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SUMMARY

Evaluating the performance of a computer system is based on using representative workloads. Common
practice is to either use real workload traces to drive simulations, or else to use statistical workload models
that are based on such traces. Such models allow various workload attributes to be manipulated, thus
providing desirable flexibility, but may lose details of the workload’s internal structure. To overcome this, we
suggest to combine the benefits of real traces and flexible modeling. Focusing on the problem of evaluating
the performance of parallel job schedulers, we partition the trace of submitted jobs into independent
subtraces representing different users, and then re-combine them in various ways, while maintaining features
like long-range dependence and the daily and weekly cycles of activity. This facilitates the creation of longer
workload traces that enable longer simulations, the creation of multiple statistically similar workloads that
can be used to gauge confidence intervals, the creation of workloads with different load levels, and increasing
the frequency of specific events like large surges of activity. Copyright c© 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The performance of a computer system is affected by the workload it handles. Reliable performance

evaluations therefore require the use of representative workloads. This means that the evaluation

workload should not only have the same marginal distributions as the workloads that the system

will have to handle in production use, but also the same correlations and internal structure. As a

result, traces of real workloads are often used to drive simulations of new system designs, because

such traces obviously contain all the structure found in real workloads.

Replaying a trace provides only a single data point of performance for one workload. But in many

evaluations, several related workloads are needed. For example, in order to compute confidence

intervals, one needs multiple instances of the same basic workload. The common way to satisfy this

need is to create multiple synthetic workloads based on statistical workload models (which, in turn,

are based on the traced data) [23, 2, 31, 39, 43]. While models provide the required variability and

flexibility for evaluations, they also suffer from not necessarily including all the important features

of the real workload [18, 1] — in fact, they include only those of which the modeler was aware.

To improve the representativeness of evaluation workloads we propose to combine the realism

of real traces with the flexibility of models. This will be done by modeling only the part of the

workload that needs to be manipulated, and resampling from the real data to fill in the remaining
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2 N. ZAKAY AND D. G. FEITELSON

Table I. Logs from the Parallel Workloads Archive (www.cs.huji.ac.il/labs/parallel/workload/) that were
used in this study.

Log name File Period PEs Users Jobs

LANL-CM5 LANL-CM5-1994-3.1-cln 10/94–09/96 1024 213 122,060
SDSC-Par SDSC-Par-1995-3.1-cln 12/94–12/95 400 98 53,970
CTC-SP2 CTC-SP2-1996-2.1-cln 06/96–05/97 338 679 77,222
KTH-SP2 KTH-SP2-1996-2 09/96–08/97 100 214 28,489
SDSC-SP2 SDSC-SP2-1998-3.1-cln 04/98–04/00 128 437 59,725
OSC-cluster OSC-Clust-2000-3.1-cln 01/00–11/01 178 253 36,097
SDSC-BLUE SDSC-BLUE-2000-3.1-cln 04/00–01/03 1152 468 243,314
HPC2N HPC2N-2002-1.1-cln 07/02–01/06 240 257 202,876
SDSC-DS SDSC-DS-2004-1 03/04–04/05 1664 460 96,089
ANL-Intrepid ANL-Intrepid-2009-1 01/09–09/09 163,840 236 68,936
PIK-IPLEX PIK-IPLEX-2009-1 04/09–07/12 2560 225 742,965
CEA-Curie CEA-Curie-2011-2.1-cln 02/12–10/12 93,312 582 312,826

details. Technically this is done by partitioning workload traces into their basic components and

re-grouping them in different ways to achieve the desired effects.

The domain of our work is parallel job scheduling. Parallel systems are increasingly relevant

today, with the advent of multi-core processors (parallelism on the desktop), clusters and blade

servers (parallelism at the enterprise level), and grids and clouds (parallelism across multiple

locations). The jobs that run on parallel systems are composed of multiple processes that need

to run on distinct processors (in large clusters and supercomputers the number of processes and

processors can be in the thousands). When a job is submitted the user specifies how many processors

are needed, and often also for how much time. The scheduler then determines the order in which

jobs will be executed, and which processors will be allocated to each one. Accounting logs from

large-scale systems are available in the Parallel Workloads Archive [20], and provide data about the

workloads they served. In particular, logs typically contain information about the submit time of

each job, it’s runtime and number of processes, the user who submitted it, and more. These logs can

therefore be used to simulate the behavior of new scheduler designs and compare them with each

other. The logs we use in this work are listed in Table I. Most of the results that we present in this

paper use the more recent and relevant logs. However, two logs (SDSC-Par and PIK-IPLEX) do not

have an estimated running time, and are therefore excluded from simulations where it is needed.

OSC-cluster is also often skipped due to its very low load.

In the context of parallel job scheduling, we suggest that the resampling be done at the level of

users. We first partition the workload into individual subtraces for the different users, including all

the jobs submitted by each user throughout the tracing period. We then sample from this pool of

users to create a new workload trace. Using such resampling, we can achieve the following:

• Create a much longer trace than the original, and use it to ensure convergence of evaluation

results.

• Create multiple similar workloads, and use them to compute confidence intervals.

• Create workloads with higher or lower average loads, by using more or less concurrently

active users, and use them to investigate how load affects system performance.

• Create workloads in which rare events such as surges in activity are amplified, and use them

to investigate the effect of such events.

Importantly, while the resampled workloads differ from the original in length, statistical variation,

or load, they nevertheless retain important elements of the internal structure such as sessions and the

relationship between the sessions and the daily work cycle. They are even found to have the same

long-range dependence structure.

Workload manipulations are an important tool in the performance analyst’s toolbox, that has

not received its due attention in terms of methodological research. As a result, inappropriate

manipulations are sometimes used, which in turn has led to some controversy regarding whether

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
Prepared using cpeauth.cls DOI: 10.1002/cpe



WORKLOAD RESAMPLING FOR PERFORMANCE EVALUATION 3

any manipulations of real workloads are legitimate. By increasing our understanding of resampling-

based manipulations we hope to bolster the use of this important tool, allowing new types of

manipulations to be applied to workload traces, and enabling researchers to achieve better control

over their properties, as needed for different evaluation scenarios.

In the rest of this paper we describe this promising approach to using workload traces and

demonstrate its effectiveness. The next section further explains the motivation for using resampling.

In Section 3 we consider different resampling granularities, and justify the decision to do so at the

level of all the activity of each user. Section 4 explains how the resampling is done in considerable

detail, including the proposed distinction between long-term and temporary users, and Section 5

validates the process by showing that the generated workloads have the same statistical properties

as the original. Section 6 then demonstrates the use of resampling to achieve the objectives listed

above, and also suggests some additional potential uses, and we conclude in Section 7.

This paper extends a previous conference version [47]. The main additions are the verification

that resampling retains the self-similarity of the workloads, the use of resampling to over-sample

rare events such as flash crowds and evaluate their impact, and the addition of more examples to the

experimental results including the use of two new recent workload logs.

2. WHY USE RESAMPLING

The Parallel Workloads Archive includes more than 20 workload traces from different systems, but

this may not always suffice. Some of the traces may not be appropriate for certain system types (for

example, throughput-oriented systems often allow only serial jobs). Some traces are dated and may

not represent present practices. Evaluations may require certain attributes that are not available in

the archive, e.g. a series of workloads whose loads differ by 5%. Even if one has access to a real

system one cannot force the workload on it to conform to a desired configuration.

Resampling is a powerful technique for statistical reasoning in such situations, when not enough

empirical data is available [11, 12]. The idea is to use the available data sample as an approximation

of the underlying population, and resample from it. This enables multiple, quasi-independent

samples to be created, which are then used to compute confidence intervals or other metrics of

interest that depend on the unknown underlying distribution.

Our ideas for workload manipulation are analogous to this. We have a workload trace at our

disposal. The problem is that this provides a single data point, whereas our evaluation requires

the use of several (maybe many) workloads with certain variations. The proposed solution is to

partition the given workload into its constituents, and re-group them in different ways to create new

workloads. The simplest approach is to partition the workload into its most basic components (e.g.

jobs), and resample at random. This is similar to just using the empirical distribution as a model.

Our proposal is to extend this in two ways:

1. We consider different definitions of what constitutes the basic elements of the workload. For

example, they could be individual jobs, batches of related jobs, complete user sessions, or

even the sequence of all the sessions by each user.

2. Resampling may not be random, but guided by some specific manipulation that we want to

apply to the workload, and also subject to constraints such as maintaining system stability.

The notion that this is a useful device is our working hypothesis; examples and evidence supporting

this notion are given below.

We note that while we believe such resampling to be relatively novel in the context of computer

workloads and performance evaluation, analogies from other fields of computer science do exist.

One analogy comes from computer graphics, where texture mapping is often done by replicating

a small patch of texture, with certain variations to give an impression of perspective, conform to

lighting conditions, and avoid an obvious tiling effect [27]. More relevant to our work on workloads,

such replication, modification, and patching together has also been done for temporal signals, such

as movement specification [25] and sound [9]. Another analogy comes from the joint time-space

analysis of video. Here the idea is to partition a video into patches, and then replace certain patches
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with others, e.g. to reconstruct missing frames or add or remove objects [45]. This technique can

also be used for anomaly detection: if a piece of a new video cannot be reconstructed from snippets

that exist in the system’s database, then it is anomalous [4].

To the best of our knowledge resampling-based workload manipulations as we propose here

have been used only in few isolated cases, and that in a very limited manner. The closest related

work we know of is the Tmix tool, used for the generation of networking traffic. This tool

extracts communication vectors describing different connections from a traffic log (sequences

of 〈requestBytes, responseBytes, thinkTime〉) and then replays them subject to feedback from

the simulated system’s performance [44]. A subsequent paper also mentions the possibility of

resampling traces to create diverse load conditions [22], but their approach is simpler than ours

as they do not use the concept of sessions nor retain phenomena like the daily cycle. A similar

construction was proposed by Krishnamurthy et al. in the context of evaluating e-commerce systems

[26]. In this case they reuse sequences of user operations in order to ensure that illegal sequences

are not generated by mistake by the workload modeling procedure. In the domain of parallel job

scheduling, Ernemann et al. resize and replicate jobs in order to make a trace suitable for simulations

with a larger machine [13]. Our goal, in contrast, is to use the resampled traces to perform better

and more comprehensive evaluations. Kamath et al. have suggested to merge several traces and

simulate a queueing mechanism in order to increase load [24]. However, this is limited to load

values that are the sums of loads from existing traces. Ebling and Satyanarayanan created micro-

models of application file behaviors based on a trace, and then combined them stochastically to

create test workloads [10]. Again this is similar in concept; the difference from our work is that

we use snippets of the traced data directly as the elements of workload being resampled, whereas

they create models that risk losing important details. Finally, Chen et al. use a sequence of short

samples of MapReduce workloads to reduce the volume of a large workload [7, 6]. This sort of sub-

sampling makes no attempt to mimic the processes that generate the workload, and may destroy

internal structures, especially if the sample lengths are too short.

3. GRANULARITY OF RESAMPLING

Resampling can be done at different levels. In many cases, the coarsest level is the activity of a

user, which may be partitioned into sessions. The constituents of a session depend on what sort of

work we are looking at. It can be the submittal of parallel jobs, downloads from web servers that

are composed of packets being sent over the Internet, or individual accesses to file data.

Resampling at the job level is similar to resampling in statistics, e.g. as applied in the bootstrap

method [11], which is similar to using the empirical distribution as a model. Note, however, that

by resampling complete jobs we retain the correlations between job attributes (e.g. job size and

runtime), which would be lost if we resampled from each marginal distribution independently.

Resampling is all about creating new mixed versions of the workload. But at the same time, we

wish to retain at least some of the local structure. Specifically, we typically want to retain the locality

properties exhibited by normal work practices. Also, it may be important to retain the structure of

batches of related jobs or sessions. For example, this is necessary for the evaluation of adaptive

systems that learn about their workload and adapt to changing workload conditions [40, 17]; without

locality and structure, such systems don’t have what to exploit.

To motivate the use of resampling at the user level, we studied the similarity between each

user’s jobs. First we divided the work of each user into sessions [46]. Then we analyzed the

similarity of jobs in one session with each other and with the jobs in subsequent sessions,

using three attributes: the number of processors used, the jobs’ runtimes, and their estimated

runtimes. The metric for similarity was the ratio of the smaller value to the larger one: r =
min{j1.att, j2.att}/max{j1.att, j2.att}. This is by definition in the range [0, 1], with 0 indicating a

large difference and 1 indicating identity. When comparing two sessions, the similarity is calculated

between all pairs of jobs, where one job comes from one session and the other job from the other

session. Then we characterize the similarity between the sessions using the average similarity

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
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Figure 1. Similarity between jobs as a function of the distance between them in sessions.

Table II. The fraction of users for whom the similarity between jobs was larger at one distance than at
another distance, using the CPU-number property.

distance 0 vs 1 distance 1 vs 2

Log name 0 larger equal 1 larger 1 larger equal 2 larger

LNAL-CM5 0.727 0.0160 0.257 0.663 0.0053 0.332

CTC-SP2 0.722 0.0152 0.262 0.670 0.0325 0.300

KTH-SP2 0.782 0.0075 0.211 0.692 0.0150 0.293

SDSC-SP2 0.771 0.0120 0.217 0.747 0.0080 0.245

SDSC-BLUE 0.856 0.0000 0.144 0.762 0.0046 0.233

HPC2N 0.856 0.0046 0.140 0.684 0.0000 0.316

SDSC-DS 0.767 0.0031 0.230 0.702 0.0092 0.288

ANL-Intrepid 0.788 0.0052 0.207 0.746 0.0000 0.254

CEA-Curie 0.866 0.0022 0.131 0.746 0.0043 0.250

between job pairs, the median similarity similarity between job pairs, or the fraction of job pairs

that had identical values.

Fig. 1 shows a sample of the results, using logs available from the Parallel Workloads Archive

[34]. The horizontal axis is the distance in sessions between the compared jobs, and the vertical axis

shows the average or median of the level of similarity. In all the graphs, jobs in the same session are

the most similar to each other. The top row shows cases where the degree of similarity is reduced

with distance in a monotonic manner. This is interpreted as reflecting locality, where users perform

similar work for some time and then move to do something else. The second row shows cases where

the change in similarity is not monotonic. This reflects some other work patterns, where similar jobs

are executed again after some time. But in both cases we see a pattern, indicating that the sessions

are not independent and that performing the resampling at the session level would lose potentially

important information.

Another way to characterize the locality is to find the fraction of users for whom the similarity at

a short distance is higher than the similarity at a longer distance. Such data is shown in Tables II to

IV, for distances of 0 vs. 1 sessions and 1 vs. 2 sessions. This again demonstrate that the similarity

drops when the distance grows, as in most cases about 70–85% of the users exhibit higher similarity

at the shorter distance. In effect, this testifies to the existence of locality in these workloads, which

we want to retain.

To validate this result, we used bootstrapping to compare the results shown above with results

that would be obtained if we sample jobs independently. To do so we retain the structure of sessions

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
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6 N. ZAKAY AND D. G. FEITELSON

Table III. The fraction of users for whom the similarity between jobs was larger at one distance than at
another distance, using the maximum running time property.

distance 0 vs 1 distance 1 vs 2

Log name 0 larger equal 1 larger 1 larger equal 2 larger

LANL-CM5 0.765 0.1016 0.134 0.668 0.1016 0.230

CTC-SP2 0.757 0.1041 0.139 0.705 0.1085 0.187

KTH-SP2 0.895 0.0075 0.098 0.789 0.0150 0.195

SDSC-SP2 0.791 0.0924 0.116 0.795 0.0924 0.112

SDSC-BLUE 0.947 0.0069 0.046 0.794 0.0069 0.199

HPC2N 0.907 0.0279 0.065 0.781 0.0233 0.195

SDSC-DS 0.837 0.0613 0.101 0.739 0.0583 0.202

ANL-Intrepid 0.834 0.0777 0.088 0.715 0.0777 0.207

CEA-Curie 0.843 0.0625 0.095 0.718 0.0625 0.220

Table IV. The fraction of users for whom the similarity between jobs was larger at one distance than at
another distance, using the running time property.

distance 0 vs 1 distance 1 vs 2

Log name 0 larger equal 1 larger 1 larger equal 2 larger

LANL-CM5 0.733 0.0000 0.267 0.711 0.0053 0.283

CTC-SP2 0.829 0.0043 0.167 0.722 0.0065 0.271

KTH-SP2 0.827 0.0075 0.165 0.684 0.0000 0.316

SDSC-SP2 0.759 0.0000 0.241 0.759 0.0040 0.237

SDSC-BLUE 0.888 0.0114 0.101 0.757 0.0092 0.233

HPC2N 0.879 0.0326 0.088 0.721 0.0279 0.251

SDSC-DS 0.840 0.0215 0.138 0.706 0.0245 0.270

ANL-Intrepid 0.850 0.0000 0.150 0.710 0.0000 0.290

CEA-Curie 0.817 0.0151 0.168 0.685 0.0151 0.300
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Figure 2. Comparison of the similarity between jobs in the same session as computed from the CEA-Curie
log (vertical line), and the distribution of similarity levels that are seen when the jobs are randomized.

for each user, but mix the jobs randomly among the sessions. This is repeated 1000 times, and each

time the degrees of similarity between jobs in the same session are computed as above. Fig. 2 shows

a sample of the results for one log. Obviously, the similarity among jobs that appear together in the

original log is much higher than the similarity observed when jobs are randomized, as would happen

if we resample individual jobs.

An implicit assumption in our resampling procedure is that users are independent. This is not

strictly valid because users affect each other: if one user overloads the system, others may feel this

and reduce their own activity. However, a large part of such interactions is due to all users operating

on the same daily cycle, and we take care to retain this correlation between the resampled users.

Moreover, resampling at the user level rather than at the session level allows for more sophisticated
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Figure 3. Conceptual framework of dividing users into long-term and temporary, and reusing them in a
generated trace.

user behavior models. Specifically, we can introduce feedback effects whereby a user may decide to

terminate a session because system performance is poor, and submit his subsequent jobs in a later

session. Our work on incorporating such feedback effects will be reported separately; for now the

main point is that if we resample at the session granularity such effects will be effectively excluded.

Based on the above considerations, we decided to perform our resampling at the user level, in

order to retain the locality in the modified workloads that we produce and allow for the future

inclusion of feedback effects.

4. MECHANICS OF RESAMPLING

Creating a new workload by resampling users means that we dissect the given trace into sub-traces

representing different users, and then recombine these sub-traces in different ways. Note that we do

not manipulate each user’s sub-trace. Thus the sequence of jobs representing each user will be the

same as in the original trace, and the intervals between them will also be the same. This guarantees

the same locality properties as in the original trace, as noted above. We also take care to synchronize

the resampled users using a common timeframe, so that jobs always start on the same day of the

week and the same time of the day as in the original trace. This ensures that the daily cycle of

activity is retained in the produced workload, which may be important [48, 18].

An important issue in dissecting a trace into separate users is how to handle end effects. After

all, there is no reason to assume that the beginning or end of the tracing period is synchronized in

any way with the beginning or end of the activity of any particular user. We approach this problem

by making a distinction between temporary users and long-term users (see Fig. 3). This distinction

relates to basic aspects of human user work patterns, and is expected to be relevant to other system

types too.

Temporary users are all the users that interact with the system for a limited time, for example

while conducting a project. These users arrive to the system at a certain point, interact with it

for a short while, and are expected to leave shortly after that and never return. Long-term users,

in contradistinction, are the users that routinely use the system all the time. These users may be

expected to have been active before logging started, and to send more jobs also after the end of the

recording period.

In analyzing the log, we distinguish between temporary users and long-term users according to

the interval between their first job and their last job in the log. If the interval is long enough (above

12 weeks in our implementation), the user is classified as long-term. Otherwise the classification is

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
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8 N. ZAKAY AND D. G. FEITELSON

Table V. Results of classifying users in the different logs.

long-term temporary

Log users jobs users jobs

LANL-CM5 159 119,998 37 1,727

SDSC-Par 57 45,087 32 7,354

CTC-SP2 314 63,287 236 10,625

KTH-SP2 102 25,202 66 2,349

SDSC-SP2 173 44,251 206 8,790

SDSC-BLUE 426 221,745 31 1,435

HPC2N 178 194,429 66 7,949

SDSC-DS 230 74,764 192 9,012

ANL-Intrepid 124 58,875 81 7,725

PIK-IPLEX 175 724,045 46 4,764

CEA-Curie 269 244,733 223 38,814

temporary. The threshold of 12 weeks is chosen based on observation of the distribution of periods

of activity by different users. We found that for many users their period of activity was up to about

12 weeks; these are the temporary users. For the rest there was a uniform distribution from 12 weeks

to the full length of the log. This is interpreted as representing long-term users whose activity was

arbitrarily intersected with the logging period. The numbers of temporary and long-term users found

in different logs, and the jobs that they submitted, are shown in Table V. There tend to be somewhat

more long-term users than temporary ones. As may be expected, the long-term users submit the vast

majority of the jobs. Temporary users have in average less jobs and sessions due to their shorter

activity. However, parameters that don’t depend on the activity length, such as session lengths, are

similar for long-term and temporary users.

Data about the different users is kept in separate user pools, one for temporary users and the other

for long-term users (Fig. 3). However, temporary users whose full period of activity falls within a

short time (4 weeks) from the beginning or the end of the logging period are discarded. The reason

for doing so is that there is a high probability that the activity of these users was truncated, but we

cannot know for sure. The threshold of 4 weeks is chosen because when plotting the cumulative

number of users observed as a function of the number of weeks into the log, in the first few weeks

the graph climbs at a higher rate. This is interpreted as being influenced by first observations of

users that have already been active before. Then, when the increase settles on a lower and relatively

constant average rate, this is interpreted as predominantly representing the arrivals of new users.

Given the pools of temporary and long-term users, the resampling and generation of a new trace

is done as follows:

• Initialization: We initialize the trace with some temporary users and some long-term users.

The numbers of users to use are parameters of the trace generation, and can be used to change

the load or the ratio of temporary to long-term users (the defaults are the numbers of long-

term users in the original log, and the average number of temporary users present in a single

week of the original log). The probability to select each temporary user is proportional to the

number of weeks during which the user was active in the log. Users are not started with their

first job from the trace, because we are trying to emulate a workload that was recorded over an

arbitrary timespan, and there is no reason to assume that the beginning of the logging period

should coincide with the beginning of a user’s activity. Therefore each user is started in some

arbitrary week of his traced activity. However, care is taken that jobs start on the same day of

the week and time of the day in the simulation as in the original trace.

• Temporary users: In each new week of the simulation, a certain number of new temporary

users are added. The exact number is randomized around the target number, which is

a parameter of the trace generation (the default is the average rate at which temporary

users arrived in the original trace). The randomization uses a binomial distribution, with

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
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a probability p equal to the fraction of temporary users expected to start every week. The

selected users are started from their first traced jobs. A user can be selected from the pool

multiple times, but care is taken not to select the same user twice in the same week.

• Long-term users: The population of long-term users is constant and consists of those chosen

in the initialization. When the traced activity of a long-term user is finished, it is simply

regenerated after a certain interval. While such repetitions are not very realistic, they allow us

to extend the work of the long-term users as needed. We also note that repetitions only occur

after rather long intervals, because logs are typically at least a year long. The interval between

the regenerations corresponds to the sum of the intervals between the user’s period of activity

and the full logging period. Naturally the regenerations are also synchronized correctly with

the time and day.

Note that this process can go on indefinitely, and indeed one of the applications of workload

resampling that we describe in Section 6 is to extend traces and allow for longer simulations.

The exact number of users in the initialization, the week of activity from which they start,

the number of temporary users added each week, and the identity of the selected users are all

randomized. Therefore our simulation creates a different workload in each run. But all these

workloads are based on the same sub-sequences of jobs, and are therefore all statistically similar to

each other and to the original trace.

5. RESAMPLING VALIDATION

In order to perform resampling and implement the applications described in the next section it is

enough to just create a new workload trace that is composed of the jobs of the different users as

described above. However, we actually perform a full simulation of also scheduling these jobs. This

enables us to directly use the generated workloads to evaluate various parallel job schedulers. In

subsequent work we also consider adding feedback, whereby the system performance influences

user behavior and may affect when subsequent jobs are submitted [38]. In any case, the simulation

also creates a log file which contains the new workload. Comparing this generated workload with

the original one allows us to validate the resampling process.

5.1. Marginal Distributions

The validation is based on comparing the generated workloads to the original one. We start with a

comparison of various marginal distributions that describe the workload’s structure, with a focus on

the user level because this is what we modify. An example is shown in Fig. 4 based on the ANL-

Intrepid log; similar results are obtained for other logs too. The different panels show the following

distributions:

• Number of jobs submitted by different users.

• Number of sessions performed by users.

• Average session length for different users.

• Total amount of CPU time (work) used by users in all their jobs.

• The users’ first arrival times.

• The users’ final departure times.

• The users’ periods of activity.

• The distribution of job arrivals across days of the week, for all users together.

In all but the last of these, the users are first sorted according to the metric, and then the distribution

is plotted. The horizontal axis specifies the users’ serial numbers after this sorting. Note that

the number of users participating in each workload may be slightly different, due to the random

selection of how many new users arrive each week. As we can see, all the distributions are very

similar to the original one. This is attributed to the fact that despite the random mixing due to the

resampling, the sequence of jobs for each user is retained.

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
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Figure 4. Comparison between various distributions of the original ANL-Intrepid log and 8 generated logs
based on it. The last plot includes marks every 6 hours and a longer one at midnight.

Table VI. Locality calculated with the stack depth algorithm of the original workload and eight generated
workloads (shown as average ± standard deviation).

Runtime Max runtime CPU number

Log name Orig. Resamp. Orig. Resamp. Orig. Resamp.

LANL-CM5 36.01 36.97±0.37 2.53 2.51±0.03 1.15 1.08±0.01

CTC-SP2 28.01 27.72±0.93 4.51 4.33±0.13 3.44 3.35±0.11

KTH-SP2 35.25 35.03±0.37 6.46 6.42±0.10 3.83 3.87±0.10

SDSC-SP2 25.13 24.48±0.82 4.09 3.96±0.11 2.89 2.79±0.08

SDSC-BLUE 25.11 25.97±0.28 3.12 3.46±0.02 1.58 1.57±0.01

HPC2N 18.67 19.44±0.19 2.36 2.37±0.02 0.98 0.95±0.01

SDSC-DS 25.01 25.68±0.59 4.09 3.95±0.15 2.07 2.02±0.06

ANL-Intrepid 13.21 14.02±0.24 2.58 2.56±0.07 1.28 1.27±0.02

CEA-Curie 28.0 28.06±0.59 2.42 2.39±0.08 4.93 5.02±0.26

5.2. Locality

Of course, marginal distributions don’t tell the whole story. It is also important to retain the

correlations in the workload. To verify that correlations are retained, we look into the locality of

the workloads and their self-similarity.

A simple way to measure locality is using the stack-depth algorithm. To do this, we traverse the

whole workload trace and extract a certain attribute of the jobs, e.g. their runtime. We keep these

runtimes in a stack. For each new job from the trace, we check whether its runtime is already in the

stack or not. If it is we note the depth in the stack where it was found, and move it up to the top

of the stack. If it was not, we just put it on the top. Thus if the workload has locality and the same

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
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Figure 5. Using the bins-based algorithm to check locality. The graphs show the fraction of jobs in each day

that are concentrated into one bin; if there was no locality, all values should be 1
16 = 0.062.

values tend to appear next to each other, we will often find them near the top of the stack and the

average depth will be small. If there is no locality, the average depth will be about half the stack

depth.

The results of performing this analysis using three workload properties are shown in Table VI.

Note that for the runtime and maximal runtime properties we do not require that exactly the same

value be found in the stack, as it is unreasonable to expect that long jobs will have the same runtime

up to the second. We therefore allow differences of up to 5%. Still, for runtimes there are many more

different values, and the average stack depth found is between 13 and 36. For the other attributes it

is much lower. But the important thing is that the stack depths found for the resampled logs are very

similar to those of the original logs.

The stack depth algorithm checks the similarity of successive jobs. But it can’t measure the

similarity of jobs submitted during a certain period of time, e.g. a day. To characterize this we

use a metric designed specifically to capture local concentrations when sampling from a distribution

[17]. The idea is as follows. First we characterize the underlying distribution by defining 16 equal-

weight bins. In other words, we identify the 1
16 = 6.25 percentile, the 2

16 = 12.5 percentile, and so

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
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on. Then we divide the log into individual days. For each day, we find what fraction of the jobs

fall in each of the bins we created before. If the distribution of jobs in this day is the same as the

overall distribution, then the number of jobs in each bin will be the same. But if on this day there

is a concentration of jobs with certain characteristics (as we expect when there is locality) then one

of the bins will have many more jobs than the others. The distribution of the maximal bin across all

the days in the log then characterizes the locality.

The results of performing this calculation are shown in Fig. 5 for four logs. We compare the

distribution found in the original logs with those found in eight resampled logs. Note that the range

of possible values is from 1
16 to 1. As we can see, the resampled distributions are generally similar to

the original ones, albeit in some cases the resampled distributions are a bit below the original. This

means that there is a bit less locality, implying that some of the original locality is due to correlation

between different users. Interestingly, the distributions for different logs, or different job attributes

in the same log, can be different.

5.3. Self Similarity

Another potentially important property of the workload is its self similarity, which reflects on its

burstiness and long-range dependence. To validate the resampling methodology we need to compare

the self similarity of the produced workloads to that of the original log. We will start with a brief

description of self similarity and its meaning in this area. Then we will explain briefly how it

is measured by the Hurst parameter, and describe how we calculate the Hurst parameter of the

workloads. Finally, we will present data for the self-similarity of the produced workloads.

Self similarity refers to situations in which a phenomenon has the same general characteristics

at different scales [32, 37]. If we zoom in, we see the same structure as we did before: parts of

the whole are actually scaled-down copies of the whole. In nature and in workloads (as opposed to

mathematics) we cannot expect perfect copies of the whole, but we can expect the same statistical

properties.

For example, the job arrivals to a parallel supercomputer are seen to be bursty, and the same bursty

behavior persists if we aggregate the arrivals over several orders of magnitude, by using longer

and longer time units [16]. Self similarity like this has been shown in many computer workloads,

including LAN traffic, web usage, and file systems [28, 36, 21, 8]. It is important because it means

that the arrivals do not conform to a Poisson process, and that load fluctuations do not average

out over longer time periods. The reason is that the arrival rates at different times are correlated

with each other, and this correlation spans multiple time scales, leading to long-range dependence.

The resulting load fluctuations have implications for capacity requirements and quality of service.

Thus it is crucial to retain the self-similarity of workloads in order to achieve reliable performance

evaluations.

The metric used to measure self-similarity is called the Hurst parameter (H). If this parameter is

in the range of 0.5 < H < 1, the process is self similar. Otherwise, it is not self similar. Assume we

start with a time series x1, x2...xn (for example, xi may be the number of jobs that arrived in the ith
time unit). First, we subtract the mean X from each sample, giving zi = xi −X . Then, we calculate

the deviation after j time units for all j: yj =
∑j

i=1 zi. Then, we calculate the range that was

covered, which is the difference between the maximum and the minimum deviations during these n
time units: R(n) = max1≤j≤n yj −min1≤j≤n yj . Finally, we calculate the standard deviation S(n)

of the observations x1, x2...xn, and normalize the range. The model is that the rescaled range
R(n)
S(n)

should grow like c · nH . To check this we take the log leading to log
(

R(n)
S(n)

)

= log(c) +H · log(n).

Thus if the process is indeed self similar, plotting the log of the rescaled range as a function of log n
will lead to a straight line, and the slope of the line gives H .

In order to apply the above procedure, we need to generate data for different values of n. To

choose the values of n and the data elements for each n, we use common methods, as reviewed in

[16]. Specifically, we use logarithmically spaced ns separated by a factor of 1.2, starting from where

there are enough samples so that most intervals are not empty. For each n we use multiple subsets

of the data; for large n these subsets may overlap.
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Figure 6. Comparison of Pox-plots for the original log and two resampled ones. From top: the LANL-CM5
log, the HPC2N log, and the ANL-Intrepid log.
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Figure 7. Comparison of the pox-plot regression lines of the original workload and the generated workloads.

Dashed lines showing the slopes corresponding to H =
1
2 and H = 1 are given for reference.
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Table VII. Hurst parameter H of the original workloads and the average and standard deviation of its value
in eight generated workloads.

Log name Original H Resampled H

LANL-CM5 0.690 0.679 ± 0.043

SDSC-Par 0.745 0.745 ± 0.059

CTC-SP2 0.617 0.620 ± 0.059

KTH-SP2 0.666 0.648 ± 0.040

SDSC-SP2 0.638 0.715 ± 0.028

SDSC-BLUE 0.778 0.704 ± 0.041

HPC2N 0.769 0.722 ± 0.033

SDSC-DS 0.747 0.651 ± 0.048

ANL-Intrepid 0.754 0.789 ± 0.054

PIK-IPLEX 0.697 0.722 ± 0.043

CEA-Curie 0.710 0.630 ± 0.090

Given a large number of subsets of different sizes, we calculate the
R(n)
S(n) metric for each one and

create a pox-plot, which is a scatter plot of these values on log-log axes. We use linear regression

to find the trend line, and calculate its slope. We did this for all the logs except the low-load OSC-

cluster, and for eight randomly resampled workloads that were produced as described in the previous

section from each one. Fig. 6 shows examples of the pox plots and regression lines for three logs

(LANL-CM5, HPC2N, and ANL-Intrepid). It is easy to see that in all cases the points create an

oblique cloud close to a straight line, and that the plots for the resampled workloads are similar to

those of the original workload.

Fig. 7 shows a direct comparison of the regression lines obtained from generated workloads and

those that are obtained from the original ones. The slopes which give the H values are compared in

Table VII. From these results, it is clear that the slope of each resampled workload is far bigger than

0.5 and far smaller than 1 (actually, there is no slope lower than 0.6 or higher than 0.9). Therefore,

we concluded that these resampled workloads behave similarly to the recorded workloads. From the

table we can see that the average H of the resampled workload is smaller than the original 6 times,

and bigger 4 times, and that in most cases the difference is smaller than the standard deviation. This

means that we don’t have a large systematic deviation (which may indicate a problem), but only

random fluctuations that affect each workload a bit differently.

Overall, these results provide significant support to the reliability of the generated workloads.

In addition they indicate that the long-range dependence can be captured by the activity of the

individual users, and does not depend on correlations between users. Therefore resampling at the

user level retains the self similarity. This is in contrast to shuffling the workload, meaning dividing

it into short segments and rearranging them, which is known to destroy self similarity [14]. The

reason it works for user resampling is probably because of users who are active for long periods.

6. APPLICATIONS OF RESAMPLING

The use of resampling is expected to lead to more reliable performance evaluations, due to being

based more closely on real workload traces, and incorporating all the complexities of real workloads

— including those that are unknown to the analyst. In the following we discuss some examples.

6.1. Verification of Performance Results

As noted above, one of the problems with using a workload trace directly is that it provides a

single data point. This has the obvious deficiency that it is impossible to calculate any kind of

confidence intervals except perhaps by the method of batch means [35]. But with resampling we

can create many resampled randomized versions of the workload, and evaluate the performance of
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Figure 8. Histograms of the throughput and utilization in a thousand simulations with resampled workloads
compared to using the original workload (vertical red line).

the system with all of them, thus obtaining multiple data points that all adhere to the same underlying

statistics. The distribution of these data points can then be used to compute confidence intervals for

performance metrics. This is essentially an application of the well-known technique of bootstrapping

used in statistical analysis [12].

Given the resampling mechanism described above, implementing this idea is trivial: simply create

a large number of workloads, say 1000, based on the original log, run the scheduler simulation on all

of them, and tabulate the results. But to check this we need to also examine the basic characteristics

of the produced workloads, and convince ourselves that they remain representative. To do so we

indeed generated 1000 resampled variants of each log, calculated various metrics on each of these

1000 variants, and created a histogram of these metric values. We also included the original values

for comparison.

We performed the checks on the nine logs from the archive that have user estimates (needed

for the simulation), and results for six of them are shown in Fig. 8. The top two rows show

that the throughput (represented by the total number of jobs during the simulation period) was

typically distributed around the original value. The result for the BLUE log was the largest deviation

observed; with this log 92% of the variants had a lower throughput than the original log, but the
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Figure 9. Histograms of the average slowdown and waiting time in a thousand simulations of EASY on
resampled workloads, compared to a simulation using the original logs (vertical red line).

difference between the median throughput and the original was only 0.45%. For utilization (bottom

two rows) the results were more diverse, and varied between distributions around the original value

— as for CTC — and distributions that are generally below the original value — as for CEA, which

was the most extreme. This may indicate some systematic bias which we do not understand yet. But

note that even for CEA the difference was less than 8%.

Accepting the generated workload distributions as reasonable, we turn to check the results

of evaluations of the EASY scheduler, which is probably the most commonly used backfilling

scheduler [29, 15]. The results for waiting time and slowdown are shown in Fig. 9 (results for

response time exhibit similar behavior to wait time). The slowdown results are the most varied. In

six of the nine logs we checked, the distribution was more or less around the value obtained using

the original log. This is exemplified by the BLUE and CTC logs in the figure. But in other cases

the original result was at the very end of the distribution, either higher or lower than nearly all the

others (as in DS or HPC2N, respectively, which were the two most extreme cases). The results for

wait time were more one-sided, being distributed either around the original values (as for DS and

CTC) or largely above them (as for BLUE and HPC2N). The explanation appears to be that in some
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Figure 10. Comparison between the original SDSC-DS log to the first, third, and fifth parts of an extended
resampled log that is 5 times longer.

logs there are more sparse periods, in which very few jobs arrive and therefore all wait times are

short or nil. Our resampling tends to distribute users and jobs somewhat more evenly.

For both metrics, these results underscore the importance of using the resampling methodology

to identify cases where the result using the original log may not be truly representative. Importantly,

the spread of the results indicates that the resampling indeed produces workloads that are different

from each other, even though they are derived from the same source and exhibit the same statistics.

On the other hand, we never saw results that were completely separated from the original result,

meaning that in all cases at least some of our 1000 repetitions produced results like the original log.

Also, in most cases the most extreme differences were not more than 10–20%.

Note that this application of bootstrapping serves only to provide confidence intervals for

evaluations based on a single log. We consider the possibility of extending this by mixing data

from multiple logs in Section 6.5.1. Such mixing will provide confidence intervals for more general

evaluations that are based on all the available data.

6.2. Extending a Trace

Another simple use of workload resampling is in order to extend a trace. While some of our

workload traces are pretty long, with hundreds of thousands of jobs submitted over 2 years or more,

others are shorter. In addition, a significant part of the trace may be needed as a “warmup period” to

ensure that the simulated system achieves its steady state [35]. Given only the raw traces, the length

of the simulation may therefore be quite limited.

But with resampling we can extend the simulation to arbitrary lengths. As indicated above, this is

achieved by regenerating long-term users, and randomly sampling new temporary users every week.

In principle this can be continued indefinitely.

To check the resulting extended workloads, we studied three repetitions of extending given traces

to five times their original length. For example, given a trace that represented one year’s worth
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of activity, we used it to create three traces that are each five years long. We then compared the

original trace with the first year, the third year, and the fifth year of each repetition. The results for

the SDSC-DS log are shown in Fig. 10, using the same distributions as in Fig. 4.

As one can see, the distributions for all three repetitions and the three periods of the extended

trace all agree with each other and with the original trace data to a high degree. Note that we treat

each of the three periods as a separate log, and do not carry over users that were identified in one

period to another period. This causes the distributions of arrival times and end times to be separated

into three, corresponding to the different periods. Remarkably, in each of these we see the same end

effects as in the original shorter trace.

6.3. Changing the Load

An important aspect of systems performance evaluation is often to check the system’s performance

under different load conditions, and in particular, how performance degrades with increased load.

Given a single trace, crude manipulations are typically used in order to change the load. These are

• Multiplying all arrival times by a constant, thus causing jobs to arrive at a faster rate and

increasing the load, or causing them to arrive at a slower rate and decreasing the load.

However, this also changes the daily cycle, for example causing jobs that were supposed

to terminate during the night to extend into the next day. An alternative approach that has a

similar effect is to multiply all runtimes by a constant. This has the deficiency of creating an

artificial correlation between load and response time.

• Multiplying all job sizes (here meaning the number of processors they use) by a constant,

and rounding to the nearest integer. This has two deficiencies. First, many jobs and machine

sizes are powers of two. After multiplying by some constant in order to change the load, they

will not be powers of two, which may have a strong effect on how they pack, and thus on the

observed fragmentation. This effect can be much stronger than the performance effects we

are trying to measure [30]. Second, small jobs cannot be changed with suitable fidelity as the

sizes must always be integers. An alternative approach that has essentially the same effect is

to modify the machine size. This at least avoids the problem presented by the small jobs.

With resampling, however, manipulating the load is relatively easy: One can simply increase or

reduce the average number of active users. This changes the load while retaining all other attributes

of the workload and avoiding the introduction of any artifacts. In particular, some logs have a very

low utilization, in the range of 10–30%, which makes them uninteresting in terms of evaluating

schedulers for parallel machines (because there are seldom enough concurrent jobs for the scheduler

to have to make any decisions). Using resampling we can increase the load significantly and make

these logs usable.

To implement this, three minor changes need to be made in the mechanism described above. The

first is to change the number of long-term users in the initialization. Additional long-term users will

be started as needed based on a random selection, taking care to use all existing long-term users

before replicating one that was selected already, and also taking care that replicas of the same user

will have a large difference in their start times. Likewise, we need to change the number of temporary

users in the initialization. Finally, we need to change the rate at which additional temporary users

arrive each week.

When users (and load) are added, the simulated system may saturate. We identify such conditions

and ignore the saturated simulation results with a warning. Identifying saturation is based on

noticing that the number of outstanding jobs (jobs that have arrived but not terminated yet) tends to

grow. This is done as follows.

1. Tabulate the number of outstanding jobs at the beginning of each week of the simulation.

2. If the number of outstanding jobs grows due to a load fluctuation, but then decreases again,

this does not indicate saturation. Therefore we replace each weekly count by the minimum

count from that week to the end of the simulation, leading to a non-decreasing sequence of

counts.
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Figure 11. Comparison between the original OSC-cluster log to resampled workloads where the load is
increased by a factor of 6.

3. Delete the last 20% of the values, to avoid false positives based on fluctuations that occur

towards the end of the simulation.

4. Use linear regression to fit a straight line to the remaining counts. If the slope is lower than 1

(meaning that on average the number of outstanding jobs grows by no more than one job per

week) the simulation is declared stable. If it is higher, the simulated system is saturated.

Verifying that resampling with a modified number of users leads to reasonable workloads shows

that indeed all the distributions are similar to those of the original traces (but taking into account that

the number of users is different). Fig. 11 shows the results for one extreme case, based on the OSC

cluster log. The average utilization of this log is only 12.8%, making it unusable for evaluations of

parallel job schedulers. We therefore increased the number of users by a factor of 6, targeting an

average utilization of approximately 76.8%. In the graphs, the user numbers on the horizontal axis

are normalized to the range [0, 1] to enable comparison with the original log that has much fewer

users. It is easy to see that the high-load simulations produce distributions that are very similar to

the original log. The main difference is in the arrival time and end time distributions, which are

smoother, because in our simulations users arrive at a constant average rate. Also, in the last graph

portraying the weekly cycle of activity, one can see the big difference in the number of jobs that are

being used.

The goal of all these workload manipulations is to enable the evaluation of parallel job schedulers,

and in particular, their performance under different load conditions. To check this we again used

simulations of the EASY backfilling scheduler [29]. For each log, we multiplied the number of

users by various factors in the range 0.8 to 1.5, and performed 10 independent simulations (with

different randomized resampling) for each load value. For the OSC cluster log, the range was from

1 to 9, because the original utilization of this log is very low as noted above. A sample of the results

for slowdown and response time are shown in Fig. 12. The results for waiting time were very similar

to those of response time.
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Figure 12. The performance of EASY under different load conditions for different logs: SDSC-DS, BLUE,
and OSC-cluster respectively from top to bottom. Recall that the original OSC cluster log has very low load,

so the load had to multiplied by higher factors to reach the range of interest.

The last panel for each log shows the fraction of simulations at each load level that were

successful, meaning that our automated procedure did not conclude that the system is becoming

saturated. Note that the loading factor, namely the factor by which we multiply the number of users,

does not translate directly and deterministically into a commensurate change in the utilization. Due

to the random selection of users there may be fluctuations in the load. Therefore we find that when

the loading factor grows beyond 1, which represents the original load, the number of successful

simulations begins to drop. Consequently there are fewer results for the higher loads, but all the

valid results indicate a utilization of no more than 100%.

As the results in Fig. 12 show, the performance profiles are as one might expect from queueing

analysis. At low loads performance is good, and increasing the load has little effect. But as the

system approaches saturation, the performance deteriorates precipitously. Interestingly, different

systems (as represented by the logs of their workloads) have different saturation points. SDSC-DS

seems to saturate at less than 90% utilization, whereas BLUE and OSC come close to 100%. This

reflects the ability of the scheduler to pack jobs together and reduce fragmentation, and depends

both on the scheduler and on the workload statistics.

6.4. Over-Sampling Rare Behaviors

Workload logs sometimes contain unique users that behave anomalously in a specific period

compared to the rest of the users. For example, a user may submit an inordinate number of jobs

during a single week thus creating a flash crowd. Our goal here is to assess the effect of such

behaviors on the performance of the rest of the jobs. We do this by creating special pseudo-users

that encompass the special behavior, and then amplifying their weight in the generated workload by

selecting these users more than others. For example, this allows us to create workloads with different
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Figure 13. Flurries (flash crowds) in the original version of three logs: LANL-CM5, SDSC-SP2, and SDSC-
Par95.

levels of flash crowds, and thus find the effect of the flash crowds on the performance of the rest of

the jobs. Such simulations are an alternative to modeling the load spikes as suggested in [3].

The procedure to over-sample special behaviors of interest proceeds as follows:

1. We first create another pool of users, called the rare behaviors pool.

2. The rare behaviors of interest are defined by three parameters: the user’s serial number, the

period’s beginning time, and the period’s ending time. For each job in the workload, if the job

is part of a rare behavior, instead of assigning it to the appropriate user in the temporary users

pool or long-term users pool, we insert it to this user’s place in the rare behaviors pool.

3. We define a parameter called RB NPW to represent the expected number of times that rare

behaviors should occur each week. This is a value between 0 and the arrival rate of new

temporary users. In each week we divide the new temporary users into two: RB NPW of

them on average will be rare-behavior users, and the rest will be regular temporary users.

Note that the total number of temporary users stays as before.

4. When evaluating the performance results of the simulation (throughput, wait time, response

time, and slowdown) we skip the jobs that belong to rare behavior users, in order to focus on

their influence on the rest of the jobs.

While rare behaviors are treated as a sub-class of temporary users, their definition is independent

of how temporary users are normally defined. Thus the duration of a rare behavior can be longer

than the limit on the activity of a temporary user; in other words, it can actually be a long-term user.

Also, a single user’s activity can be partitioned into several independent rare behaviors, or all the

activity can be considered a single rare behavior.

The concept of over-sampling rare behaviors is completely general. But in the context of parallel

workloads, a specific type of rare behavior that has aroused some interest is the so-called flurries

of activity [41]. These are bursts of activity in which a single user submits a huge number of jobs

during a relatively short period. Examples of the three workloads with the largest flurries, the LANL-

CM5, SDSC-SP2, and SDSC-Par95, are shown in Fig. 13. The flurry jobs typically require very low

resources (for example a single processor for less than a minute) and therefore their influence is

unclear.

Flurries are similar to the flash crowds that have been observed in other types of workloads,

e.g. the web, except that flash crowds are the result of the convergence of many users rather than

the abnormal behavior of a single user. The work on workload flurries showed that they may taint

performance evaluation results, and therefore the suggestion was to remove them [19]. Indeed, in

other sections of this paper we consistently use the “cleaned” versions of the workloads, where

flurries have been removed. But here we use the flurries from the original logs to demonstrate how

we can amplify them and thus investigate the effect of having more or less flurries. The chosen set

of rare behaviors in the LANL-CM5 log is users 50 and 38 which each have a single flurry, and

user 31 who has two. In SDSC-SP2 there is one large flurry by user 374. Finally, in SDSC-Par95

we consider all the activity of users 66 and 92, approximately from October and until the end of the

log.
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Figure 14. Adding flurries to the base workload of the SDSC-SP2 log. Note the much smaller scale in the

first panel, where there are no flurries. In the others the values of RB NPW are 1
8 , 1

6 , and 1
4 . In each case the

11 most active users are marked.
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Figure 15. Comparison between the workloads created by running the simulation with different values of
RB NPW on the LANL-CM5 log.
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Figure 16. Distributions of number of non-flurry jobs, utilization, slowdown, and wait-time for 100
repetitions of simulating the performance of EASY on the LANL-CM5 workload with different frequencies

of flurries.

First we will demonstrate that this application works and we can indeed control the prevalence

of flurries. For each log we choose RB NPW to be 0, 1
8 ,

1
6 ,

1
4 . This means that we expect to have

no flurries, or a flurry starting on average once in each 8 weeks, once in 6 weeks, and once in 4

weeks. The results for the SDSC-SP2 log are presented in Fig. 14. When there are no flurries at all

(first graph), the scale of the number of jobs is dramatically lower. In addition, when the RB NPW

gets bigger, the scale also gets bigger, because it increases the probability that two flurries will be

chosen in the same week or in close weeks. Finally, it is easy to see that there are more flurries when

RB NPW gets bigger.

The next step of the validation is to see how these changes affect the workloads’ characteristics.

To do this we repeated the experiment seven times for each value of RB NPW and compared the

created workloads. The results are presented in Fig. 15 for the CM5 log. The main differences can

be seen in the graphs of the number of jobs and the average session lengths by each user. When

there are no flurries, the maximal values are much lower. When flurries are included we see discrete

components in the distributions that reflect repetitions of the same large flurries.

To show the effect of flurries on the normal, non-flurry jobs, we conducted 100 repetitions of each

workload and simulated their scheduling. We used four different values of RB NPW: 0, 1
8 , 1

4 , and 1
2 .

Then we created a histogram of the performance for each value. The results for the LANL-CM5 log

are presented in Fig. 16. The results for the other two logs are less distinct, but qualitatively similar.

The graphs in the top row show that the number of jobs and the utilization are lightly reduced

when the value of RB NPW gets bigger. The reason is that we get approximately the same amount

of users for each value of RB NPW, but when its value gets bigger, the percentage of flurries is

increased. Due to the fact that the flurry jobs are not included in these statistics, less jobs are left.

The other two metrics, wait time and slowdown, aren’t biased and really indicate the performance

reliably. For all three logs, more flurries lead to worse performance. For example, it is easy to see

that with a lower RB NPW value, there are much more experiments with low slowdown and wait

time. For all the logs higher RB NPW values cause a heavier tailed distribution of both metrics, and

therefore worse performances. Therefore we conclude that flurries disrupt the performance of all

the jobs, even if each flurry job uses only little resources.
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6.5. Additional Applications

In addition to the above, we note the following ideas for using workload resampling. These have not

been tested yet and are presently left for future work.

6.5.1. Mixing Traces. In many cases we have more than one trace at our disposal, typically coming

from different locations or different times. To obtain generally applicable results, data from all

these traces should be used. This can be done either by performing evaluations based on each trace

individually, or by mixing the traces, that is by resampling from a number of traces rather than from

only one trace. This mechanism has been used in the past in order to reduce the dependence of

analysis results on a single trace [48], or to increase the load [24]. It was also suggested for Tmix

[44].

Resampling from several traces is based on the assumption that this is the better way to achieve

general results that are independent of the peculiarities of any individual trace. An interesting

research question is whether this is indeed the case. And could it be that mixing and evaluations

are actually transitive, and equivalent results are obtainable by averaging of results from multiple

traces that are resampled independently? We intend to study this question by using both approaches

and comparing the results.

6.5.2. Improving Stationarity. A special case is using resampling to create a stationary workload

trace. Many of the original traces seem to be non-stationary, with different parts having different

statistical properties. As a consequence performance results are then some sort of weighted average

of the results under somewhat different conditions, but we don’t know the details of these conditions

or the weights. Resampling can be used to mix the different conditions and create a more uniform

trace.

Alternatively, when examined more closely the workloads are sometimes found to be piecewise

stationary, meaning that they are relatively stationary for some time and then change. It is therefore

better to perform several stationary evaluations and combine the results, rather than using a single

non-stationary model that might lose important locality properties. Resampling can then be used to

create stationary segments that are long enough to be simulated reliably.

We note in passing that some workloads are inherently non-stationary because the system

configuration was changed during the time that the workload trace was recorded [20]. In such

situations the trace should actually not be used as-is, because the results would be an unknown

mix of results for the two different constituent workloads. But the problem would be solved by

using resampling, as then all the data will be used to create a single consistent workload.

6.5.3. Improved Shaking to Reduce Sensitivity. Simulations of system performance are sometimes

very sensitive to the exact value of some input parameter. For example, we have found a specific

case where changing the runtime of one job from 18 hours and 30 seconds to exactly 18 hours

caused the average bounded slowdown of all the jobs in the trace to change by about 8% [41]. We

developed “shaking” as a general methodology to overcome such mishaps [42].

The idea of shaking is to cause small random perturbations to the workload and re-run the

evaluation. This is repeated many times, leading to a distribution of results. This distribution is

then used as the outcome of the evaluation, rather than the single point derived from the original

trace. The claim is that the distribution (or its mean) more faithfully characterizes the results that

would be obtained by this workload and similar ones. Our results indicate that shaking does indeed

reduce instability considerably in several different cases.

The original formulation of shaking operated at the job level. Each job was moved slightly

independently of the others. This could potentially cause problems if say one job was delayed and a

subsequent job was moved forward and ended up before the first job. We therefore intend to now try

to perform shaking at a higher level, e.g. by slightly shifting whole sessions, or even the sub-traces

belonging to different users. The effect will be evaluated by comparing the original results with our

current shaking results and the new shaking results. Shaking will also be compared with resampling

to allow for statistical analysis as described above.
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6.5.4. Selective Manipulation of the Workload. Another reason to manipulate workloads is to

change their properties, so as to check the effect of these properties on system performance. In

the current work we treat all users as equivalent, but this is not really so. Some users may run long

jobs. Others may prefer numerous small jobs. Some users run jobs that require a lot of memory

while others run more compute-intensive jobs.

The implication is that we can influence the characteristics of the workload by classifying users

according to their behavior (or the behavior of their applications), and then resample with a selective

bias in favor of a certain class of users. This is an extension of the idea of emphasizing rare behaviors

as described above. It will enable the creation of workloads that stress different parts of the system.

6.5.5. Reducing or Enhancing Locality. Finally, a special case of manipulating the workload is

changing its locality properties, as was done e.g. in [33, 5] (where they identify locality with

burstiness). Locality can be very meaningful for adaptive systems that learn about their workload

and adjust accordingly [17].

The mechanism for changing the locality is to introduce locality into the sampling process.

Locality is typically present in user sessions (as we showed in Section 3). Therefore, to reduce

locality the resampling must be done at the job level, not the session or user level. Regrettably,

simple randomization does not work, as it violates the workload’s stability properties. We will

therefore need to develop a mechanism for resampling jobs subject to stability constraints. The

question is how to do so and still get good randomization.

Enhancing locality can be done by introducing repetitions, i.e. specifically selecting the same jobs

over and over again [17]. However, this also needs to be done subject to stability constraints, and

subject to the overall statistical properties of the workload.

7. CONCLUSIONS

Workload resampling is proposed as a mechanism which allows the performance analyst to marry

the realism of workload traces with the flexibility of workload models. Moreover, it combines the

following attributes:

• Retaining the complex internal structure of the original trace, including features that we do

not know about, and

• Allowing for manipulations that affect specific properties that we know about and want to

change as part of the evaluation.

The idea is to partition a given workload trace into independent sub-traces, e.g. representing the

activity of individual users. These subtraces can then be re-combined in different ways in order

to create new workload traces with desired attributes: they can be longer than the original, have

a higher or lower load than the original, or just be different from the original so as to provide an

additional data point.

A major concern in this work was how to do the resampling correctly, meaning that the created

workloads will be as similar as possible to the original workload. One aspect of this was the decision

to perform the resampling at the level of users, and not, say, at the level of individual sessions. This

maintains the correlations between successive sessions of the same user. Another aspect was the

decision to retain the time of day and day of week when each user starts (and hence also when

each job starts). This leads to workloads that retain the correlations among users who all operate

according to a common daily and weekly cycle.

One concern that was not handled here is the issue of workload stability constraints. Real

workloads exhibit a self-throttling effect whereby less additional work is submitted when the system

is highly loaded. Given that we use each user’s sequence of jobs as-is, our generated workload traces

will not display such effects. To be more realistic we therefore need to model the feedback from

system performance to user behavior. Such models turn out to be rather complicated, and this work

will be reported separately when it is completed.
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The above description focused on parallel system workloads, which are useful for evaluating

the performance of parallel job schedulers. However, we believe that workload resampling has

far wider applicability. Specifically, workload resampling is clearly applicable to any context in

which the composition of the workload can be described as a hierarchical structure. Examples

include networking, web servers, file systems, and architectural workloads. For example, it would

be interesting to try to replace the large benchmark suites used in computer architecture evaluations

with workload mixes based on resampling from the different applications in the suite. If successful,

this may lead to an innovative fast approach for evaluating new designs. But using workload

resampling in other domains first requires additional research, e.g. to determine the most appropriate

granularity of resampling.
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