Soloway and Ehrlich’s
code was misleading. Hannebauer et al’s is trivial: subjects were requested to
replace the XXXXX in the declaration Mother x = new XXXXX() with one of
the options Father, Mother, or Daughter. This can obviously be done without
ever looking at the code.

A rather different type of task is to read the code, understand it, and
then try to recall it from memory. Obviously this is limited to reasonably
short codes, e.g. up to 20-30 lines long. The motivation for this task is the
seminal work of Simon and Chase, which showed that expert chess players can
easily memorize meaningful chess positions, but are not good at memorizing
random placements of chess pieces [138]. Hence the memorization interacts
with identification of meaning.

Shneiderman conducted an experiment based on this approach more than
40 years ago [128], concluding that better recall indeed correlates with better
comprehension (as measured by the ability to make modifications to the code).
McKeithen et al. also showed that expert programmers are better able to recall
semantically meaningful program code [89]. However, this type of task is rather
far removed from what programmers actually do, and perhaps for this reason
does not seem to be popular.

3.1.6 Correction Task (white-box)

Of the different types of maintenance [83], corrective maintenance (fixing bugs)
is the one most often used to test understanding. Moreover, Dunsmore et al.
have found that perceived comprehension indeed correlates with finding bugs
[45]. But not all bugs reflect the same level of understanding. One needs to
distinguish technical bug fixing (e.g. finding and correcting a null pointer deref-
erence [82], a method declared private instead of public [65], or a syntax error)
from a semantic error (such as calling the wrong helper function [118] or using
a wrong index into an array [67]). Finding technical errors is more at the level
of interpretation than comprehension — it can be done by scanning the code
superficially without any deep understanding of the whole. Syntax errors may
be irrelevant, as they should be caught by the compiler (but nevertheless they
are sometimes used, e.g. [65]). Only semantic errors reflect real comprehension.

An important question is exactly what bugs to inject. Two classifications
were suggested by Basili and Selby [7]. The first is a distinction between errors
of omission and errors of commission. This is an important distinction, because
with commission the subjects can see the error, but for omission they need to
notice that something is missing — which depends on a preconception of what
the code is trying to do. The second classification lists six types: initialization,
control, computation, interface, data, and cosmetic. Using such classifications
helps reduce confounding effects that may be due to a specific type of bugs.
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They were used for example by Juristo et al. and by Jbara and Feitelson [75,
71].

An important consideration is whether to ask only for the correction of the
bug given the location where it occurs, or to also require subjects to locate the
bug [104]. The first option is more focused on understanding the details of the
given code. The second mixes this with achieving an overall view of how the
code is structured and how responsibilities are distributed across modules and
functions. This is a different level of understanding that should be assessed
separately, for example by asking where to look for the bug rather than asking
to fix it.

3.1.7 Extension or Modification Task (large scale white-box)

Most of the tasks outlined above are suitable for short code snippets, a func-
tion, or perhaps a class. Some of them, e.g. correction tasks, can also apply
to larger software systems. Extension and modification of software can also be
done on a single function, but usually the minimal relevant scope is a class,
and the common scope in real-life situations is a module or a complete system.

A few examples are given by Wilson et al. who use large-scale projects
of 78 and 100 KLoC to study adding new features [158]. This enables them
to study not only the change itself, but also the process of finding where in
the code the change must be made. If the task asks only to change a given
function, it misses the steps of zeroing in on the correct location to make the
change, and the evaluation of the impact that the change may have on other
parts of the system [111]. Whether this is a problem depends on whether you
consider it part of comprehending the system.

Importantly, writing code as in code extension or modification tasks is dif-
ferent from reading code as in comprehension tasks. Krueger et al. show using
fMRI studies that writing activates areas in the right hemisphere of the brain,
associated, inter alia, with planning and spatial cognition [80]. So it seems
that in these tasks, while comprehension is needed, it is not the main activity.
They may therefore be less suitable as tasks that reflect comprehension.

Moreover, there are additional levels of comprehension which may be re-
quired to correctly change code but are hard to attain and to measure. Levy
and Feitelson identify two such levels beyond the usual black-box/white-box
dichotomy [82]:

— “Out-of-the-box” comprehension refers to subtle interactions of the code
under study with other parts of the system, e.g. as may be required for
extreme optimizations.

— “Unboxable” comprehension is the appreciation of the underlying assump-
tions and considerations involved in developing the code, which may not
be directly reflected in the code at all.
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3.1.8 Use Task (black-box)

Black-box is a special case of comprehension, where we are interested in using
the code as opposed to understanding how it works (white-box) [82]. This is
very common and important in real life when one needs to use third-party li-
braries. It also forms the basis for modularity, encapsulation, and information
hiding [101,102]. But it is rather uncommon and not very useful in compre-
hension experiments. The simplest way to exhibit black-box knowledge about
an API is to use it, that is to write some code that calls the API functions. In
addition, one can ask about various attributes of the API:

— Details about parameters of API functions.
— Connections between functions, e.g. if one must be called before another is
called.

— Documented preconditions or constraints.

Note that black-box understanding is actually disconnected from the code
itself — this is the essence of information hiding. It is based on documentation.
But generating such knowledge requires deeper comprehension, as noted above.

3.1.9 Design-Related Task (abstraction)

Understanding a system is not the same as understanding a single module
or a smaller piece of code. When understanding a system the focus is on un-
derstanding the structure, namely the system’s components, what are their
responsibilities, and how they interact with each other [19,82]. A deeper level
of understanding is to understand why it is structured like this, that is, to
understand the rationale for the design decisions that were taken during de-
velopment.

Recovering the design of a system from its implementation is an act of
reverse engineering [33]. One possible approach to achieve this is by analyzing
the dynamic behavior of the system at runtime, and noting the interactions
between its components [35]. This is different from the approaches used for
other tasks listed above, which mostly focus on the static code. It may even
be claimed that resorting to code execution is a way to circumvent the need
to understand the code directly. However, performing tasks that affect the
design do require one to contend with the code itself. Possible tasks related
to understanding the design are different types of refactoring, such as the
following [56]:

Extract methods, that is identify blocks of code that should be made into
independent methods for reuse or better structure.

— Suggest methods that should be moved to another class.

Modify the inheritance hierarchy by pulling up or pushing down a field or
a method, and placing them in a more appropriate class.

Replace a conditional behavior with using inheritance to create polymor-
phism.

— Identify a common base-case and extract a superclass to represent it.
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— Extract explaining variables to improve the comprehensibility of the code
[30].

While there is extensive literature about the execution of such tasks, they
are not common in code comprehension studies. Possible reasons are that
they require a large scope to be meaningful, which is harder to provide in a
controlled experiment. It is also hard to judge the correctness of performing
such tasks, as design is always also partially a matter of taste.

At a higher level of abstraction, the result of the design process is an ar-
chitecture. Hence understanding the design is understanding the architecture.
A possible task to show this level of understanding is then to describe the
architecture. This can be expressed, for example, as defined by the 441 views
suggested by Kruchten [79]. For example, in an experiment we can ask partic-
ipants to draw a conceptual diagram showing relations between entities. Note,
however, that in a real-life setting comprehending a system is a continuous
process, and each task adds to this understanding in an incremental manner
[152]. In all likelihood such a process cannot be fully replicated in an exper-
iment. However, design recovery may also be useful in the context of other
tasks, such as debugging or adding a feature.

3.1.10 Selection of Tasks

The previous subsections indicate that different tasks actually reflect different
aspects of understanding. A possible way to interpret the relations between
them is shown in Fig. 7. A major distinction is between factors that reflect
code properties and factors that characterize the developer tasked with un-
derstanding the code. For example, style is a code property, but being able to
parse and interpret code reflects knowledge of the programming language in
which it is written. Thus the selection of which task to use should be predi-
cated by what we want to study: the code or the developer. The more involved
tasks, such as modifying or explaining code, typically involve both code and
developer. It is then hard or impossible to claim that the task measures one
or the other [18]. In addition, challenging tasks such as adding a feature con-
flate comprehension with other activities such as designing and programming.
This dilutes the fraction of the effort invested in comprehension, thereby re-
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ducing the accuracy of experiments with the express purpose of studying only
comprehension.

To get a better picture it may be advisable to use multiple different tasks in
the same study (as done e.g. by Pennington [105]). Multiple tasks of different
types can illuminate different aspects of comprehension, and may expose unan-
ticipated differences between treatments. With multiple tasks of the same type
one can obtain more nuanced and accurate results, leading to better validity.

It would be good to also have independent assessments of the value of
different tasks in measuring comprehension. Regrettably it seems that very
little such research has been performed to date. One study is that by Dunsmore
et al., in which they found a correlation between bug fixing and perceived
comprehension [45]. But more work on this issue is required.

3.2 Pitfalls
3.2.1 Substituting Opinion for Measurement

The main problem with selecting a task that reflects program understanding
is the classic construct validity issue: are you measuring what you set out to
measure? In particular, does your task actually measure understanding at the
level you are interested in?

For example, consider Buse and Weimer’s “A metric for software readabil-
ity” [24], which—very naturally, given its title—is often cited as a reference
on readability. But in the reported experiments, subjects were told to score
code snippets “based on [your] estimation of readability”, where “readability
is [your] judgment about how easy a block of code is to understand”. This
reflects two problems. First, “readability” is a catch-all phrase which does
not distinguish between different levels of understanding as delineated above.
Second, using judgment as the dependent variable conflates personal opinion
about what it means to understand (which could be any of the levels discussed
above) with misconceptions about how easy or hard a specific code snippet is.
This violates the whole concept of using a well-chosen and well-defined task
to actually measure performance that depends on comprehension. However,
one should acknowledge that many of the tasks listed above actually do not
measure comprehension directly, but rather by proxy.

Scalabrino et al. face this issue head-on and distinguish between perceived
understanding, where subjects just declare that they think they have under-
stood a method, and actual understanding, where they correctly answer several
verification questions [116]. However, the questions they suggested were about
the meaning of a variable name, or the purpose of calling a certain function.
It is debatable whether such questions indeed reflect a full understanding of
the code.
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3.2.2 The Danger of Shortcuts

The tasks in code comprehension experiments are predicated on the assump-
tion that they can only be performed successfully if one understands the code.
But as noted above, it is not necessarily true that you need to fully understand
the code to predict what it will print, or to correct a bug that it contains. Fur-
thermore, experimental subjects may be lazy [113,82]. They may prefer to use
an “as-needed” program comprehension strategy as an alternative to a “sys-
tematic” strategy leading to full understanding [84]. So given a specific task,
they might make do with comprehending only whatever is directly needed
for this task [154]. Unless this part is precisely aligned with the experimental
objectives, this compromises the validity of the experiment.

When designing an experiment it is therefore of paramount importance
to avoid tasks where the brunt of the work can be avoided. This is a signif-
icant threat to the premise that comprehension is a prerequisite for testing,
debugging, and maintenance. Examples include cases where tasks can be done
mechanically without understanding. For example, in bug fixing, finding a syn-
tax error or finding a null pointer reference can be done without understanding
what the function does. In code modification, a simple refactor like extracting
a function can be done without understanding how the function works.

3.2.8 Confounding Ezxplanations

In controlled experiments one needs a control: a base-level treatment with
which to compare the performance on the other treatments. This is what gives
controlled experiments their explanatory power (which is why it is regrettable
that there is such a limited use of controlled experiments [141]).

To provide explanatory power the task has to be crisp in the sense that
it strongly supports a certain interpretation. Not all tasks have this property.
For example, the fill in the blanks task used by Soloway and Ehrlich is not
crisp, because the variable name they used is misleading (as described above)
[144]. Thus a failure to answer correctly may not be due to a problem with the
conceptual model (what the experiment was supposed to check), but simply
due to falling in the trap of the misleading name. Likewise, failure in recalling
code verbatim from memory may identify totally wrong code or code that does
not abide by conventions, not necessarily hard to understand code. Finally,
failure to find a bug such as calling the wrong function may be the result of
lack of attention, rather than lack of understanding.

3.2.4 The Working Environment

A potentially important confounding factor is the working environment in
which subjects perform their task. Certain environments may include facilities
that support the task and make it easier to complete. If such an environment is
provided, performing the task becomes easier. Worse, having access to features
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that support the task may undermine the need to understand the code or affect
the process of how it is understood.

Note, however, that this also depends on the subject knowing how to use
the environment. Subjects who do not know how to use the required feature
(or don’t know it exists) will be at a disadvantage. If some subjects know how
to use these features and others do not, this becomes a confounding factor
that may interfere with the results.

A possible solution to this problem is to use a reduced environment, which
does not include the features that may be used to help perform the task.
However, this is also problematic for subjects who are used to work in an
environment which does include such support.

4 The Metrics

Rajlich and Cowan suggested that the dependent variables measured in com-
prehension studies should be the accuracy of the answers, the response time
of accurate answers, and the response time of inaccurate answers [110]. Of
these, the most commonly used is time to correct answer. Accuracy is also
often used, especially when it is easy to assess (for example, when the task
is to predict what a given code will print). The time to inaccurate answers
is typically not used. An interesting question is how and whether different
measurements should be combined into a single metric.

Note, however, that these metrics are actually proxies for what we are really
interested in: the effort invested in understanding the code, and the difficulty
of understanding the code. Recently, biophysical indicators (ranging from skin
conductance through pupil size to fMRI brain activity patterns) have also been
suggested as indicative of the effort expended in code comprehension. This is
a potentially valuable development, but such metrics are not widely used yet.

4.1 Considerations

The main consideration regarding metrics is that they be measurable. This
may interact with the task, as some tasks produce outcomes that are more
measurable than others. Note that as discussed above we do not consider
voicing an opinion as a measurement.

4.1.1 Imposing Time Limits

There are basically two approaches to measuring performance: how much one
can achieve in a given time, or how long it takes to perform a given task [18].
Most experiments on comprehension measure time for a task. This is also closer
to normal working conditions. However, placing a generous time limit may be
advisable to exclude subjects who experience difficulties for some reason, or
subjects who do not work continuously or conscientiously.



26 Dror G. Feitelson

4.1.2 Judging Accuracy

If we consider comprehension experiments as a challenge-response game, the
outcome of the game depends on the evaluation of the response. If the response
was correct, the experimental subject has met the challenge and “wins”. But
how do we know whether the response was correct? This obviously depends
on the details of the task.

The easy cases are when the response is well-defined in advance, such as to
identify what a given code will print (e.g. [4]). In this case the answer can be
checked automatically. The only reservation is that inconsequential variations
(e.g. an added space) should be ignored. If multiple tasks are used, the fraction
performed correctly can serve as a score.

In cases such as when the question is “what does this code do” or “give
this function a meaningful name”, one needs to prepare a capacity for judging
the responses. This should include

— A key, prepared in advance, of what responses are expected to include,
and how to identify and score each level of achievement. For example,
in an experiment based on comprehension of a program that created a
histogram of word occurrences in a text, a third of the points were given
for answering that the program counts word occurrences, a third for saying
that it prints each unique word, and a third for noting that it prints the
number of occurrences next to each word [92].

— Application of the key by at least two and possibly more independent
judges.

— A protocol for settling disputes, e.g. majority vote (2 of 3 judges) or con-
ducting a joint discussion till reaching consensus.

It is also important to keep track of and report how many disagreements there
were.

4.1.8 Reaction to Errors

In those cases where a wrong answer can be detected automatically, e.g. when
the experimental subject is required to find out what the code will print, one
has to decide what to do if a wrong answer is given. A common approach is
to just go on with the experiment. Possible alternatives include

— Display a message indicating that a mistake has been made. But this may
affect the rest of the experiment, either due to discouraging the subject, or
due to facilitating a learning effect.

— In addition to indicating that a mistake was made, allow the subject to
try again [67]. This raises the questions of how to measure time. Do you
include the sum of all trials? Is it fair to compare this to the time taken
by someone who did not try and fail?

— When it is expected that all subjects will succeed (which implies that
correctness is not being measured), discard subjects who fail [67]. In other
words, failure is used as an exclusion criterion.
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4.1.4 Combining Dimensions of Performance

If both time and accuracy (correctness) are measured, the question is whether
to report them separately or to combine them in some way. Combining the
two metrics simplifies the analysis by making it one-dimensional. But this is
justified only if they indeed reflect the same underlying concept.

Bergersen et al. suggest a crude categorical classification scheme which
combines time and correctness [16]. In its simplest form, this scheme defines 3
levels of accomplishment:

1. Incorrect answer.
2. Correct answer, time above the median.
3. Correct answer, time below the median.

If the task is made up of multiple stages, the levels first reflect the number of
stages completed successfully, and if all were, the time range in which this was
achieved.

Beniamini et al. suggest a continuous version of such a combination, where
accomplishment is defined to be the quotient of the correctness score divided
by the time [14]. This can be interpreted as the “rate of answering correctly”.
Incorrect answers are naturally included with a rate of 0. Scalabrino et al.
suggest a similar formula, but use the time saved relative to the subject who
took the longest to answer [116]. This has the disadvantage that outliers may
distort the results of others.

A related question is what is the significance of time to incorrect answer?
The most common approach is to ignore this data. A possible alternative is to
interpret such data as instances of censoring: we know that the subject spent
this much time and did not arrive at a correct answer, therefore the time
needed for a correct answer would be longer. Another option is to interpret
this as wasted time. If the task was something practical, like fixing a bug, a
wrong fix reflects waste because the task would have to be done again. A third
option is to use this as an assessment of motivation: this is how much time
subjects are willing to invest [110].

4.1.5 Using Direct Physiological Measurements

The commonly used dependent variables of time and accuracy measure the
overall resulting performance when executing a task. But they rarely provide
information about how this performance is achieved, e.g. what cognitive pro-
cesses were used, and what were the trouble spots on which the experimental
subjects stumbled. They also do not provide direct information on the effort
needed to achieve the measured performance. In recent years there is an in-
creasing use of tools that enable these factors to be studied too.

The most prominent tool in the context of code comprehension studies
is eye trackers [120,124,97,13,123]. Eye trackers enable an identification and
quantification of how the experimental subjects focus on different parts of the
code, and also a recording of the gaze scan path: the order in which they
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go over the code. This is especially useful to identify what the experimental
subjects are interested in. An example is given by Jbara and Feitelson [72].
This study used eye tracking to quantify the amount of time spent looking at
successive repetitions of the same basic structure. The results showed that the
first instances get more attention, and were used to create quantitative models
of how attention decreases with instance serial number.

The effort required to comprehend code can also be measured more directly
than by the time and correctness of the comprehension. For example, changes
in pupil size are known to be correlated with mental effort [77], and this is
measured by most eye trackers. Various other biophysical indicators for effort
have also been used in relation to software engineering research [57,36]. In
addition, subjective self-reporting can be used, e.g. based on the NASA task
load index [1].

An even deeper level of analysis of how subjects comprehend code is pro-
vided by functional magnetic resonance imaging (fMRI). This is being used
in an increasing number of studies [133,136,55,69,80]. fMRI identifies areas
of the brain that become active when performing a task. For example, this
has enabled the distinction between brain activity patterns when performing
syntactic vs. semantic tasks [133] or reading vs. writing [80]. It has also been
possible to distinguish between reading code and reading prose based on brain
activity patterns [55]. Finally, thinking about manipulating data structures
and about spacial rotation tasks employ the same regions in the brain [122].

A technically simpler alternative is to use functional near-infrared spec-
troscopy (fNIRS) technology [49,122]. Unlike fMRI, which is a large noisy
machine in which subjects need to lie and is expensive, fNIRS is based on
wearing a scalp cap and can be done sitting in front of a computer. And it
provides nearly the same level of data as fMRI.

An especially interesting attribute of neuroimaging studies is that they
bypass the limitation of conscious reporting. A lot of processing in the brain
is done unconsciously, and therefore subjects cannot report on precisely what
they had done. Techniques such as fMRI and fNIRS provide an objective
glimpse into what the brain is doing, without the need for cognizant reporting,
and irrespective of potential filtering and rationalization by the conscious self.

Importantly, using all the above methodologies in the context of program
comprehension studies is still pretty new. Developing the methodologies and
establishing best practices is therefore an ongoing effort [12,123,122].

4.2 Pitfalls
4.2.1 Confounding Effects
Measurements are always subject to the danger of confounding effects. Many

of the pitfalls noted in the previous sections may come into play when we
measure the time or accuracy of code comprehension, and lead to unreliable
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Fig. 8 Example of distributions of time to correct answer for a sequence of questions in an
experiment. (Reprinted by permission from Springer Nature from Ajami et al. [4], (©)2019)

results — namely results which do not reflect the intended aspects of code
comprehension.

One straightforward effect is getting used to the experimental setting. It
is apparently not uncommon that the first task or two in a sequence take
longer, as the subjects learn what exactly is required of them (e.g. Fig. 8,
from Ajami et al. [4, Figure 5]). It may therefore be better to discard the first
such result(s), or use them to evaluate the participants. More generally, mea-
surements necessarily conflate the effects of code attributes with those of the
person participating in the experiment (as noted above in Section 3.1.10 and
Fig. 7). If the subjects are unsuitable, e.g. is they lack appropriate experience,
it would be wrong to assign their low performance to the code.

Focusing on the metrics themselves, a special case is the relation between
time and correctness. Errors by definition reflect misunderstandings. The ques-
tion is whether this is due to the difficulty of the code or to misleading beacons.
Evidence that time and correctness may actually reflect different concepts is
given by Ajami et al. [4]. This study included a comparison of understanding
a canonical for loop (for (i=0; i<n; i++)) with variations in which the ini-
tialization, termination condition, or step are varied. The results were that
loops counting down took a bit longer, while loops with abnormal initializa-
tion or termination caused more errors. The suggested interpretation was that
time reflects difficulty, and the error rate reflects a “surprise factor”, namely
whether the code deviates from expectations. Thus if the code contains mis-
leading elements it may be ill-advised to combine time and correctness scores.
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4.2.2 Learning and Fatigue effects

One confounding effect that deserves special attention is that measurements
can change during the experiment. For example, when multiple codes are used
the question arises in what order to display them. Using the same order for all
experimental subjects reduces variability and enhances comparisons. However,
such a consistent order may cause a confounding effect due to learning, fatigue,
or dropouts. For example, if unsuccessful subjects feel discouraged and drop
out of the experiment, only the more successful subjects will reach the last
questions [4]. In other words, a difference in performance on different codes
may be the result of their placement in the sequence, rather than a result of
the differences we wish to study. The common solution is to randomize the
order.

4.2.83 Measurement Technical Issues

The understanding of short code snippets may take a short time measured
in seconds. Thus inaccuracies in the times of beginning and ending the mea-
surement may have an effect. The beginning is typically when the code is first
presented, and does not pose a problem. But the ending time may be ambigu-
ous in the sense that it may or may not also include the time to report the
answer. Hofmeister et al. explicitly use a two-step system [67]. Their exper-
imental platform first requires subjects to indicate that they have achieved
comprehension. It then stops the clock and freezes the code display, and only
then opens a window where the subjects can enter their answer. Wilson et
al. use an Eclipse plugin which measures the time spent performing differ-
ent actions to differentiate between time spent comprehending and time spent
coding [158].

An alternative to using eye trackers is to employ an experimental platform
which displays the code via a “letterbox slit”. With this mechanism most of
the screen is hidden from view, and only the lines in the slit are visible [70,
67]. The slit may be moved up and down using the arrow keys. This has the
significant advantage of enabling online experiments over the Internet, instead
of requiring subjects to come physically to the lab where the eye tracking device
is set up. However, it is an unnatural setting, which might impair performance.
In particular, subjects cannot use peripheral vision to observe the structure of
the code and navigate directly to different locations. With the advent of eye
tracking software based on webcams?, this problem will be eliminated.

4.2.4 Premature Theorizing

The ultimate goal of research on program comprehension is to formalize the-
ories on the cognitive processes which underlie comprehension (e.g. [22,152,
149,131]). These are then expected to inform and facilitate the design of better

2 For example, GazeRecorder https://gazerecorder.com/.
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tools and methodologies for software development. However, not every mea-
surement should lead directly to a cognitive theory. We need to collect a lot
of data first. In particular we need multiple replications of existing research,
which is the way to increase our confidence in the results, to better define their
limitations, and to illuminate their nuances.

5 The Experimental Subjects

Previous sections were about technical aspects of program comprehension
studies. Despite the various problems and complications that were discussed,
these are things that are relatively easy to control. The biggest problem is the
human element, namely the experimental subjects. Helpfully, there have been
several reviews and guides on this matter (e.g. [78]).

Different people exhibit different levels of performance in all human en-
deavors, including in code development and program comprehension. Three
important high-level factors that affect performance are [27]:

— Knowledge — what a developer knows, e.g. the syntax, semantics, and
common idioms of a programming language and the background of the
application domain;

— Skill — the developer’s aptitude in applying his or her knowledge in a given
situation, and the degree to which this is done automatically or requires
effort; and

— Motivation — how much the developer actually wants to develop, which
affects the effort invested in applying the skill.

As people may have different knowledge, different skills, and different levels
of motivation, their performance will differ too. This is exacerbated by the
degree of relevance of their knowledge and skills to the experimental task.
In the context of academic experiments on program comprehension, using
students as subjects has drawn some objections, based on the perception that
their skills differ from those of professional developers.

5.1 Considerations

Variability among humans is a huge confounding factor, which is hard to as-
sess and control [17,39]. Large individual differences have been reported in
various empirical studies, e.g. by Sackman et al., Curtis, and Prechelt [114,
38,107]. This has three main implications. First, it is important to assess the
capabilities of experimental subjects and match them to the experiment and
tasks as best as is practical. Second, it is important to check whether the
variability correlates with demographic variables, and assess whether this af-
fects the external validity of the experiment. Finally, studies have to contend
with large variability, and use large enough samples and appropriate statisti-
cal methods. In particular, it is desirable to use within-subjects designs over
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between-subjects designs, or at least to control for variability by dividing sub-
jects into groups based on perceived differences which might affect the results.
Most of the following subsections are elaborations of these considerations.

5.1.1 Skill and Ezperience

As shown in Fig. 7, programming proficiency and skill can be seen as the
general factor which sums up the effects of individual factors like knowledge
and experience. Dreyfus and Dreyfus identified the following possible levels
[42]:

1. Novice: knows how to apply learned rules to basic situations.

2. Competent: recognizes and uses recurring patterns based on experience.
3. Proficient: prioritizes based on a holistic view of the situation.

4. Expert: experienced enough to do the above intuitively and automatically.

Note that the different levels differ not only in the expected performance but
also in the approach taken to solve the programming task. This naturally also
affects the interpretation of experimental results. It is therefore important
to identify the desired level of proficiency of the experimental subjects, and
to screen subjects so that only those with suitable skills participate in the
experiment.

However, it is not easy to assess skill [3]. One possible approach is to use
a pre-test, namely require subjects to perform a task ahead of the experiment
to assess their general skills. However, a single task may not be enough, and
there is a danger of interaction between the screening and the experiment.
To get a better picture of subjects abilities, Bergersen et al. have suggested a
testing regime that can take up to two days [18]. This is not applicable to short
experiments, especially if conducted over the Internet. The other extreme is
to make do with self assessment of skill, which has the obvious drawback of
being subjective [134].

An often used alternative to assessing skill is counting years of experience.
The advantage of this approach is that it is less subjective than self assessment
and easily applied: one just asks the prospective subjects how many years of
programming experience they have. However, such a formulation is ill-defined,
as some people count programming during their studies as experience while
other do not. It is therefore important to explicitly ask about professional
experience, or in other words “real” experience, beyond that obtained during
studies.

However, one should note that more experience does not necessarily cor-
relate with higher performance [145,146]. One reason may be that knowledge
may be more important for skill than experience [15]. Falessi et al. stress the
need to consider not only duration of experience, but whether the experience
is relevant and recent [50].

More generally, Ericsson and others stress the importance of what the years
of experience were spent on. Performing rote work that does not challenge you
and expand your horizons will not improve your skills beyond being able to do
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the same thing automatically. To really improve, deliberate practice is needed
[46,47]. This means performing challenging work just beyond your comfort
zone, receiving feedback that allows you to learn and improve, and doing this
over the over again. If this is not done, achievements tend to “flatten out” after
several years [95,66,46]. Assuming this is often the case, a useful threshold for
tagging subjects as “experienced” can be as low as 3-5 years of professional
experience. Requiring more will exclude too many subjects and not provide
additional benefits.

In cases where the study requires a distinction between novices and expe-
rienced programmers, Feitelson et al. suggest to define three groups [54]:

— Novice students without significant programming experience outside their
studies, e.g. in the first or second year of their undergraduate studies and
with at most 2 years of programming experience.

— Experienced professionals, with at least 5 years of programming for a living
beyond any programming done during their studies.

— All those falling in between the above two groups. These are excluded
from the analysis, to sharpen the distinction between students/novices and
professionals.

5.1.2 Using Students

Most studies on software engineering, including those focused on comprehen-
sion, loosely target “professional developers”. But in practice many studies
employ students as subjects, because students are more accessible to aca-
demics. Indeed, it is hard to escape the perception that so many studies target
“novice” programmers precisely because student subjects are so accessible.
The preponderance of such studies raises the question of whether performing
experiments with students as subjects is appropriate [50]. Feitelson lists the
following potential problems with students [52]:

— By definition students before graduation have not completed their studies.
In addition, they may not have fully ingested what they had learned, or
hold misconceptions regarding what they have learned [76,85,86]. The im-
plication is that the knowledge at their disposal is not as complete as that
of professionals.

— They may not know of commonly used tools or use them ineffectively. This
not only affects their performance relative to professionals, but also means
that they may use a completely different approach.

— They lack practical experience, which makes it harder for them to find and
focus on the heart of the issue. In addition, experience hones skills and
facilitates higher performance with less effort.

— Their academic orientation may be misaligned with the needs in industry.

On the other hand students may be more consistent in following instructions,
rather than trying to cut to the core in whatever way (including violating the
experimental protocol).
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It is also important to note that the dichotomy pitting “students” against
“professionals” is overly simplistic. Students may have had professional expe-
rience in their past or work in parallel with their studies. Graduating students
are very close to novice professionals. Consequently, classifying subjects based
on their work experience, while far from perfect, is still usually better than
classifying them based on their student status.

In particular this means that completely avoiding students as subjects is
unwarranted. In fact, when studying how beginners learn to program, students,
and even first-year students in particular, are the natural subjects to use.
Experiments using students can also be useful to focus the research and to
debug experimental procedures [151,9]. And in many cases experiments with
students yield the same relative results as experiments with professionals, in
the sense that the relations between the different treatments are the same.
Only the absolute results are different, with professionals usually performing
better (e.g. [90,11]).

Note too that the common career path for graduating students is to seek
industrial positions. So students close to graduation are essentially the same as
beginning professionals. However, many professionals do not have an academic
background: for example, in the 2021 StackOverflow developer survey?®, nearly
60% said they learned to code from online blogs and videos, 40% cited online
courses or certification, and less than 54% said they learned at a school (the
sum is larger than 100% as they noted all that apply). So students represent
only about half of developers.

One situation in which students indeed should not be used is as proxies for
experts. Too many studies aim to expose differences between novices and ex-
perts, and use beginning undergraduates as the novices and graduate students
or even third-year students as the experts. This is wrong. They are slightly
more advanced students, but not programming experts.

5.1.83 Ensuring Motivation

As noted above, motivation is required for the experimental subjects to apply
their skill in performing the tasks of the experiment. Results obtained from
unmotivated subjects may distort the data. Motivation is also important for
the recruitment of subjects in the first place.

Various steps can be taken to increase the motivation of subjects to par-
ticipate in an experiment. Major incentives include the following:

— In many studies the only incentive is interest in the study and its results. for
professionals, this can be based on having confronted situations similar to
those in the experiment in day-to-day work. Experiments can also provide
a welcome and thought-provoking diversion from routine work. In both
cases, the interest in the experiment should not be tempered by hardships
such as excessive length. Keeping experiments as short as possible — as
short as 10 to 15 minutes — helps recruit and retain subjects. The price

3 https://insights.stackoverflow.com /survey/2021
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is that the length of code or number of treatments used in the experiment
may need to be reduced.

— A common approach to incentivizing subjects is to pay them, either paying
a small sum directly or by holding a raffle for a larger sum. Naturally the
payment should not be so large as to incentivize people who are not suitable
to pose as subjects. Payments like this are often useful with students, but
probably less so with well-paid professionals, unless they are actually hired
as part of a large-scale experiment.

— In some cases the experimental subjects do the experiment authors a favor
by participating. For example it is common practice to ask friends and
colleagues to take part in pilot studies used to validate and adjust exper-
imental materials and procedures. Inviting colleagues and acquaintances
to participate in the final experiment, and snowballing from there, is also
not uncommon. This is generally a useful way to recruit participants. How-
ever it might have the disadvantage of narrowing the field to subjects with
similar characteristics.

The most motivated potential subjects are the experiment authors them-
selves. However, self experiments should be avoided, as the authors not only
may have a conflict of interest, but their performance may also be influenced
by their knowledge of the experiment design.

5.1.4 Effect of Demographics

A recurring theme when considering experimental subjects is whether demo-
graphic variables, mainly sex and age, may explain some of the variability.
Some studies have reported observed differences between men and women [81,
125,48]. Others have found no such differences [4,54]. At present it seems that
the differences, when and if they exist, are not major, but this deserves further
study.

5.1.5 Ethics in Research

An experiment on how people understand code is an experiment with human
subjects, and as such must follow research ethics guidelines. The basic prin-
ciples for ethical research were laid out in the Belmont report in 1979 [150].
While this was done in the context of bio-medial research, two main ideas
carry over to software engineering experiments:

— Subjects should be respected, implying that experimental subjects should
be informed about the experiment and are entitled to decide for themselves
whether to participate in it. For example, posing as a ranking service to
collect data on developers’ aptitude is unethical. Likewise, students should
not be coerced to participate in an experiment by their professors.

— In performing the experiments the researchers are obliged to do no harm,
and should avoid the danger of jeopardizing subjects’ well-being in any way.
For example, identifying subjects who made stupid mistakes is unethical.
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Ethical compliance is usually ensured by the practices of obtaining informed
consent from experimental subjects, allowing them to leave the experiment at
any time, and not collecting any identifying information.

Carver et al. point out that special considerations apply when students are
used as subjects. One needs to remember that the students are there for an
education, and participating in an experiment can affect this education [29].
It is up to the researchers to ensure that this effect is for the good. More
generally, care should be taken to ensure non-coercing participation and to
limit stress.

5.2 Pitfalls
5.2.1 Subjects Unsuited for the Study

A potentially significant problem may be the failure to exclude subjects who
are unsuited for the task done in the experiment. This should be verified as
part of the initial demographic screening. However, it is not easy to think in
advance of all the factors that need to be checked.

An obvious exclusion criterion is that subjects should be well-versed in the
programming language used. They should be excluded if they lack knowledge
needed to perform well in the study, e.g. knowledge about certain technolo-
gies. However, Carver et al. suggest that this last deficiency can be corrected
quickly by first observing someone else perform the experiment while using
the required technology [28].

Inexperienced subjects should not be used when the research involves not
just basic or technical knowledge but performance honed by practice. And
practice can have an effect on many different things. For example, naming
or documentation practices may change after one has first-hand experience
suffering from the practices of others. Indeed, names given by experienced de-
velopers have been found to differ from those given by inexperienced students
[54].

There can also be difficulties unrelated to knowledge. For example, contact
lenses and downward pointing eyelashes appear to reduce accuracy in eye
tracking studies [96]. Eye glasses, on the other hand, are fine.

Last, subjects repeating the experiment should most probably also be ex-
cluded. But if no identifying information is collected, this has to rely on subject
self reporting. To enable such reporting, a question needs to be included in
the demographic screening.

As an example, Hofmeister et al. report having used the following exclu-
sions criteria to exclude 63 of 135 participants in a study, leaving only 72 valid
ones [67]:

— Self rating of language proficiency as being 1-3 on a scale of 1-6, for both
German (the language of the instructions) and English (the language of
code variable names and comments).
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— Self rating of C# skills of 1-3 on a scale of 1-5, or less than 1 year of
practical use of the language.

— Admitting having been distracted or not having worked conscientiously.

— Too low performance, e.g. taking more than 10 minutes to perform a trial.

— Having already participated in the study or in a pilot study.

5.2.2 Lack of Relevant Knowledge

A special case of unsuitable subjects that deserves further attention is when
subjects lack relevant knowledge. Developers often have different levels of
knowledge in different pertinent dimensions of knowledge. The most impor-
tant distinction is between the technical dimension and the domain dimension
[121]. Both should be checked to ascertain that the study participants indeed
have the required background.

The technical dimension involves knowledge about the programming lan-
guage, the development environment, the process workflows, etc. A minimal
requirement in experiments is that subjects be proficient in the language in
which the code is written. Note that proficiency is more than mere working
knowledge of the language, and includes being acquainted with the program-
ming culture and ecosystem around the language. This should therefore be
included in the screening of subjects.

Domain knowledge is about the background of the code or application.
This can mean general knowledge about the application itself: what exactly it
is supposed to do, why, and how it fits into the bigger picture. But in many
cases the more important background concerns the whole domain. For exam-
ple, understanding a scientific code which performs physics calculations would
typically require a knowledge of the underlying physics, and understanding a
banking investments application would require deep knowledge of the financial
system. This is the reason that studies are often conducted using general code
(such as utility libraries) and not specialized code.

Note that these two dimensions are required in different amounts for differ-
ent tasks. For example, technical knowledge is sufficient for fixing a technical
bug like a null pointer reference, but domain knowledge is crucial for provid-
ing suitable context in a code summarization task. In addition, it is important
to note that knowledge dimensions may interact with tasks. According to von
Mayrhauser and Vans, adaptive maintenance tasks require much more domain
knowledge than program knowledge [154]. Corrective maintenance and the de-
velopment of new features, on the other hand, require much more program
knowledge than domain knowledge.

5.2.3 Differences in Definition of Levels

Many studies attempt to perform a comparison between novices and experts.
However, developers often have different levels of knowledge in different per-
tinent dimensions of knowledge. Therefore any uni-dimensional classification
into “novices” and “experts” is compromised. In addition, in some cases the
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Table 1 Examples of definitions of novice/intermediate/expert sub jects.

Ref. Level 1 Level2 Level 3

2] low: grades below high: grades above
threshold threshold

[11]  novice: <24 months intermediate: >24
programming months programm-
experience ing experience

[20]  novice: 2nd year expert: industry
students professionals

considered experts

[26]  novice: experienced
inexperienced professional
student

[31]  bachelor student

[37)  novice: 2nd term
CS students

[89]  beginner: starting
1st course

[115]  3rd year bachelor
student

[119] novice: 1-6 months
job experience

[144] novice: end of 1st
programming
course

[156] novice: undergrad

CS majors

master student

intermediate:
junior /senior CS
students
intermediate:
finishing 1st course

professional

experienced rated
low by supervisors

advanced:
completed 3
programming
courses

expert: 2nd year
graduate students

PhD student

advanced: graduate
CS students +
faculty

expert: teaching
course, with 400 hr
experience

experienced rated
high by supervisors

manager: from
industry

differences between the levels may not be significant enough to make a differ-
ence, for example when comparing 3rd year students with masters students.
Another problem is that the definitions used by different researchers dif-

fer considerably, making any comparison between different studies practically
meaningless (see Table 1). For example, many use graduate students, or even
students towards the end of their first degree, as “experienced”. This might
be true relative to freshmen in their first year, but does not reflect experience
gained in a few years on the job. A possible approach is to classify students
by year during undergraduate studies or as “advanced” for graduates, whereas
professionals would be classified into “novices” (say up to a year of on-the-job
experience) and “experienced” (3 or more years). Note that this leaves a gap
between the groups as suggested above.
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5.2.4 Unmotivated Subjects

The performance on any work task may be affected by motivation, interest,
and mood: happy developers are more productive and create better-quality
code [62,63,61]. Personality also has an effect [64]. This naturally also applies
in experiments. But if the experiment is conducted on-line, you have no way
to know how the experimental subjects are feeling, or whether they were dis-
tracted. And motivation when participating in experiments may not be the
same as in real work. Hofmeister et al. therefore suggest to perform a final
debriefing at the end of the experiment and exclude subjects who report that
they were not working conscientiously or were distracted [67].

6 Conclusions

Methodological discussions on software engineering experiments have typically
focused mainly on experimental design, statistical tests, and reporting guide-
lines (e.g. [74,73,159,130]). This focus mirrors the reaction to the reproducibil-
ity crisis in psychological research [143]. But validity and reproducibility are
compromised not only by flaws in the statistics and the reporting. The conclu-
sion of an otherwise solid study can also be jeopardized by inadvertent nuances
in the experimental materials and the experimental procedure.

In the context of experiments on program comprehension, very little dis-
cussion has appeared in the literature on what exactly we mean when we say
“the subject understands the code”, and how the code and tasks we use af-
fect this issue. We need more work on such methodological issues, and better
reporting not only of the details but also of the considerations involved in
selecting the code and the tasks. Table 2 summarizes the main points made in
the previous sections. Many of these points may seem obvious. But the liter-
ature is rife with examples of good research papers that did not take some of
these considerations into account or failed on some pitfall.

The purpose of this paper is not to dictate the “right” way to do research.
Its purpose is to raise awareness to the myriad considerations that are involved
in experiments on program comprehension, and especially to the side effects
that methodological decisions may have. Such awareness is needed mainly to
increase the volume of discussion of methodological issues, including method-
ological differences. Awareness of differences is important for better under-
standing of how the results of different studies can be compared to each other,
and how they complement each other. This, together with multiple divergent
replications of previous work, is the path to a deeper understanding of how
code is understood.
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