Resampling with Feedback — A New
Paradigm of Using Workload Data
for Performance Evaluation

Dror G. Feitelson

School of Computer Science and Engineering
The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
feit@cs.huji.ac.il

Abstract. Reliable performance evaluations require representative work-
loads. This has led to the use of accounting logs from production systems
as a source for workload data in simulations. But using such logs directly
suffers from various deficiencies, such as providing data about only one
specific situation, and lack of flexibility, namely the inability to adjust
the workload as needed. Creating workload models solves some of these
problems but creates others, most notably the danger of missing out
on important details that were not recognized in advance, and therefore
not included in the model. Resampling solves many of these deficiencies
by combining the best of both worlds. It is based on partitioning real
workloads into basic components (e.g. the jobs contributed by different
users), and then generating new workloads by sampling from this pool of
basic components. The generated workloads are adjusted dynamically to
the conditions of the simulated system using a feedback loop, which may
adjust the throughput. Using this methodology analysts can create mul-
tiple varied (but related) workloads from the same original log, all the
time retaining much of the structure that exists in the original workload.
Resampling with feedback thus provides a new way to use workload logs
which benefits from the realism of logs while eliminating many of their
drawbacks. In addition, it enables evaluations of throughput effects that
are impossible with static workloads.

This paper was written to accompany a keynote address at EuroPar
2016. It summarizes my and my students’ work and reflects a personal
view. The goal is to show the big picture and the building and interplay
of ideas, at the possible expense of not providing a full overview of and
comparison with related work.

1 Introduction

Performance evaluation is a basic element of experimental computer science. It is
used to compare design alternatives when building new systems, to tune param-
eter values of existing systems, and to assess capacity requirements when setting
up systems for production use. Lack of adequate performance evaluations can
lead to bad decisions, which imply either not being able to accomplish mission

objectives or inefficient use of resources. A good evaluation study, on the other
hand, can be instrumental in the design and realization of an efficient and useful
system.

It is widely accepted that the performance of a computer system depends on
its design and implementation. This is why performance evaluations can be used
to judge designs and assess implementations. But performance also depends on
the workload to which the system is subjected. Evaluating a system with the
wrong workload will most probably lead to erroneous results, that cannot be
relied upon [9, 15]. It is therefore imperative to use representative and reliable
workloads to drive performance evaluation studies. However, workloads can have
complicated structures and distributions, so workload characterization can be a
hard task to perform [4].

The problem is exacerbated by the fact that workloads may interact with
the system and even with the performance metrics in non-trivial ways [11, 12].
Thus it may not be enough to use a workload model that is generally correct,
and it may be important to get minute details correct too. But it is not always
clear in advance which details are the important ones. This suggests that that
workload should be comprehensive and include all possible attributes [22].

In the field of parallel job scheduling, the workload is the sequence of jobs
submitted to the system. Early research in this field, in the 1980s, lacked data
on which to base workloads. Instead studies were based on what were thought to
be reasonable assumptions, or compared possible distributions — for example, a
uniform distribution of job sizes, a distribution over powers of 2, and a harmonic
distribution [19, 20]. But it was not known which of these is the most realistic.

Since the mid 1990s workload logs became available (starting with [18]) and
were collected in the Parallel Workloads Archive [29, 24]. This enabled the sub-
stitution of assumptions with hard data [14]. In particular, using logged data to
drive simulations became the norm in evaluations of parallel job schedulers. But
experience with this methodology exposed problems, especially in the context
of matching the workload to the simulated system. This is described below in
Section 3.

The suggested solution to these problems is to use resampling with feedback,
as described in Section 4. The idea is to partition the workload into basic com-
ponents, and sample from this pool of components to create multiple alternative
workloads [42]. At the same time, feedback from the simulated system is used
to pace the workload generation process as would occur in reality [30, 32, 44].
The resulting methodology enables evaluations that are not possible when using
logs as they were recorded. And it applies to any system type, not only to the
context of parallel job scheduling.

2 Background

Our discussion is couched in the domain of parallel job scheduling. Parallel jobs
are composed of multiple interacting processes which run on distinct processors.
They can therefore be modeled as rectangles in processorsxtime space, where

the height of the rectangle represents the number of processors used, and its
width represents the duration of use.

Scheduling parallel jobs is the decision of when each job will run. The simplest
scheduling algorithm is First-Come-First-Serve (FCFS), which simply schedules
the jobs in the order that they are submitted to the system (Fig. 1). An alter-
native is EASY, named after the Extensible Argonne Scheduling sYstem which
introduced it [26, 28]. The idea here is to optimize the schedule by taking small
jobs from the back of the queue, and using them to fill in holes that were left in
the schedule, an operation known as backfilling. This reduces fragmentation and
improves throughput.

The workload

) .) ol
jobs numbered in order of arrival 12 - [o
14 i]
‘

[o]
! 3 16 || 1
2 a1l °® - :, ,,,,, | .
low load period high load period -|- unknown

future arrivals

Schedule generated by FCFS queued jobs

»

o

N\ EE

8

o

3 & ’ 8 B oN] B

ik o T ™]
g N i N (=l = Jss ™ s]
" Schedule generated by EASY (backfilled jobs shaded) queued jobs

3 N 6 10, =

8

Q

2N L e N [w] [

Fig. 1. Illustration of a sequence of parallel jobs (the workload) and how it would be
scheduled by FCF'S and EASY up to time T'.

But note that the utility of backfilling depends on the workload. For example,
if all the jobs require more than half the processors, two jobs can never run at
the same time, and backfilling cannot be used. Thus if EASY is evaluated with
such a workload, the result would be that the backfilling optimization is useless,
but if real workloads actually do include many small jobs then this conclusion
would be wrong. Therefore workloads used in evaluations must be representative
of real workloads. Our work is about how to achieve this goal.

3 Using Workload Logs and Models to Drive Simulations

There are two common ways to use a measured workload to analyze or evaluate
a system design: (1) use the logged workload directly to drive a simulation, or (2)
create a model from the log and use the model for either analysis or simulation.
As we’ll show, both have deficiencies that may lead to problems in evaluations.
The idea of resampling can be thought of as combining the two in order to enjoy
the best of both worlds.

3.1 Workload Modeling

Workload models have a number of advantages over logs. Some of the most
salient ones are [15, Sect. 1.3.2]:

— The modeler has full knowledge of workload characteristics. For example, it
is easy to know which workload parameters are correlated with each other
because this information is part of the model. Such knowledge increases our
understanding, and can lead to new designs based on this understanding.
Workload logs, on the other hand, may include unknown features that nev-
ertheless have a significant influence on the results. These cannot be exploited
and may lead to confusion.

— It is possible to change model parameters one at a time, in order to inves-
tigate the influence of each one, while keeping other parameters constant.
This allows for direct measurement of system sensitivity to the different pa-
rameters. In particular, it is typically easy to check different load levels. It
is also possible to select model parameters that are expected to match the
specific workload at a given site.

— A model is not affected by policies and constraints that are particular to the
site where a log was recorded. For example, if a site configures its job queues
with a maximum allowed duration of 4 hours, it forces users to break long
jobs into multiple short jobs. Thus, the observed distribution of durations
in a log will be different from the “natural” distribution users would have
generated under a different policy, and the log — despite being “real” — is
actually unrepresentative.

— Logs may be polluted by bogus data. For example, a log may include records
of jobs that were killed because they exceeded their resource bounds. Such
jobs impose a transient load on the system, and influence the arrival process.
However, they may be replicated a number of times before completing suc-
cessfully, and only the successful run represents “real” work. In a model, such
jobs can be avoided (but they can also be modeled explicitly if so desired).

— Models have better statistical properties: they are usually stationary, so eval-
uation results converge faster [8], and they allow multiple statistically equiv-
alent simulations to be run so as to support the calculation of confidence
intervals. Logs, on the other hand, provide only a single data point, which
may be based on an unknown mixture of conditions.

These advantages have led to the creation and use of several workload models
(e.g. [25, 3, 2, 27]), and even a quest for a general, parameterized workload model
that can serve as a canonical workload in all evaluations [21].

3.2 Problems with Models

But models include only what you know about in advance, and decide to incor-
porate in the model. Over the years several examples of important attributes
that were missed have been uncovered.

Perhaps the most interesting feature of parallel job workloads — in terms
of its unexpected importance — is user runtime estimates. Many schedulers
(including EASY) require users to provide estimates of job runtime when sub-
mitting a job; these estimates are then used by the scheduler to plan ahead. But
simulations often assumed that perfect estimates are available. This turned out
to be wrong on two counts: first, estimates are actually very inaccurate (Fig.
2) [28], and second, it actually matters [12, 38]. In retrospect we can now fully
understand the interactions between estimates and other features of the work-
load, and the conditions under which one scheduler is better than the other. We
can also model realistic (inaccurate) estimates [35]. But the more important re-
sult is the demonstration that performance evaluation results may be swayed by
innocent-looking workload details, and that a very detailed analysis is required
in order to uncover such situations.

7000 4000
OK jobs | | OK jobs | |
6000 | ’ y
<90sec jobs Il <90sec jobs
5000 - killed jobs Ml 3000 killed jobs Ml

number of jobs
number of jobs

0 10 20 30 40 50 60 70 80 90 100 110 0 10 20 30 40 50 60 70 80 90 100 110
percent of requested time used percent of requested time used

Fig. 2. Histograms of user runtime estimates as a fraction of the actual runtimes, from
logs from the CTC and KTH SP2 machines [28]. The peak at 100% is jobs killed
because they exceeded their estimate; for other jobs except the very shortest ones the
histogram is flat.

Another example is that real workloads are obviously non-stationary: they
have daily, weekly, and even yearly cycles. In many cases this is ignored in per-
formance evaluations, with the justification that only the high load at prime
time is of interest. While this is reasonable in the context of network communi-
cation, where the individual workload items (packets) are very small, it is very

dubious in the context of parallel jobs, that may run for many hours. And in fact
we have found that optimizing schedulers may actually depend on the existence
of the daily cycle, because they try to delay non-critical jobs submitted during
prime time and execute them at night [22]. If there is no daily cycle there is no
non-prime time, and thus no alternative to executing these jobs at once.

Yet another effect that is prevalent in logs but usually absent from models is
locality [13]. The locality properties of real workloads are especially important
for the evaluation of adaptive and predictive systems (for example, it may be
possible to predict job runtimes and compensate for inaccurate estimates [36]).
Such features are becoming more commonplace with the advent of self-tuning
and self-management. The idea is that the system should be able to react to
changing conditions, without having to be reconfigured by a human operator
[17]. But in order to study such systems, we need workloads with changing
conditions as in real workload logs. A model based on random sampling from a
distribution will not do, as it creates a stationary workload. This can be solved by
employing “localized sampling” from the distribution [13], but a better solution
is to use user-based modeling (or resampling, as described below).

3.3 Using Logs Directly

The perception that workload models may be over-simplified and unjustified
has led many researchers to prefer real workload logs. The advantage of using a
traced log directly as the input to a simulation is that it is the most “real” test
of the simulated system: the workload reflects a real workload precisely, with
all its complexities, even if they are not known to the person performing the
analysis [9, 15].

The first such log to be made available came from the iPSC/860 hypercube
machine installed at NASA Ames Research Center, and included all jobs exe-
cuted on the system in the fourth quarter of 1993 [18]. Over the years many
additional logs have been collected in the Parallel Workloads Archive [29, 24].
This resource is widely used, and as of the middle of 2016 a Google Scholar search
for the archive’s URL (www.cs.huji.ac.il/labs/parallel /workload) led to nearly one
thousand hits.

Contributing to the popularity of the Parallel Workloads Archive is the fact
that each log is accompanied by copious metadata concerning the system and
the logged data. In addition, all the logs are converted to a “standard workload
format” [1]. Thus if a simulator can read this format, it can immediately run
simulations using all the logs in the archive.

3.4 Drawbacks of Using Logs

While using logs “as is” avoids the problems associated with models, logs too
have their drawbacks. The most noticeable ones are as follows:

— Each log reflects only one specific workload, and can only provide a single
data point to the evaluation. But evaluations often require multiple simu-
lations with related workloads. For example, the calculation of confidence

intervals is best done by running multiple simulations with distinct but sta-
tistically identical workloads. This is easy with a workload model but im-
possible with a log.

— More specifically, it is not possible to manipulate logs to adjust the workload
to the simulated system and conditions, and even when it is possible, it can be
problematic. In particular, it is often desirable to evaluate the performance
of a system under different load conditions, e.g. to check its stability or the
maximal load it can handle before saturating. Thus a single load condition
(as provided by a log) is not enough, and we need a tunable parameter that
allows for the generation of different load conditions.

In log-based simulations it is common practice to increase the load on the
system by reducing the average interarrival time. For example, if a log repre-
sents a load of 70% of system capacity, multiplying all interarrival times by
a factor of 7/8 = 0.875 will increase the load to 80%. But this practice has
the undesirable consequence of shrinking the daily load cycle as well. The
alternative of increasing the runtime to increase the load is not much better:
jobs that originally came one after the other, and maybe even depended on
each other, may now overlap. And increasing the number of processors to
increase load is even worse. For example, if job sizes tend to be powers of 2
(which they are) then they pack well together. Increasing them by say 10%
is not always possible (a 4-processor job can only be increased in increments
of 25%), and when possible it has detrimental effects on the packing of the
jobs onto processors.

— Another drawback is the need for workload cleaning. Real workloads some-
times include unrepresentative activity, like huge short-lived surges of activ-
ity by individual users (flurries, Fig. 3). While the existence of flurries is not
uncommon (many logs exhibit them up to a few times a year), they are very
different from the normal workload between them, and also different from
each other. They should therefore be removed from the workload logs before
they are analyzed and used in simulations [23, 37].

LANL CM-5 SDSC SP2
12000 | 7000 -
user 50 W user 374
10000 | W user31 6000 427 others
% m user 38 f)
9 gooo 210 others g 5000
= | =
- | Z 4000
& 6000 ! I
2 @ 3000 1
S, 4000 €. 2000 -
2000 { . — 1000 A |
Y ey A o ke AL .
ot O L B e e e e
NDJFMAMJJASONDJFMAMJIJAS JJASONDJFMAMJJASONDJFMA
1995 1996 1998 1999 2000

Fig. 3. Arrivals per week on two parallel supercomputers, showing flurries of activity
due to single users [23, 37].

At a deeper level, we find that logged workloads actually contain a “signa-
ture” of the logged system. In other words, there is no such thing as a “real”
workload which is the right one for general use: every workload observed on a
real system is the result of the interaction between that particular system and its
users. If the system behaves differently, the users change their behavior as well.

This has grave implications. It means that using a workload from one system
to evaluate a different system is wrong, because the workload will not fit the simu-
lation conditions [30, 31]. We demonstrated this using a pair of cross-simulations
of two different schedulers. The first is the well known FCFS scheduler, which
is inefficient and leads to wasted resources as processors are left idle until the
first queued job can run. The second is the optimizing EASY scheduler, which
optimizes the schedule by taking small jobs from down the queue and backfill-
ing them into holes left between earlier jobs. This allows EASY to sustain a
heavier load. And indeed, simulation of FCFS using a workload generated by
an EASY simulation (using the same underlying system) led to system satura-
tion and overloading: FCF'S could not handle the load that was generated when
users interacted with EASY. Conversely, simulation of EASY using a workload
generated by a FCFS simulation failed to show that EASY had any advantage,
because the workload was not challenging enough.

Taken together, all these problems seem to imply that workload logs are
actually not any better than workload models. Resampling and feedback are
designed to solve the problems and facilitate reliable evaluations.

4 Resampling and Feedback

The root cause of many of the problems with using logs is that a log represents
unique conditions that were in effect when it was recorded, and may not be
suitable for the desired evaluation. At the same time logs contain significant
structure that we want to retain. Resampling is a way to provide flexibility
while preserving the structure. And feedback adds just the necessary level of
adjustment to the conditions that hold during the evaluation.

4.1 Before Resampling: Input Shaking and User-Based Modeling

The idea of resampling grew out of the ideas of input shaking and user-based
modeling.

Input shaking was also an innovative use of logs in simulations [39]. The idea
was to “shake” the job stream, meaning that in general the workload remained
the same as in the log, but some of the jobs were adjusted to a small degree.
For example, their arrival time could be changed by a small random amount.
This enabled many simulations with similar but not identical workloads, and
facilitated the identification of situations where the original results were actually
due to some artifact and therefore not representative.

User-based modeling is a generative approach to creating workloads, which
was first proposed as a mechanism to generate locality of sampling [10]. The

idea was to view the workload as being composed from the activities of many
individual users, each of which submits jobs with different characteristics [7, 4].
Since the community of active users changes over time, the number of active
users in a given week — and the number of different programs they run —
will be relatively small. The short-term workload will therefore tend to include
repetitions of similar jobs, and will consequently tend to have more locality and
be more predictable. But over a longer period this will change, because the set
of active users has changed.

The essence of user-based modeling is an attempt to capture this structure
using a multi-level model of the user population and the behavior of individual
users. The top level is a model of the user population, including the arrival of
new users and the departure of previous users. The second level models the
activity of individual users as a sequence of sessions synchronized with the time
of day (again based on data extracted from logs [41]). The lowest level includes
repetitions of jobs within each session.

Note, however, that user-based modeling is not easy, as we typically do not
have any explicit information about a user’s motivation and considerations. But
still some information can be gleaned by analyzing logs. For example, the ques-
tion of what annoys users more and causes them to abort their interactive work
has been investigated by tabulating the probability to submit another job as a
function of the previous job’s response time or its slowdown [31]. The result was
that response time was the more meaningful metric (Fig. 4).

10K 1 10K

SDSC Paragon
CTC spP2
KTH SP2
SDSC SP2
LANL O2K
SDSC Blue
HPC2N cluster
SDSC DataStar
1

1000

T T
1 10 100 1000 10K 100K 1 10 100 1000 10K
response time [s] slowdown

average subsequent think time
average subsequent think time

Fig. 4. A job’s performance as measured by the response time is a better predictor of
subsequent behavior (think time till the next job) than the job’s slowdown.

Remarkably, user-based modeling makes significant progress towards solving
the problems outlined above:

— The workload will naturally have locality provided that the job models of
different users are different from each other. During the tenure of each set
of users the job stream will reflect the behavior of those users.

— The load on the system can be modified by changing the number of active
users, or in other words, by changing parameters of the user population
model. More users would generate higher load, but do it “in the right way”.

— The generated workload can include non-stationary elements such as a daily
cycle, by virtue of the model of when users engage in sessions of activity [32].

— As a special case, unique events such as workload flurries can be included or
excluded at will, by including or excluding users with such unique behaviors.

— By using heavy-tailed session durations (and inter-session breaks) one can
generate self similarity [40], which has been found in many types of workloads
including parallel jobs [34].

But on the other hand, maybe all this modeling is too far removed from the
original log data? Resampling was designed to retain the original data as much
as possible, and modify only whatever is needed for a specific purpose.

4.2 Resampling from a Log

Resampling is a powerful technique for statistical reasoning in situations where
not enough empirical data is available [5, 6]. The idea is to use the available
data sample as an approximation of the underlying population, and resample
from it. Applying this to workloads, we partition a workload log into its basic
components and re-group them in different ways to achieve the desired effects.
In the context of parallel job scheduling, we suggest that the resampling be
done at the level of users. Thus we first partition the workload into individual
subtraces for the different users, including all the jobs submitted by each user
throughout the logging period. We then sample from this pool of users to create
a new workload [42].

When looking at individual user traces, we find that some of then are active
throughout much of the log’s duration, while others are active only during a rel-
atively short interval (a few weeks or months). We therefore distinguish between
long-term users and temporary users (Fig. 5), and use them differently in the
resampling. Users whose entire activity is too close to either end of the log are
excluded.

Given the pools of temporary and long-term users, the resampling and gen-
eration of a new workload is done as follows:

— Initialization: We initialize the active users set with some temporary users
and some long-term users. The defaults are the number of long-term users
in the original log, and the average number of temporary users present in a
single week of the original log. Users are not started with their first job from
the trace, because we are trying to emulate a workload that was recorded over
an arbitrary timespan, and there is no reason to assume that the beginning
of the logging period should coincide with the beginning of a user’s activity.
Therefore each user is started in some arbitrary week of his traced activity.
However, care is taken that jobs start on the same day of the week and time
of the day in the simulation as in the original log.

3 :] [z] [8] [T B F %
2 W77 pEs] [6 I O] @ k]
! S ——
[P | !
= 4wk — =— 4wk —
user paols s e o
e 1]
[| [| A
I B]
long term temporary
generated trace
L] [4] [] [6] 0] [E | [[B I B |
3][4 1 [7 I [6] B] [T 1]
BN
O 1

Fig. 5. Conceptual framework of dividing users into long-term and temporary, and
reusing them in a generated workload [42]. Each rectangle represents the full extent of
activity by a certain user.

— Temporary users: In each new week of the simulation, a certain number of
new temporary users are added (and a similar number are expected to leave,
on average). The exact number is randomized around the target number,
which defaults to the average rate at which temporary users arrived in the
original log. The selected users are started from their first traced jobs. A
user can be selected from the pool multiple times, but care is taken not to
select the same user twice in the same week.

— Long-term users: The population of long-term users is constant and con-
sists of those chosen in the initialization. When the traced activity of a
long-term user is finished, it is simply regenerated after a certain interval.
Naturally the regenerations are also synchronized correctly with the time
and day.

Each active user submits jobs to the system exactly as in the log (except that
their timing may vary to reflect feedback as explained below). The flow of the
simulation is shown in Fig. 6.

4.3 Adding Feedback

Computer systems are not closed systems. Rather, they interact with their envi-
ronment, and in particular with their users. We therefore suggest that it is not
enough to simulate the computer system in isolation — we should also simulate
the system’s environment, namely the users who interact with the system, cre-
ate its input, and wait for its response [30]. With resampling we introduce this
explicitly by including a changing user community in the simulation. It is these
(simulated) users who create the (simulated) jobs submitted to the (simulated)
system.

think time
temporary users @

parallel

waiting machine
: jobs - simulated OO OO
new temporary L a scheduler OOOO : finished
user arrivals _ E— O O OO temporary users
0000

. the simulated system 3

long term users N/
think time

Fig. 6. Queueing model of long term and temporary users in the simulation, leading
to a semi-open system [44].

The fact that jobs are submitted by simulated users might seem innocuous
at first, but in fact it has grave implications. When users wait for the system
before deciding that to do next they introduce a feedback loop (Fig. 7). And such
feedback implies a pacing of the workload — it is a stabilizing negative feedback,
where extra load causes the generation of additional load to be throttled [16].
This reduces the risk of system saturation.

jobs session

simulated system 0000
wiait S 8888 performance
- -I scheduler 8888 ‘ results
parallel 8888 i
machine OQOOO 3
T e

Fig. 7. Illustration of a user-based simulation with feedback. When users are in session,
they alternate between submitting jobs (S) and waiting for feedback regarding previous
jobs (W).

The problem with modeling the effect of feedback is that accounting logs
used as data sources do not include explicit information regarding the depen-
dencies between jobs. We therefore need to identify user sessions and extract
dependencies between the jobs in each session [30, 43]. These dependencies are

then used during the simulation to pace the job submittal rate. Additional jobs
will be submitted (by the simulated users) only after the jobs that they depend
on have terminated (on the simulated system).

In other words, when we want to evaluate a new scheduling policy using
a representative workload, the workload should reflect the user-level logic and
not just parrot a previous workload. This logic is embodied in the dependencies
between jobs. We argue that it is more important to preserve the logic of the
users’ behavior than to repeat the exact timestamps that appear in the original
log.

The way to integrate such considerations into log-driven simulations is by
manipulating the timing of job arrivals. In other words, the sequence of jobs
submitted by each user stays the same, but the submittal times are changed
[43]. Specifically, each job’s submit time is adjusted to reflect feedback from the
system performance to the user’s behavior.

However, a job cannot arrive immediately when all its constraints are re-
moved. Rather, its arrival should reflect reasonable user behavior (for example,
users often go to sleep at night). One possible model of user behavior is the
“fluid” user model. The idea of this model is to retain the original session times
of the users, but allow jobs to flow from one session to another according to the
feedback. To do that, we keep each session’s start and end timestamps from the
original log. The think times between successive jobs are also retained from the
original log. But if a job’s execution is delayed in the simulation, leading to the
next arrival falling beyond the end of the session, the next job will be delayed
even more and arrive only at the beginning of the next session [43]. Contrariwise,
if jobs terminate sooner in the simulation, jobs that were submitted originally
in the next session may flow forward to occur in the current one.

4.4 Applications and Benefits

So what can we do with this new tool of workload resampling with feedback? Here
are some results that would be hard or impossible to achieve with conventional
simulations that just replay an existing log.

The first and foremost is to validate simulation results. Simulating with a
given log provides a single data point. But with resampling we can get a distri-
bution based on statistically similar workloads. In most cases this distribution
is centered on the value which is obtained using a conventional simulation, and
the result is verified (Fig. 8). But in some cases (e.g. the Blue log on the right)
the distribution is shifted, indicating a mismatch between the behavior of the
users in the original log and the expected behavior in the simulated system.

Using results from resampling and feedback for verification hinges on the
claim that such simulations are more valid to begin with. As noted above, using a
log to drive a simulation suffers from the possible mismatch between the behavior
of the users in the logged system and the behavior that would be appropriate for
the simulated system. In particular, if the simulated system is more powerful,
the users would be expected to submit more jobs, and vice versa. In simulations
with feedback this indeed happens automatically, as demonstrated in Fig. 9.

N
a
o
w
o
o
w
o
o

g z z
< 150 o o
5 5 5
100
E £ 100 £ 100
3 3 3
x 50 x x
[} [} [}
% 1 2 3 % 2 4 6 % o5 1 15 2
wait time x 104 wait time X 104 wait time X 105

Fig. 8. Histograms of the average waiting time in a thousand simulations of EASY on
resampled workloads, compared to a simulation using the original logs (vertical line).
Left to right: CTC SP2, SDSC Datastar, and Blue Horizon logs.

Other benefits are more technical in nature. One of them is the ability to
extend a log and create a longer workload, with more jobs in total, so as to
facilitate better convergence of the results and reduce the detrimental effects of
the initial “warmup” period. This is easy to achieve: we just continue resampling
on and on for as long as we wish.

We can also change the load on the system (as has been noted above) by
increasing or decreasing the number of active users. This is done by changing the
number of long-term users in the initialization, and the number of new temporary
users which arrive in each simulated week. Such a manipulation facilitates the
study of how the system responds to load, and enables the generation of response
curves similar to those obtained from queueing analyses.

However, note that increasing the load on the system is at odds with the
throttling effect that comes with feedback. As the load increases, the system will
naturally take longer to process each job. Simulated users who are waiting for a
job to terminate before submitting their next job will therefore be delayed. So
having more users will eventually cause each of these users to produce additional
work at a slower rate, and the load will cease to increase! This is good because
it is assumed that such an effect exists in real systems, where users abandon the
system if it is too slow. But it frustrates our attempt to control the load and
increase it at will.

Nevertheless, adding users to increase the load has two additional benefits.
One is the ability to make low-load logs usable. Some logs were recorded on
very low-load systems, with a utilization of only 25% or capacity or so. These
workloads are not interesting as they do not tax the system to any appreciable
degree. But by using resampling to increase their load they become interesting.

The other and more important benefit is the ability to measure the maximal
load that can be sustained before the system saturates. Resampling and user-
based modeling support the use of throughput as a performance metric, because
the users become part of the simulation. But every system has a maximal capac-
ity, and if the load exceeds this capacity the system saturates. Identifying this
maximal capacity is an important part of a performance evaluation. Likewise, if

SDSC-DS Intrepid

30 30
5 .FCFS 5 HFCFs
€ EASY £ EASY
220 220
8 i2)
c c
[J] [
E10 E10 ‘ ‘ ‘
[] []
o o
x x
- . I
9 .5 %.0
jObS number X 1]ObS number % 10*
SDSC-DS Intrepid
30 - 15 -
5 WFCFs| 3 BMFCFS
2 EASY| £ EASY
220 2 10
ﬂ H ﬂ
c B c
Q g [}
E10 Es
[J] g []
o H Qo
s T : \ ||
L1 : 0
@ 8 9 10 6
jobs number % 10* jObS number % 10*

Fig. 9. Histograms of the throughput achieved in one hundred simulations of the EASY
and FCFS schedulers using the SDSC DataStar and Intrepid logs [44]. Top: in sim-
ulation without feedback the throughput is determined by the input, and a better
scheduler has no effect. Bottom: in simulation with feedback EASY is seen to support
a higher throughput than FCFS. Vertical line represents the throughput in the original
log.

we add system abandonment to the user behavior model, we can add the metric
of number of frustrated users.

In a related vein, simulations based on resampling and feedback can be used
to evaluate adaptive systems that are designed to enhance throughput (and thus
productivity) rather than response time [32, 44]. For example, we can design a
scheduler that prioritizes jobs based on the elapsed time since the same user’s
previous job has terminated. The idea is that if this interval is short, there is
a good chance that the user is waiting for this job. Therefore prioritizing the
awaited job will enhance the productivity of this user. Trying to evaluate this
idea with conventional workloads and simulations is useless — such simulations
cannot evaluate productivity, and might even show that average response time
is actually increased. But with a dynamic user-based simulation we can do away
with such averages, and focus on the users and the service they receive.

Finally, we note that once we partition the workload into individual users we
can also look and different user classes in isolation. One example noted before is
the workload flurries occasionally produced by some users. We can then evaluate
the effect of such flurries by oversampling these users, and thus causing more
and more flurries to occur.

5 Conclusions

Resampling with feedback provides a new way to use workload logs in simu-
lations, enabling the generation of varied and dynamically adjusted workloads
that are specifically suited to evaluate the simulated system. This combines the
realism of real log data with the flexibility of models. Basing the simulations as
closely as possible on real logs reflects the importance of using hard data rather
than assumptions. Adjusting the workload to the specific conditions during the
simulation reflects the importance of the interaction between the users and the
system. Without this, evaluation results are of unknown relevance, and might
pertain to only irrelevant situations which do not occur in practice.
Particularly, by applying resampling and feedback to real workloads we achieve

the following;:

— Retain the all important (but possibly unknown) details of the workload as
they exist in logs recorded from production systems, with as little modifica-
tions as possible.

— Enable evaluations of throughput and user satisfaction in addition to (or
instead of) being limited to the response time and slowdown metrics. This
also leads to natural support for assessing the saturation limit of the system.

— Provide a new interpretation of the goal of “comparing alternatives under
equivalent conditions”: this is not to process exactly the same job stream,
but rather to face the same workload generation process (users). This ac-
knowledges the realization that there is no such thing as a generally correct
workload — rather, the workload depends on system.

Workload manipulations such as those embodied in resampling with feedback
are important tools in the performance analyst’s toolbox, that have not received
due attention in terms of methodological research. As a result, inappropriate
manipulations are sometimes used, which in turn has led to some controversy
regarding whether any manipulations of real workloads are legitimate. By in-
creasing our understanding of resampling-based manipulations we hope to bol-
ster the use of this important tool, allowing new types of manipulations to be
applied to workload logs, and enabling researchers to achieve better control over
their properties, as needed for different evaluation scenarios.

Naturally, there are many opportunities for additional research regarding
resampling and feedback. One element that is still largely missing is the user
population model, and especially the issue of leaving the system when perfor-
mance is inadequate. Another is the distribution of user types and behaviors.
Resolving these issues requires not only deep analysis of workload logs, but also
a collaboration with researchers in psychology and cognition [33]. After all, com-
puter systems are used by humans.

5.1 Acknowledgments

The work described here was by and large performed by several outstanding
students, especially Edi Shmueli, Netanel Zakay, and Dan Tsafrir. Our work was

supported by the Israel Science Foundation (grants no. 219/99 and 167/03) and
the Ministry of Science and Technology, Israel.

References

[1]

2]

[10]

[11]

[12]

[13]

[14]

S. J. Chapin, W. Cirne, D. G. Feitelson, J. P. Jones, S. T. Leutenegger,
U. Schwiegelshohn, W. Smith, and D. Talby, “Benchmarks and standards for
the evaluation of parallel job schedulers”. In Job Scheduling Strategies for Par-
allel Processing, pp. 67-90, Springer-Verlag, 1999, DOI: 10.1007/3-540-47954-6_4.
Lect. Notes Comput. Sci. vol. 1659.

W. Cirne and F. Berman, “A comprehensive model of the supercomputer work-
load”. In 4th Workshop on Workload Characterization, pp. 140-148, Dec 2001,
DOI: 10.1109/WW(C.2001.990753.

A. B. Downey, “A parallel workload model and its implications for
processor allocation”. Cluster Comput. 1(1), pp. 133-145, 1998, DOI:
10.1023/A:1019077214124.

A. B. Downey and D. G. Feitelson, “The elusive goal of workload charac-
terization”. Performance FEvaluation Rev. 26(4), pp. 14-29, Mar 1999, DOI:
10.1145/309746.309750.

B. Efron, “Bootstrap methods: Another look at the jackknife”. Ann. Statist. 7(1),
pp. 1-26, Jan 1979, DOI: 10.1214 /aos/1176344552.

B. Efron and G. Gong, “A leisurely look at the bootstrap, the jackknife, and
cross-validation”. The American Statistician 37(1), pp. 36-48, Feb 1983, DOI:
10.2307/2685844.

D. G. Feitelson, “Memory usage in the LANL CM-5 workload”. In Job Schedul-
ing Strategies for Parallel Processing, pp. 78-94, Springer-Verlag, 1997, DOI:
10.1007/3-540-63574-2_17. Lect. Notes Comput. Sci. vol. 1291.

D. G. Feitelson, “Metrics for parallel job scheduling and their convergence”. In
Job Scheduling Strategies for Parallel Processing, pp. 188—205, Springer-Verlag,
2001, DOI: 10.1007/3-540-45540-X_11. Lect. Notes Comput. Sci. vol. 2221.

D. G. Feitelson, “The forgotten factor: Facts; on performance evaluation and its
dependence on workloads”. In Furo-Par 2002 Parallel Processing, B. Monien and
R. Feldmann (eds.), pp. 49-60, Springer-Verlag, Aug 2002, DOI: 10.1007/3-540-
45706-2_4. Lect. Notes Comput. Sci. vol. 2400.

D. G. Feitelson, “Workload modeling for performance evaluation”. In Performance
FEvaluation of Complex Systems: Techniques and Tools, M. C. Calzarossa and
S. Tucci (eds.), pp. 114-141, Springer-Verlag, Sep 2002, DOI: 10.1007/3-540-45798-
4 6. Lect. Notes Comput. Sci. vol. 2459.

D. G. Feitelson, “Metric and workload effects on computer systems evaluation”.
Computer 36(9), pp. 18-25, Sep 2003, DOI: 10.1109/MC.2003.1231190.

D. G. Feitelson, “Experimental analysis of the root causes of performance evalu-
ation results: A backfilling case study”. IEEE Trans. Parallel € Distributed Syst.
16(2), pp. 175-182, Feb 2005, DOI: 10.1109/TPDS.2005.18.

D. G. Feitelson, “Locality of sampling and diversity in parallel system
workloads”. In 21st Intl. Conf. Supercomputing, pp. 53-63, Jun 2007, DOI:
10.1145/1274971.1274982.

D. G. Feitelson, “Looking at data”. In 22nd Intl. Parallel & Distributed Processing
Symp., Apr 2008, DOI: 10.1109/IPDPS.2008.4536092.

[15] D. G. Feitelson, Workload Modeling for Computer Systems Performance Evalua-
tion. Cambridge University Press, 2015.

[16] D. G. Feitelson and A. W. Mu’alem, “On the definition of “on-line” in job
scheduling problems”. SIGACT News 36(1), pp. 122-131, Mar 2005, DOI:
10.1145/1052796.1052797.

[17] D. G. Feitelson and M. Naaman, “Self-tuning systems”. IEEE Softw. 16(2), pp.
52-60, Mar/Apr 1999, DOI: 10.1109/52.754053.

[18] D. G. Feitelson and B. Nitzberg, “Job characteristics of a production parallel
scientific workload on the NASA Ames iPSC/860”. In Job Scheduling Strategies
for Parallel Processing, pp. 337-360, Springer-Verlag, 1995, DOI: 10.1007/3-540-
60153-8_38. Lect. Notes Comput. Sci. vol. 949.

[19] D. G. Feitelson and L. Rudolph, “Distributed hierarchical control for parallel pro-
cessing” . Computer 23(5), pp. 65—77, May 1990, DOI: dx.doi.org/10.1109/2.53356.

[20] D. G. Feitelson and L. Rudolph, “Evaluation of design choices for gang scheduling
using distributed hierarchical control”. J. Parallel & Distributed Comput. 35(1),
pp- 18-34, May 1996, DOI: 10.1006/jpdc.1996.0064.

[21] D. G. Feitelson and L. Rudolph, “Metrics and benchmarking for parallel job
scheduling”. In Job Scheduling Strategies for Parallel Processing, pp. 1-24,
Springer-Verlag, 1998, DOI: 10.1007/BFb0053978. Lect. Notes Comput. Sci. vol.
1459.

[22] D. G. Feitelson and E. Shmueli, “A case for conservative workload modeling:
Parallel job scheduling with daily cycles of activity”. In 17th Modeling, Anal.
& Simulation of Comput. & Telecomm. Syst., Sep 2009, DOI: 10.1109/MAS-
COT.2009.5366139.

[23] D. G. Feitelson and D. Tsafrir, “Workload sanitation for performance evaluation”.
In IEEE Intl. Symp. Performance Analysis Syst. € Software, pp. 221-230, Mar
2006, DOI: 10.1109/ISPASS.2006.1620806.

[24] D. G. Feitelson, D. Tsafrir, and D. Krakov, “Experience with using the Parallel
Workloads Archive”. J. Parallel & Distributed Comput. 74(10), pp. 29672982,
Oct 2014, DOI: 10.1016/j.jpdc.2014.06.013.

[25] J. Jann, P. Pattnaik, H. Franke, F. Wang, J. Skovira, and J. Riodan, “Modeling of
workload in MPPs”. In Job Scheduling Strategies for Parallel Processing, pp. 95—
116, Springer-Verlag, 1997, DOI: 10.1007/3-540-63574-2_18. Lect. Notes Comput.
Sci. vol. 1291.

[26] D. Lifka, “The ANL/IBM SP scheduling system”. In Job Scheduling Strategies
for Parallel Processing, pp. 295-303, Springer-Verlag, 1995, DOI: 10.1007/3-540-
60153-8_35. Lect. Notes Comput. Sci. vol. 949.

[27] U. Lublin and D. G. Feitelson, “The workload on parallel supercomputers: Mod-
eling the characteristics of rigid jobs”. J. Parallel & Distributed Comput. 63(11),
pp. 1105-1122; Nov 2003, DOI: 10.1016/S0743-7315(03)00108-4.

[28] A. W. Mu’alem and D. G. Feitelson, “Utilization, predictability, workloads,
and user runtime estimates in scheduling the IBM SP2 with backfilling”.
IEEE Trans. Parallel € Distributed Syst. 12(6), pp. 529-543, Jun 2001, DOI:
10.1109/71.932708.

[29] “Parallel Workloads Archive”. URL http://www.cs.huji.ac.il/labs/parallel /workload,/.

[30] E. Shmueli and D. G. Feitelson, “Using site-level modeling to evaluate the per-
formance of parallel system schedulers”. In 14th Modeling, Anal. € Simula-
tion of Comput. & Telecomm. Syst., pp. 167-176, Sep 2006, DOI: 10.1109/MAS-
COTS.2006.50.

[31]

32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

E. Shmueli and D. G. Feitelson, “Uncovering the effect of system performance on
user behavior from traces of parallel systems”. In 15th Modeling, Anal. & Simu-
lation of Comput. € Telecomm. Syst., pp. 274-280, Oct 2007, DOI: 10.1109/MAS-
COTS.2007.67.

E. Shmueli and D. G. Feitelson, “On simulation and design of parallel-systems
schedulers: Are we doing the right thing?” IEEE Trans. Parallel & Distributed
Syst. 20(7), pp. 983-996, Jul 2009, DOI: 10.1109/TPDS.2008.152.

M. Snir, “Computer and information science and engineering: One disci-
pline, many specialties”. Comm. ACM 54(3), pp. 3843, Mar 2011, DOI:
10.1145/1897852.1897867.

D. Talby, D. G. Feitelson, and A. Raveh, “Comparing logs and models of parallel
workloads using the Co-plot method”. In Job Scheduling Strategies for Parallel
Processing, pp. 4366, Springer-Verlag, 1999, DOI: 10.1007 /3-540-47954-6_3. Lect.
Notes Comput. Sci. vol. 1659.

D. Tsafrir, Y. Etsion, and D. G. Feitelson, “Modeling user runtime estimates”. In
Job Scheduling Strategies for Parallel Processing, pp. 1-35, Springer-Verlag, 2005,
DOI: 10.1007/11605300-1. Lect. Notes Comput. Sci. vol. 3834.

D. Tsafrir, Y. Etsion, and D. G. Feitelson, “Backfilling using system-generated
predictions rather than user runtime estimates”. IEEE Trans. Parallel & Dis-
tributed Syst. 18(6), pp. 789-803, Jun 2007, DOI: 10.1109/TPDS.2007.70606.

D. Tsafrir and D. G. Feitelson, “Instability in parallel job scheduling simulation:
The role of workload flurries”. In 20th Intl. Parallel & Distributed Processing
Symp., Apr 2006, DOI: 10.1109/IPDPS.2006.1639311.

D. Tsafrir and D. G. Feitelson, “The dynamics of backfilling: Solving the mystery
of why increased inaccuracy may help”. In IEEE Intl. Symp. Workload Charac-
terization, pp. 131-141, Oct 2006, DOI: 10.1109/11ISWC.2006.302737.

D. Tsafrir, K. Ouaknine, and D. G. Feitelson, “Reducing performance evaluation
sensitivity and variability by input shaking”. In 15th Modeling, Anal. & Simula-
tion of Comput. & Telecomm. Syst., pp. 231-237, Oct 2007, DOI: 10.1109/MAS-
COTS.2007.58.

W. Willinger, M. S. Taqqu, R. Sherman, and D. V. Wilson, “Self-similarity
through high-variability: Statistical analysis of Ethernet LAN traffic at the source
level”. In ACM SIGCOMM Conf., pp. 100-113, 1995.

N. Zakay and D. G. Feitelson, “On identifying user session boundaries in parallel
workload logs”. In Job Scheduling Strategies for Parallel Processing, pp. 216-234,
Springer-Verlag, 2012, DOI: 10.1007/978-3-642-35867-8_12. Lect. Notes Comput.
Sci. vol. 7698.

N. Zakay and D. G. Feitelson, “Workload resampling for performance evaluation
of parallel job schedulers”. Concurrency & Computation — Pract. & Ezp. 26(12),
pp. 2079-2105, Aug 2014, DOI: 10.1002/cpe.3240.

N. Zakay and D. G. Feitelson, “Preserving user behavior characteristics in trace-
based simulation of parallel job scheduling”. In 22nd Modeling, Anal. & Simu-
lation of Comput. & Telecomm. Syst., pp. 51-60, Sep 2014, DOI: 10.1109/MAS-
COTS.2014.15.

N. Zakay and D. G. Feitelson, “Semi-open trace based simulation for reliable eval-
uation of job throughput and user productivity”. In 7th IEEE Intl. Conf. Cloud
Comput. Tech. & Sci., pp. 413-421, Nov 2015, DOI: 10.1109/CloudCom.2015.35.

