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ien
e and EngineeringThe Hebrew University, 91904 Jerusalem, IsraelAbstra
tThe analysis of workloads is important for understanding how systems are used.In addition, workload models are needed as input for the evaluation of new systemdesigns, and for the 
omparison of system designs. This is espe
ially important in
ostly large-s
ale parallel systems. Lu
kily, workload data is available in the form ofa

ounting logs.Using su
h logs from three di�erent sites, we analyze and model the job-level work-loads with an emphasis on those aspe
ts that are universal to all sites. As manydistributions turn out to span a large range, we typi
ally �rst apply a logarithmi
transformation to the data, and then �t it to a novel hyper-Gamma distribution orone of its spe
ial 
ases. This is a generalization of distributions proposed previously,and leads to good goodness-of-�t s
ores. The parameters for the distribution are foundusing the iterative EM algorithm.The results of the analysis have been 
odi�ed in a modeling program that 
reatesa syntheti
 workload based on the results of the analysis.1 Introdu
tionThe study and design of 
omputer systems requires good models of the workload to whi
hthese systems are subje
ted. Until re
ently, the data ne
essary to build these models |observations from produ
tion installations | were not available, espe
ially for parallel 
om-puters. Instead, most models were based on assumptions and mathemati
al attributes thatfa
ilitate analysis. Re
ently a number of super
omputer sites have made a

ounting dataavailable that make it possible to build realisti
 workload models. It is not 
lear, however,how to generalize from spe
i�
 observations to an abstra
t model of the workload. Thispaper addresses the analysis of real workloads and the 
reation of realisti
 workload modelsbased on this analysis; spe
ial emphasis is pla
ed on the tradeo� between the 
omplexity ofthe model and the resulting predi
tive power. The use of su
h models will lead to substantialimprovements in experimental pro
edures, and to higher 
on�den
e in their results.�Current aÆliation: SANgate Systems 1



The s
ope of this paper involves rigid parallel jobs. The reason for fo
using on paralleljobs is that they lead to intri
ate workloads, where ea
h job's parallelism and runtime mayintera
t; thus a more extensive modeling e�ort is needed than in traÆ
 models in whi
hpa
kets have a prede�ned size, and only the arrival pro
ess is not known. \Rigid" jobs arejobs that do not 
hange their parallelism at runtime [8℄. We 
hose not to address malleableor dynami
 jobs at this stage due to the 
omplexities involved, and the la
k of data, asdes
ribed below.1.1 Why Model?There are two 
ommon ways to use a re
orded workload to analyze or evaluate a systemdesign: (1) use the logged workload dire
tly to drive a simulation, or (2) 
reate a modelfrom the log and use the model for either analysis or simulation. For example, tra
e-drivensimulations based on large address tra
es are often used to evaluate 
a
he designs [13, 12℄.But models of how appli
ations traverse their address spa
e have also been proposed, andprovide interesting insights into program behavior [24, 25℄.The advantage of using a tra
e dire
tly is that it is the most \real" test of the system;the workload re
e
ts a real workload pre
isely, with all its 
omplexities, even if they are notknown to the person performing the analysis.The drawba
k is that the tra
e re
e
ts a spe
i�
 workload, and there is always thequestion of whether the results generalize to other systems or load 
onditions. In parti
ular,there are 
ases where the workload depends on the system 
on�guration, and therefore a givenworkload is not ne
essarily representative of workloads on systems with other 
on�gurations.Obviously, this makes the 
omparison of di�erent 
on�gurations problemati
. In addition,tra
es are often misleading if we have in
omplete information about the 
ir
umstan
es whenthey were 
olle
ted. For example, workload tra
es often 
ontain intervals when the ma
hinewas down or part of it was dedi
ated to a spe
i�
 proje
t, but this information may not beavailable.Workload models have a number of advantages over tra
es.� The modeler has full knowledge of workload 
hara
teristi
s. For example, it is easy toknow whi
h workload parameters are 
orrelated with ea
h other be
ause this informa-tion is part of the model.� It is possible to 
hange model parameters one at a time, in order to investigate thein
uen
e of ea
h one, while keeping other parameters 
onstant. It is also possible tosele
t model parameters that are expe
ted to mat
h the spe
i�
 workload at a givensite. Su
h manipulations are problemati
 when using logs. For example, it is 
ommonpra
ti
e to in
rease the modeled load on a system by redu
ing the average interarrivaltime. But this pra
ti
e has the undesirable 
onsequen
e of shrinking the daily load
y
le as well. With a workload model, we 
an 
ontrol the load independent of the daily
y
le. Another example is the ability to 
reate long workloads with more jobs than areavailable in any given log.� A model is not a�e
ted by poli
ies and 
onstraints that are parti
ular to the sitewhere a tra
e was re
orded. For example, if a site 
on�gures its NQS queues with a2



maximum allowed duration of 4 hours, it for
es users to break long jobs into multipleshort jobs. Thus, the observed distribution of durations will be di�erent from the\natural" distribution users would have generated under a di�erent poli
y.� Logs may be polluted by bogus data. For example, a tra
e may in
lude re
ords ofjobs that were killed be
ause they ex
eeded their resour
e bounds. Su
h jobs imposea transient load on the system, and in
uen
e the arrival pro
ess. However, they maybe repli
ated a number of times before 
ompleting su

essfully, and only the su

essfulrun represents \real" work. In a model, su
h jobs 
an be avoided (but they 
an alsobe modeled expli
itly if so desired).� Finally, modeling in
reases our understanding, and 
an lead to new designs based onthis understanding. For example, identifying the repetitive nature of job submittal 
anbe used for learning about job requirements from history. One 
an design a resour
emanagement poli
y that is parameterized by a workload model, and use measuredvalues for the lo
al workload to tune the poli
y.1.2 How to ModelThe main problem with models, as with logs, is that of representativeness. That is, to whatdegree does the model represent the workload that the system will en
ounter in pra
ti
e? Theanswer depends in part on the degree of detail that is in
luded. Ea
h job is a
tually 
omposedof pro
edures that are built of instru
tions, and these intera
t with the 
omputer at di�erentlevels. One option is to model these levels expli
itly, 
reating a hierar
hy of interlo
kedmodels for the di�erent levels [2, 1℄. This has the obvious advantage of 
onveying a full anddetailed pi
ture of the stru
ture of the workload. For example, the sizes1 of a sequen
e of jobsneed not be modeled independently. Rather, they 
an be derived from a lower-level model ofthe jobs' stru
tures [7℄. Hen
e the 
ombined model will be useful both for evaluating systemsin whi
h jobs are exe
uted on prede�ned partitions, and for evaluating systems in whi
h thepartition size is de�ned at runtime to re
e
t the 
urrent load and the spe
i�
 requirementsof jobs.The drawba
k of this approa
h is that as more detailed levels are added, the 
omplexityof the model in
reases. This is detrimental for two reasons. First, more detailed tra
es areneeded in order to 
reate the lower levels of the model. Se
ond, it is 
ommonly the 
ase thatthere is wider diversity at lower levels. For example, there may be many jobs that use 32nodes, but at a �ner detail, some of them are 
oded as data parallel with serial and parallelphases, whereas others are written with MPI in an SPMD style. Creating a representativemodel that 
aptures this diversity is hard, and possibly arbitrary de
isions regarding therelative weight of the various options have to be made. We will therefore 
on
entrate onsingle-level models, whi
h may be viewed as the top level in a hierar
hi
al set of models [7℄.The most 
ommon approa
h used in workload modeling is to 
reate a statisti
al summaryof an observed workload. It is typi
ally assumed that the longer the observation period, the1We will use \size", and also \large" and \small", to denote the degree of parallelism of a job. \Duration",\short", and \long" denote runtimes. 3



better. Thus we 
an summarize a whole year's workload by analyzing a re
ord of all the jobsthat ran on a given system during this year.The simplest and most widely used statisti
s rely on moments, espe
ially the mean andthe varian
e of the sample data. For example, these statisti
s indi
ate that the distributionof job runtimes has a wide dispersion, leading to a preferen
e for a hyperexponential modelover an exponential one. However, su
h summaries may be misleading, be
ause they may notrepresent the shape of the distribution 
orre
tly. Indeed, more than 20 years ago Lazowskashowed that models based on a hyperexponential distribution with mat
hing moments 
anlead to in
orre
t results [15℄. In addition, the 
al
ulation of moments 
an be unduly in
u-en
ed by extreme values, that are not ne
essarily representative [4℄. Thus, we prefer the
al
ulation of per
entiles and an attempt to mat
h the CDF of the target distribution.In Se
tion 3, we present our te
hniques for modeling the CDF of a distribution. Our
hosen model is the hyper-Gamma distribution, whi
h is a 
ombination of two Gammadistributions. The parameters of these distributions are dis
overed using the EM algorithm.We then apply this methodology to the 
hara
terization of the distributions of parallelism,runtimes, and interarrival times in di�erent workload logs. By 
omparing the logs, we identifyfeatures and parameter values that are more representative than others, and in
lude themin the �nal workload model.2 Workload LogsThe analysis presented here is based on workload logs from 3 lo
ations. Ea
h log 
ontainstens of thousands of jobs, and spans many months of a
tivity. The logs are typi
ally availableas ASCII �les in whi
h ea
h job that ran on the system is represented by a single line, withseveral spa
e-separated �elds providing data about di�erent job attributes. These logs andothers are available on-line from the Parallel Workloads Ar
hive [19℄.The �rst log is that from the San-Diego Super
omputer Center Intel Paragon ma
hine.This ma
hine has 416 nodes, of whi
h 352 
onstitute the bat
h partition and 48 are in theintera
tive partition. S
heduling is based on NQS, with spe
ial handling of partitions andnode 
on�gurations [26℄. The log spans all of 1995 and 1996, with about two thirds of thejobs in the �rst year; the total is 113515 su

essful jobs. This log was originally availableare two separate logs for the two years, and therefore sometimes appears so in our analysis(as SDSC95 and SDSC96).The se
ond log is from the 1024-node Conne
tion Ma
hine CM-5 installed at Los-AlamosNational Lab (LANL). This ma
hine is s
heduled using DJM, with a minimal partition sizeof 32 nodes. The log spans the period from January through September 1996, and 
ontains36306 jobs that 
ompleted su

essfully (the full log is longer, but we only used the mostre
ent part).The third and �nal log is from the 100-node IBM SP2 ma
hine installed at the SwedishRoyal Institute of Te
hnology in Sto
kholm (KTH). This ma
hine is s
heduled using theEASY ba
k�lling s
heduler [16℄. The log 
ontains 16221 jobs that 
ompleted su

essfully, inthe period of O
tober 1996 to August 1997. 4



3 Statisti
al Te
hniquesThis se
tion 
overs statisti
al distributions and te
hniques that we used to �nd the workloadmodel. The idea in statisti
al modeling is to 
hara
terize the workload using distributions,su
h that the workload is 
onsistent with sampling from these distributions. This is done inthree phases:1. De
ide whi
h distribution to use in the model.2. Find the values of that distribution's parameters, su
h that it would provide a good�t to the samples.3. Che
k the goodness of �t of that spe
i�
 distribution to the sample data.3.1 Candidate DistributionsIn the �rst phase we typi
ally 
onsidered the distributions des
ribed below.Two-phase-uniform distribution: This is a generalization of the uniform distribution.Four parameters are required in order to de�ne it: l (low), m (medium), h (high),and p (proportion). The 
umulative distribution fun
tion is then 
onstru
ted as twostraight lines, passing through three points: (l; 0), (m; p), and (h; 1).Exponential distribution: This well-known distribution is often used in modeling, due tothe availability of good estimators, and its ni
e mathemati
al properties (e.g. beingmemoryless). Its pdf is f(x; �) = 1�e�x� .Hyper-exponential distribution: A mixture of two (or more) exponential distributions.The two-stage version, whi
h is a mixture of two exponentials, has 3 parameters: �1,�2 and p. �1 and �2 are the parameters of the two exponential distributions, and pis the proportion of the �rst one. Thus 0 � p � 1 of the population 
omes froman exponential distribution with parameter �1, and 1 � p from a distribution withparameter �2.Gamma distribution: This distribution is de�ned by the pdffX(x;�; �) = 1�(�)��x��1e� x�where x; �; � > 0 and �(�) = Z 10 t��1e�t dtThis is also a member of the exponential family of distributions, and therefore hasgood estimators.The gamma distribution is mu
h more general and \
exible" than the exponentialdistribution (whi
h is a
tually a spe
ial 
ase). Several examples of the e�e
t of itsparameters are shown in Fig. 1. The � is the shape parameter. As 
an be seen, when� > 1 the distribution is bell-shaped; when � � 1 it has a right tail. The smaller �,5
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Figure 1: Examples of Gamma distributions.the heavier the tail. The � is 
alled the s
ale parameter, as it determines the spread ofthe distribution (see the x s
ale in the bottom 3 graphs). The mean of the distributionis equal to the produ
t of its parameters: m = ��. The varian
e is ��2.As noted, several important distributions are spe
ial 
ases of the Gamma distribution.The exponential distribution is obtained by setting � = 1. The Erlang distributionis obtained by setting � to be an integer. In both 
ases, � is the parameter of theresulting distribution (� = �).Note: Sometimes the gamma distribution is represented by �, � 0 parameters where� 0 = 1=�. The mean is then ��0 , and the varian
e ��02 . We will use this notation as it isthe one employed by Matlab, whi
h we used for our analysis.Hyper-Gamma distribution: Amixture of two (or more) gamma distributions, and there-fore a generalization of the hyper-exponential and hyper-erlang distributions. The ver-sion that we will use, whi
h is a mixture of two Gamma distributions, has 5 parameters:�1, �1, �2, �2, and p.
6



3.2 Fitting a DistributionGiven a data sample and the fun
tional form of a 
ertain distribution, we need to �nd \good"values of the distribution's parameters. These values will de�ne exa
tly one distribution; forexample if the given fun
tion is of the form f(x; a; b) = ax + b, we need to �nd the valuesof a and b. Parameter values are judged by the degree to whi
h the resulting distributionmat
hes the sample data. There are several methods to �nd parameter values.3.2.1 Moments Estimation MethodOne way to 
hara
terize a distribution is by its moments (mean, varian
e, et
.), whi
h 
antypi
ally be expressed as a fun
tion of its parameters (e.g. the mean of a Gamma distributionis the produ
t of its parameters � and �). By inverting these fun
tions, one obtains a formulathat expresses the parameters as a fun
tion of the moments. The moments of the sample
an then be 
al
ulated and plugged into the formula, giving the desired parameters.The problem with this method is that it does not deal well with distributions (or samples)that have fat tails. The number of equations needed is the number of unknown parametersof the distribution. Thus if the number of parameters is large, high-order moments arerequired. These are very sensitive to sample outliers, leading to situations in whi
h mostof the data is e�e
tively ignored. For example, the exponential distribution has only oneparameter, and this 
an be estimated based on only the �rst moment (the mean). But thehyper-Gamma distribution has �ve, so the �fth moment is also required. Consider a samplewith one outlier, e.g. 1,1,1,1,2,2,2,3,3,4,5,15. The �fth moment, de�ned as M5 = 15Pni=1 x5i ,is 760995; 99.8% of this is due to the outlier, 155 = 759375. The resulting parameters aretherefore dominated by rare samples, that are not ne
essarily very representative.3.2.2 Maximum Likelihood Estimation MethodThe idea behind maximum likelihood is to derive those parameter values that would lead tothe highest probability of sampling the given data values. Sin
e log is a monotoni
 fun
tion,the maximum of the likelihood fun
tion is the maximum of the log likelihood fun
tion. Oftenit's easier to 
al
ulate the maximum of the log likelihood fun
tion, sin
e log makes a produ
tinto a sum and an exponent into a produ
t.For example, 
onsider the exponential distribution. The likelihood of sampling valuesX1; : : : ; Xn, given a parameter �, is the produ
t of the likelihoods of the individual values:L(X1; : : : ; Xn; �) = nYi=1 fX(Xi; �)Taking a log and developing this equation leads toln(L(X1; : : : ; Xn; �)) = ln nYi=1 1� e�Xi=�!= nXi=1 �ln(1=�)� Xi� �= n ln(1=�)� 1� nXi=1Xi7



To �nd the � that maximizes this expression we di�erentiate and equate to zero, leading ton1=� = nXi=1Xiand the solution of � equal to the mean of the sample. This pro
edure is based on theassumption that the random variables of the sample are independent.3.2.3 Finding Parameters for a MixtureIn a mixture, ea
h sample 
omes from one (and only one) of the distributions formingthe mixture. But we don't know whi
h one, making it harder to assess the parameters ofthe individual distributions. The missing data is sidestepped by using the iterative EM(Expe
tation Maximization) algorithm. This algorithm is based on the assumption thatthe number of distributions in the mixture and the fun
tional form of ea
h distributionare given, and that for ea
h distribution estimating the parameters is not hard; it usuallyprodu
es near-optimal results. The Algorithm pro
eeds as follows [18℄:1. Initialize the parameters of the distributions somehow.2. Expe
tation-Step: For ea
h observation and for ea
h distribution de
ide what part ofthis observation \belongs to" this distribution. Sin
e 
urrently the parameters of thedistribution are set, we 
an �nd for ea
h distribution the probability of getting theobservation from that spe
i�
 distribution. This probability is the \relative part" ofthe observed value that is assigned to this distribution.3. Maximization-Step: For ea
h distribution estimate the parameters using the maxi-mum likelihood estimation method. This estimation is done a

ording the \part ofobservations" that \belong to" this distribution.4. Repeat Expe
tation-Maximization steps until the sample likelihood 
onverges.In our 
ase the number of distributions is two, and the fun
tional form of ea
h is given(whether it is Gamma or exponential). Thus both steps (2) and (3) are easy to 
al
ulate.Given that EM is a heuristi
 iterative algorithm, its results and 
onvergen
e dependon how it is initialized. We developed the Medium Minimum Estimation Method for thispurpose. This method is based on the fa
t that often it is easy to distinguish between thetwo distributions in the mixture just by looking at the histogram of the samples, be
auseit is bimodal (or be
omes bimodal after applying a logarithmi
 transformation). We 
anthus simply divide the sample at the minimum point between the two modes, and estimatethe parameters for ea
h subsample. Likewise, the estimate for the probability of belongingto ea
h distribution is initialized a

ording to the fra
tion of the samples that fall in ea
hsubsample.3.3 Assessing Goodness of FitAfter �nding the parameters and thus de�ning a spe
i�
 distribution, we want to know howwell it a
tually models the original sample data. In other words, we want to ensure that8



the best model we managed to �nd is indeed a good model in absolute terms. We used theKolmogorov-Smirnov goodness of �t test for this purpose [14℄. For the distributions we are
onsidering, this is known to be a 
onservative test.3.3.1 The Kolmogorov-Smirnov MethodThe Kolmogorov-Smirnov 
al
ulates the maximal distan
e between the 
umulative distribu-tion fun
tion of the theoreti
al distribution and the sample's empiri
al distribution, over allthe points.1. Sort the sample's observations: X1 : : :Xn su
h that X1 � X2 : : : � Xn.2. De�ne the sample's empiri
al 
umulative distribution fun
tion:Fn(x) = 8><>: 0 if x < X1i=n if Xi � x < Xi+11 if x � XnThe empiri
al CDF Fn(x) is an estimator for the theoreti
al distribution F (x). Further-more, if the samples are indeed from the theoreti
al distribution F (x), thenPr(limn!1 jF (x)� Fn(x)j = 0) = 1.3. De�ne Dn = supx fjF (x)� Fn(x)jg. Sin
e Fn(x) is a step fun
tion with all steps ofheight 1=n, this is equivalent toDn = maxi=1:::n����� in � F (Xi)���� ; ����F (Xi)� i� 1n �����4. If the value ofDn is large we will reje
t the hypothesis that the theoreti
al and empiri
aldistributions are the same. If Dn is small enough we will not reje
t that hypothesis.The a
tual threshold to use depends on the sample size n and the 
on�den
e level �wanted, and 
an be found in statisti
al tables.3.3.2 The �2 MethodWhen F(x) is not available in the form of a simple equation, the alternative is to 
reaterandom samples from this distribution, and then 
he
k whether it is reasonable to say thatthe original data and these samples 
ome from the same distribution. This is done usingthe �2 test. The number of samples generated should equal the number of original dataobservations.In this test, the range of values is partitioned into a 
ertain number k of subranges.Then the number of observations that fall into ea
h range (Oi) and the expe
ted numberof observations that should fall into ea
h range (Ei) are tabulated (in our 
ase, this is notbased on the formula but rather on the 
reated random samples). The metri
 is then�2 = kXi=1 (Oi � Ei)2EiThis is then 
ompared with statisti
s tables to as
ertain if it is small enough to warrant the
on
lusion that the distributions are probably the same.9



4 The Degree of ParallelismRigid jobs 
an be thought of as re
tangles in pro
essors-time spa
e. The most importantaspe
ts of modeling them are therefore modeling their dimensions in terms of pro
essors, aswe do here, and in terms of runtime, as we do in the next se
tion. Dire
t modeling of thedegree of parallelism is possible be
ause this is an input parameter provided by the user:a request to submit a job for exe
ution is always a

ompanied by a spe
i�
ation of howmany pro
essors to use. When 
onsidering moldable jobs, it is ne
essary to model the totalwork and the speedup fun
tion, in order to derive the runtime for any allo
ated number ofpro
essors.4.1 Handling Power-of-Two JobsExperien
e shows that the distribution of job sizes is typi
ally dominated by sizes that arepowers of two [4℄. This is obvious for early ma
hines that only allowed powers of two, su
has hyper
ubes and 
onne
tion ma
hines. However, it persists also in systems that have noar
hite
tural preferen
e for powers of two. This raises the question of what is the sour
e ofthis phenomenon, and whether it should be in
luded in the workload model.Jann et al. [11℄ and Downey [3℄ 
hose not to in
lude any spe
ial treatment for powersof two in their models. This is based on the belief that the emphasis on powers of two isnot intrinsi
 to the workload. Instead, it is thought to stem from habit and from in
uen
eof queue 
on�guration 
hoi
es, where system administrators de�ne queues for di�erent jobsizes that are typi
ally delimited by power-of-two nodes.We disagree on this point, and believe that jobs with sizes that are powers of two shouldbe emphasized, as is observed in the logs. One argument for this approa
h is that if usingpowers of two is habitual, then it is indeed an intrinsi
 part of the workload | this is whatusers do today, and 
an be expe
ted to do in the future as well. Another argument is thatwe 
ontinue to see a strong use of powers of two even in logs that 
ome from ma
hinesthat do not have queues 
on�gured a

ording to powers of two, e.g. ma
hines running theEASY or Maui s
hedulers. Finally, we note that power-of-two jobs have been shown tohave a strong impa
t on performan
e evaluation results [17℄, so departing from empiri
alobservations should be justi�ed 
arefully; retaining the observed 
hara
teristi
s is safer.4.2 The Modeling Pro
edureApart from power-of-two jobs, we also note the high fra
tion of serial jobs that is typi
allyobserved. This motivates us to partition the jobs into three 
lasses: serial, power-of-two,and the rest. Our modeling pro
edure will be based on a 
ombination of this distin
tion anda general distribution over all parallel jobs.Our pro
edure is shown graphi
ally in Fig. 2. With probability p1, the job is sele
ted tobe serial. If not, the log of its size is sele
ted from an appropriate distribution. Then, withprobability p2, this value is rounded to the nearest integer so as to represent a power-of-twojob (note that p2 is not the fra
tion of power-of-two jobs out of the total, but only out of the10
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logsizesize = 2Figure 2: Algorithm for modeling the size of a job.Two-stage uniform Gammap1 p2 l m h p Dn � � DnSDSC95 0.21 0.76 0.75 5.00 8.64 0.92 0.040 4.04 0.77 0.064SDSC96 0.21 0.89 1.00 5.00 7.00 0.86 0.038 4.92 0.69 0.052KTH 0.30 0.60 0.70 4.00 6.64 0.84 0.033 3.87 0.73 0.058LANL { { 4.50 7.00 10.0 0.82 0.083 24.95 0.25 0.114Model 0.24 0.75 min�0:2 max�2:5 max 0.86Table 1: Parameter values for logs and model of job sizes.parallel jobs). The job size is then 2 raised to the sele
ted value and rounded if ne
essary(in 
ase its not a power of 2).4.3 The Distribution and ParametersTo 
omplete the model, we must spe
ify the parameters p1 and p2, and the distribution.For the evaluation of the two parameters we ex
lude the LANL-CM5 log, as this ma
hineonly allows partitions that are powers of two with at least 32 nodes. The values for the otherlogs are shown in Table 1. They lead to the 
hoi
e of p1 = 0:24 and p2 = 0:75 for the model.To �nd a �tting distribution, we �rst apply a logarithmi
 transformation, and regard theresult as a 
ontinuous distribution. We 
he
ked �ts to a Gamma distribution, a uniformdistribution, a two-stage uniform distribution, and a hyper-exponential distribution. Forea
h one parameters were estimated and the �t evaluated using the Kolmogorov-Smirnovmethod. The best results were obtained for the Gamma and two-stage uniform distributions,and they are shown in Table 1. We 
hose the two-stage uniform distribution for the modelfor two reasons: �rst, its �t is slightly better. Se
ond, the parameter values obtained weremore 
onsistent a
ross the di�erent ma
hines, and it was relatively straightforward to relate11



0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1
log runtime cdf

log runtime

cd
f

SDSC95 
SDSC96 
KTH    
LANL   
Average

0 2 4 6 8 10 12 14
0

0.05

0.1

0.15

0.2

0.25
log runtime pdf

log runtime

pd
f

Figure 3: Distributions of runtimes after a logarithmi
 transformation, and the derived modelfor these distributions.them to the ma
hine size. Thus in the model we de�ne l to be 0.2 less than the minimalpossible value (to 
orre
t for the fa
t that when using a uniform distribution and rounding,the probability to get the end value is redu
ed), m to be 2.5 less than the maximal value,and h to be the maximal possible value, whi
h is log2 P . p is set to the arithmeti
 mean of0.86.5 Job RuntimesAs noted above, runtime is the se
ond major 
hara
teristi
 of a rigid job. The distribution ofruntimes, however, is very di�erent from the distribution of sizes: It is 
ontinuous rather thanbeing dis
rete, and spans a mu
h larger range of values. The modeling te
hnique is therefore
ompletely di�erent. We start by des
ribing the modeling of a single system, and then showhow the models for the di�erent systems were 
ombined into a single representative model.5.1 Modeling Individual SystemsAs in the 
ase of job sizes, we start by applying a logarithmi
 transformation to the data.This redu
es its range, redu
es the in
uen
e of extreme values that may not be representativein general, and does not a�e
t the quality of the results.The 
andidate distributions 
he
ked were the Gamma distribution, the hyper-exponentialdistribution, and the hyper-Gamma distribution (whi
h is a
tually a generalization of theprevious two, and also of the hyper-Erlang distribution). The hyper-Gamma distribution isespe
ially appealing be
ause the distributions seem to be bimodal in log spa
e, as shown inFig. 3.The parameters of the hyper-Gamma distribution were estimated using the middle-minimum method as a starting point for the appli
ation of the EM algorithm, as explainedin Se
tion 3. The goodness of �t was evaluated using the Kolmogorov-Smirnov method. Theresults are shown in Table 2. In most 
ases, the hyper-Gamma model is very 
lose to theoriginal data and provides a better mat
h than other distributions. However, it does not12



�1 �1 �2 �2 p DnSDSC95 2.35 1.50 1533 0.007 0.94 0.037SDSC96 4.15 0.96 569.7 0.018 0.70 0.035KTH 5.76 0.82 159.5 0.05 0.61 0.081LANL 6.00 0.66 68.5 0.13 0.55 0.034Average model 4.20 0.94 312.0 0.03 0.685Sear
h model 4.00 1.00 500.0 0.02 0.70Table 2: Parameter values for model of job runtimes.pass the statisti
al goodness-of-�t test. The reasons for this are that our samples are notne
essarily independent, and that we are dealing with extremely large numbers of samples bystatisti
al standards: 15000 to 70000 jobs in ea
h log [14℄. In order to 
he
k this 
onje
ture,we 
hose a random subsample of between 500 and 1000 jobs from ea
h data set, and 
he
kedthe �t of the models to these subsamples. In all 
ases, the models passed the test at the 95%
on�den
e level.5.2 Creating a Representative ModelIn order to 
reate a representative model, we need to redu
e the four models shown in Table2 into one. We 
onsidered two ways of doing so.The �rst method 
al
ulates an average value for ea
h of the �ve parameters of the hyper-Gamma distribution, based on the values this parameter has in the four models. Given thatthe salient features of the Gamma distribution depend on produ
ts of these parameters,the geometri
al mean was 
hosen (but the arithmeti
 mean was used for p). The resultingparameter values are shown in Table 2, and the resulting distribution is 
ompared with theoriginals in Fig. 3. As 
an be seen, its shape is a plausible representative for the data.The se
ond method is to tabulate the range of values of ea
h parameter, and systemati-
ally 
he
k di�erent 
ombinations. Spe
i�
ally, for ea
h parameter we sele
ted three valueswhi
h divide the range into equal parts, and 
he
ked the distributions resulting from all 243
ombinations of these values. Most of the distributions turned out not to have the desired
hara
teristi
s (bimodal with maxima and minima in the right pla
es) and were eliminated.Of the remaining ones, the one whose pdf lay 
losest to the middle of the pdf's of the datasets was 
hosen for the model. The resulting parameter values are shown in the bottom rowof Table 2. They are very 
lose to the values 
al
ulated using the previous method, leadingto greater belief that these values are indeed representative.Given that the model is a 
ompromise representing di�erent systems, it is also possibleto 
onsider minor modi�
ations in the interest of eÆ
ient 
omputability. For example, it ispossible to round the �s to the nearest integer, modify the � to 
ompensate for the 
hangein the mean, and derive a hyper-Erlang model in pla
e of the hyper-Gamma model (note,however, that the modeling phase was still done using the more a

urate hyper-Gammadistribution). From our experien
e, this 
uts about 12% o� the time required to 
omputesamples from the model. 13



�1 �1 �2 �2 p DnSDSC95 3.66 1.32 13.4 0.87 0.88 0.033SDSC96 5.12 1.09 120.0 0.10 0.71 0.026KTH 118.4 0.06 42.2 0.28 0.30 0.050LANL 5.16 1.10 30.6 0.34 0.59 0.019Average model 10.74 0.55 37.96 0.37 0.577Sear
h model 5.00 1.10 45.00 0.30 0.700Table 3: Parameter values for model of total job work.5.3 Modeling Total WorkThe te
hniques des
ribed above 
an also be applied to the total work (the area of the job'sre
tangle, that is the number of pro
essors multiplied by the runtime). The results of doingso are shown in Table 3. Obviously, this should be 
ombined with a model of the speedupfun
tion of parallel jobs, like those proposed by Sev
ik [20℄ or Downey [3℄. However, thevalidity of this model is debatable, as it is based on jobs that ran on di�erent numbers ofpro
essors. This is akin to an assumption of ideal speedup. Nevertheless, no dire
t data isavailable, so models su
h as this one must be used.6 Correlation Between Parallelism and RuntimeThe idea that parallelism 
an be used to redu
e the 
ompletion time of a task dates ba
kat least to Bibli
al times. In terms of the workload on parallel super
omputers, this may beexpe
ted to lead to an inverse 
orrelation between parallelism and runtime: large jobs usemore pro
essors, so they should 
omplete faster. But this is based on the impli
it assumptionthat the total amount of work remains the same. Alternative s
alability models assert thatthe added parallelism is not used to solve the same problem faster, but rather to solve largerproblems [9, 22℄. This may even lead to an in
rease in the total pro
essing time.6.1 Establishing the Existen
e of a CorrelationThe simplest way to 
he
k for a 
orrelation between the parallelism and runtime is to 
al
u-late the 
orrelation 
oeÆ
ient between these variables. Doing so for our logs yields a smallpositive 
orrelation (ranging from 0.02 for KTH to 0.40 for SDSC96). An alternative is todivide the jobs in ea
h log into groups a

ording to their degree of parallelism, and plot theCDF of the runtimes distribution for ea
h su
h group (Fig. 4). The fa
t that larger jobsgenerally have a longer runtime is then evident from the fa
t that their CDF is below thatof smaller jobs. This is 
learly seen in the SDSC logs. In the KTH and LANL logs there issome mixture among the small jobs (in the �rst two groups), but not with the large jobs inthe third group.
14
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[129,1024]Figure 4: Distributions of runtimes for di�erent job sizes in the four systems.6.2 Modeling Approa
hesGiven that there is a 
onne
tion between the parallelism and the runtime, the question ishow to in
orporate it into the workload model. A straightforward approa
h, adopted byJann at al., is to divide the jobs into groups a

ording to the degree of parallelism (as we didabove), and 
reate a distin
t runtime model for ea
h group. In the Jann model, runtimesare modeled using a hyper-Erlang distribution with 4 parameters. Given that the modeldeals with jobs using between 1 and 322 pro
essors, dividing the jobs into groups a

ordingto powers of two yields 10 groups, for a total of 40 parameter values. The statisti
s of theresulting model are indeed very similar to those of the original data (a log from the SP2ma
hine at CTC). However, there is a risk of over�tting to this data, at the pri
e of notresembling other logs.An alternative approa
h is to fo
us on how the parameters of the runtime distribution
hange with job size. In other words, instead of having parameter a assigned the valuesa1; a2; : : : ak for jobs in groups 1 : : : k respe
tively, we 
an assign a the value f(s) where sis the individual job's size. The fun
tion f 
an be 
ompletely arbitrary, although we mightendeavor to �nd a simple fun
tion that still gives us a good �t to the data.Our suggested approa
h is in this vein. We start by modeling the runtimes in ea
h size-based group, using the hyper-Gamma distribution used in the previous se
tion (Fig. 5 and15



sizes �1 �1 �2 �2 p DnSDSC95 1{4 3.73 1.05 0.19 4.77 0.97 0.0385{16 9.68 0.56 161.0 0.074 0.82 0.03417{400 12.63 0.62 197.1 0.07 0.66 0.063SDSC96 1{8 5.46 0.92 230.5 0.05 0.87 0.0339{16 9.87 0.66 1577 0.008 0.40 0.06217{320 11.65 0.71 378.4 0.037 0.46 0.065KTH 1{4 5.36 0.89 39.6 0.232 0.61 0.0455{100 8.68 0.84 89.97 0.133 0.58 0.016LANL 32 29.96 0.29 330.6 0.036 0.63 0.02164 38.33 0.25 560.6 0.023 0.45 0.039128 6190 0.001 35.11 0.331 0.47 0.140256{1024 31.82 0.37 773.3 0.019 0.47 0.052Table 4: Parameters of runtime model for di�erent size groups.
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Figure 5: Comparison of runtime model with original distributions for di�erent size groupsin the SDSC95 log.Table 4). This yields a good �t as measured by the Kolmogorov-Smirnov method. It alsoleads to the observation that the shapes of these distributions 
hange in a similar manner:They are all 
omposed of a pair of Gamma distributions with similar means, but the relativeweights of these two distributions 
hanges a

ording to the range of sizes. For small jobs,the distribution of runtimes is well modeled by the lower Gamma alone. For middle-sizejobs, the low Gamma is dominant, but the higher Gamma is unmistakable. For large jobs,the runtime distribution is 
omposed of the two Gammas with roughly equal weights.Based on this observation, we devised a model in whi
h runtimes are represented by ahyper-Gamma distribution. Four of the �ve parameters, those des
ribing the two 
onstituentGamma distributions, are �xed. Only the p parameter, whi
h determines the probability ofsampling either of the Gamma distributions, is 
orrelated with the job size. In e�e
t, it isrepla
ed by a pair of parameters that spe
ify how it depends on the job size. Thus the totalnumber of parameters used by the model is 6. The pro
edure for sampling a runtime from16



from distribution

Select job size
(Fig. 1)

Calculate p
based on size

Constant
parameters

Select runtimeFigure 6: Algorithm for modeling the runtime of a job.a b DnSDSC95 �0:0043 0.995 0.038SDSC96 �0:0107 0.900 0.056KTH �0:0065 0.649 0.058LANL �0:00027 0.575 0.089Model �0:0054 0.780Table 5: Parameter values for linear dependen
e of p on job size.this model is pi
tured in Fig. 6.Results obtained by this method are shown in Fig. 7. While the model 
annot tra
kthe exa
t di�eren
es in the shapes of the distributions for di�erent sizes, it is mu
h morea

urate than using the same model for all sizes.6.3 Cal
ulating pOur model for runtimes involves two �xed Gamma distributions, and a parameter p whi
hrepresents the proportion of the �rst one in the population. The point is that p is a fun
tionof the job size. The simplest approa
h is to use a linear relationship: p = a � s + b, where sis the job size. Su
h a relationship was previously employed by Feitelson, but in the 
ontextof a hyper-exponential distribution [5℄.Given that p should de
rease as s in
reases, a will be negative. There is therefore a dangerthat p might be
ome negative for large s. Also, b might be larger than 1 again for
ing p outof its useful range. One way to solve this problem is to use a log odds transformation, basedon the equation log � p1�p� = a � s + b. This ensures that p remains between 0 and 1, but
hanges the shape of its dependen
e on s. We 
he
ked it and found that it does not �t ourneeds for expressing the dependen
e of p on s, as the resulting distributions did not �t thedata. We therefore use an alternative in whi
h p is set to 0 if it turns out to be negative,and to 1 if it is higher than 1. In e�e
t, this divides the spe
trum of job sizes into threesegments. For s � � ba we get p = 0 and use only the �rst Gamma. For s � 1�ba we get p = 1and use only the se
ond Gamma. In between we have a linear relationship.To a
tually �nd suitable values for a and b, we divided ea
h data set into 8 roughly equalgroups of jobs (a

ording to job size, not splitting any single size among two groups; for17
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model2Figure 7: Resulting runtime distribution for di�erent job sizes. Model1 (linear dependen
eof p) is 
ompared with Model2 (p is 
onstant) for the SDSC95 data (sample).LANL there are only 6 sizes). For ea
h group we found the best value of p for the two givenGamma distributions. This value of p was asso
iated with the median number of pro
essorsused by jobs in the group. Thus we obtained 8 hs; pi pairs, whi
h were used as an input to alinear regression that yielded a and b. The results for the 4 logs are shown in Table 5. The�nal model was 
reated as the arithmeti
 average of the four logs.7 The Arrival Pro
essThe arrival pro
ess has re
eived relatively little attention in the past, with many modelers
ontent with using a Poisson pro
ess. In parti
ular, su
h modeling eliminates the daily
y
le of many arrivals during the day and less during the night. This is unfortunate, as thedistribution of runtimes in
ludes very long jobs, whi
h may intera
t with this daily 
y
le.In addition, it has been shown that the details of the arrival pro
ess have an impa
t on theresults of evaluations [21℄. An ex
eption is Jann et al., who 
reated a detailed model ofinterarrival times for di�erent job size ranges, on par with their model of runtimes [11℄.Modeling the arrival pro
ess is made diÆ
ult by the need to �t both the overall distri-bution of interarrival times, and the distribution a
ross hours of the day (the daily 
y
le).18
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Figure 8: Histograms of job arrivals per time of day.Our approa
h is to �rst model the relatively stationary arrival pro
ess at peak hours, then
hara
terize the daily 
y
le, and �nally 
ombine the two.7.1 Modeling Arrivals at Peak HoursWe start by modeling the arrival pro
ess at peak hours. This 
an be used in isolation, or
ombined with a daily model as des
ribed below. Based on the histograms of job arrivalsduring the day (Fig. 8) we de�ne the peak hours to be from 8:00 AM to 7:00 PM, Mondaysthrough Fridays. The interarrival times of jobs submitted during these times were tabulated,and 
ompared to the following distributions: exponential, hyperexponential, Gamma, andhyper-Gamma. The goodness of �t was evaluated using the Kolmogorov-Smirnov method.The results were that all but the exponential distribution gave good �ts. The hyper-Gamma distribution was marginally better than the Gamma distributions, at the expenseof using more parameters. We therefore 
hose the Gamma distribution for the model. Theparameter values found are shown in Table 6. The model is the geometri
al mean of thefour systems.
19



� � DnSDSC95 6.89 0.62 0.053SDSC96 7.13 0.70 0.072KTH 14.10 0.37 0.064LANL 15.81 0.35 0.084Model 10.23 0.49Table 6: Parameter values for model of interarrival times at peak hours.� � DnSDSC95 7.77 4.16 0.047SDSC96 6.84 4.77 0.050KTH 12.00 2.55 0.054LANL 7.00 4.86 0.056Model 8.17 3.96Table 7: Parameter values for model of daily 
y
le.7.2 Modeling the Daily Cy
leWorkloads 
an be expe
ted to have 
y
les at three levels: daily (people work less at night),weekly (people work less on the weekend), and yearly (people work less on holidays). Ofthese, the most important e�e
t is the daily 
y
le, although the weekly 
y
le may also havean e�e
t on the s
heduling of long jobs. We shall only deal with the daily 
y
le.The daily 
y
le on the di�erent systems is shown in Fig. 8. This is after removal of a largepeak that appears at 3:30AM in the SDSC logs, probably due to the automati
 invo
ationof a routine administrative s
ript.To model the daily 
y
le, we �rst note that the minimum is around 5 AM. We thereforeperform a 
y
li
 shift of the range 00:00{04:59 to 24:00{28:59, leading to a distribution thatis essentially unimodal (ignoring the slight dip at lun
htime). This is then modeled using aGamma distribution, whose parameters are shown in Table 7.Note that these parameters depend on the 
y
li
 shift of �ve hours, and on the use of48 30-minute slots for the histogram. Thus to 
al
ulate the fra
tion of jobs that arrive in ahalf-hour interval around time t 2 [0; 24℄ we �rst multiply t by 2 (
hange hours to half-hourslots), add 48 if the result is less than 10 (to a

ount for the 5 hour shift), and �nally evaluatew(t0) = F (t0 + 12)� F (t0 � 12) (where F is the CDF of the model Gamma distribution).7.3 A Combined ModelOur goal is to derive a workload model with interarrival times that satisfy two distin
t 
on-straints: all interarrivals taken together should mat
h the 
orre
t distribution of interarrivaltimes, and at the same time the fra
tion of jobs arriving at ea
h hour of the day shouldmat
h the daily 
y
le. The way we go about a
hieving this is to use the distribution ofinterarrivals at peak hours as the basis, and modify it in order to a
hieve the 
orre
t number20



of jobs for ea
h hour of the day. In order to get the 
orre
t overall arrival rate, we modify thepeak distribution by multiplying its mean by a 
onstant we 
all ARAR (Arrive Rush-to-AllRatio). This is simply de�ned as the ratio of the mean of the 
omplete distribution to themean of the peak distribution, and was rather 
lose to 1 for all four logs (whi
h is partlyexplained by the fa
t that the distributions are after a logarithmi
 transformation).One approa
h to a
hieving our goal is to modify the parameters of the interarrival timedistribution a

ording to the time of day, in order to mat
h the desired arrival rate forthat time. In order to redu
e the 
omplexity of the model, we strive to �nd a fun
tionalrelationship of the parameters on the desired arrival rate (similar to what we did in the
ontext of the 
orrelation between the parallelism and runtime). Another approa
h is tokeep the underlying distribution as is, but modify the interpretation of sampled interarrivaltimes a

ording to the time of day. We will see examples of both types below.To 
he
k the quality of ea
h approa
h, we need to 
ompare its results with the originaldata. Assessing the �t of the interarrival distribution is done using the Kolmogorov-Smirnovmethod, as for all other distributions. Assessing the �t to the daily 
y
le is done using the�2 metri
. In our 
ase this is 
al
ulated asP = 48Xi=1 (mi � di)2mi + diwhere mi and di are the number of observations in the model and data, respe
tively, in ea
hof the 48 half-hour slots of the day.The expe
ted interarrival time methodThe �rst method tried is to modify the interarrival time distribution a

ording to the desiredarrival rate for a 
ertain time slot. To do so we pre-
ompute di�erent values of the �parameter of the Gamma distribution for ea
h slot (denoted by �(t)). Given these values,
omputing the next interarrival time after a job that arrived at time t will be done by exwhere x is sampled from a Gamma distribution with parameters �(t) and � (re
all that themodel is in log spa
e).The �(t) are 
omputed as follows. Let �w be the average over all slots of the values w(t)representing the fra
tion of the jobs that arrive at time t. The ratio �w=w(t) gives the ratioof the average number of jobs that arrive at any time divided by the expe
ted number ofjobs that will arrive at time t. This is the inverse of the ratio of the interarrival times. Thus�ww(t) = e�(t)�e��Whi
h leads to �(t) = �+ log ( �w=w(t))�While this method is very simple, it led to a poor mat
h with the daily 
y
le. The reasonis that the number of jobs that end up arriving in ea
h slot does not depend only on thedistribution of interarrival times in that slot, but also on the previous slots. Thus using thismethod resulted in a distribution that is 
atter than desired, and is also shifted towardslater times. 21



The expe
ted time slots methodThe se
ond method tries to amend the �rst one, by 
al
ulating �(t) values that take thew(t) values of subsequent slots into a

ount. This is done iteratively, starting from �(t) = �,until the values 
onverge.In ea
h iteration, the 
al
ulation pro
eeds as follows. For ea
h slot t, we 
al
ulate theexpe
ted jump E(t) to the slot in whi
h the next arrival will o

ur, but taking into a

ountthe fra
tion of jobs that should arrive in that slot. Thus if the arrival rate in the target slotis high we in
rease the probability of this jump, whereas if this probability is low we de
reaseit: E(t) = Pt+m�1j=t w(j mod m)(j � t) Pr(j � t)Pt+m�1j=t w(j mod m) Pr(j � t)where m = 48 is the number of slots, and Pr(k) is the probability that sampling the interar-rival distribution would lead to a value k slots away. Our goal is to adjust the distribution ofinterarrival times so that this holds. To do so we 
ompute the weighted average of su
h jumpsa

ording to the desired E(t) and a

ording to the 
urrent iteration's values of the interar-rival distribution parameters, and adjust the parameters to make then 
loser. Spe
i�
ally,we 
al
ulate the new parameter value by�i+1(t) = E(t)Pmj=1 w(j)E(j) mXj=1w(j)�i(j)where the subs
ript on � denotes the iteration number. This 
an be understood as follows:for ea
h time t, the new value of � is related to the weighted average of �s in the same waythat this time's E is related to the weighted average of all Es. As the mean interarrivaltime is proportional to �, this will make the distribution of �s more similar to the desireddistribution of Es.This method produ
ed better results, but in the end we 
hose to use the simpler thirdmethod.The slot weight methodIn this method interarrival times are 
hosen from the original distribution whi
h is notmodi�ed. However, the slots are given di�erent weights so that \time passes faster" in slotswhere more jobs are supposed to arrive.The idea is simple: ea
h slot t is 
onsidered as having 1800w(t)�w virtual se
onds, insteadof the original 1800 real se
onds (half an hour). When 
al
ulating job arrivals, we samplethe Gamma distribution of peak interarrival times, but regard the result as virtual ratherthan real se
onds. Thus the next arrival has a larger 
han
e to be trapped in a slot witha high w(t). Naturally, 
are must be taken to a

ount for progress within ea
h slot. Forexample, assume a 
ertain slot's duration is 1000 virtual se
onds, and a value of 600 se
ondswas sampled. In this 
ase, the next arrival will be 0.6 of the way into this slot. If the nextsample is 500 se
onds, 400 of them are used to 
omplete the 
urrent slot, and 100 to progressinto the next one. 22
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Figure 9: Comparison of the daily arrival 
y
le using the �nal model (model1) with a smoothGamma model (model2) and with the original data (sample).As noted above, this method was sele
ted for use in the model. Its performan
e is shownin Fig. 9. Remarkably, just two parameters for the daily 
y
le Gamma suÆ
e to 
reate the48 values of w(t) being used, and provide a de
ent �t.8 Workload Consisten
yAn important question when 
reating workload models based on logs is whether the datain the logs is 
onsistent to begin with. This has two fa
ets. One is the distin
tion betweendi�erent job 
lasses, e.g. between intera
tive and bat
h jobs. The other is the possibilitythat the workload evolves over time.8.1 Distin
tion between Intera
tive and Bat
h JobsThe SDSC95 and SDSC96 logs in
lude a distin
tion between intera
tive jobs, whi
h aresubmitted dire
tly to the ma
hine's s
heduler, and bat
h jobs that are handled by the NQSbat
h queueing system [26℄. This enables us to repeat all the analysis of the previous se
tionson ea
h subset of jobs separately. 23
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Figure 10: Comparison of the runtime distribution of intera
tive and bat
h jobs in the SDSClogs.The results are that signi�
ant di�eren
es 
an be seen between the two job 
lasses. Start-ing with the distribution of job sizes, we �nd that bat
h jobs used up to 256 nodes, whereasintera
tive jobs rarely used more than 32 (although this 
ould also be a result of system ad-ministration poli
ies). In general bat
h jobs were larger, but, somewhat surprisingly, therewere about twi
e as many bat
h serial jobs as intera
tive serial jobs. Bat
h jobs also useslightly more power-of-two sizes, at least in the 1996 log.Comparing the runtimes, we �nd that bat
h jobs in general ran longer. In fa
t, theruntimes of intera
tive jobs are dominated by the lower Gamma of the hyper-Gamma distri-bution, whereas the runtimes of the bat
h jobs are de
idedly bimodal (in log spa
e; see Fig.10). It may be 
onje
tured that the bimodality of runtimes in other logs is also a result ofdi�erent job 
lasses.Considering the 
orrelation between size and runtime, the 
orrelation 
oeÆ
ient 
al
u-lated for bat
h jobs is signi�
antly higher than for intera
tive jobs (0.24 and 0.35 for SDSC95and SDSC96, respe
tively, vs. 0.02 and 0.06). The parameters for the dependen
e of p on sin the model are also di�erent. For bat
h jobs the absolute value of a is smaller, but this isbe
ause the range of values of s is a
tually mu
h larger.The arrival pro
ess for the two job 
lasses is also somewhat di�erent. The distributionsof interarrival times at peak hours are similar, but the 
urve for bat
h jobs is shifted slightlytowards higher values relative to the 
urve for intera
tive jobs. The daily 
y
le is also similar,but the di�eren
es between the daytime highs and the nighttime lows are smaller for bat
hjobs.These results imply that it may be important to model intera
tive and bat
h jobs sepa-rately, espe
ially if the model will be used to evaluate a s
heduler that may provide di�erentlevels of servi
e to di�erent job types.8.2 Workload EvolutionThe analysis of long logs assumes that the 
hara
teristi
s of the workload are stable. Thisis in fa
t known not to be so: the workload 
hanges when users learn to use a new ma
hine24



[10℄, and again when they migrate to the next ma
hine on
e the 
urrent one be
omes dated.However, it is hard to assess these pro
esses from the logs.To 
he
k the degree to whi
h workloads 
hange we 
ompared the SDSC95 and SDSC96logs | two 
onse
utive years from the same ma
hine. The results are that the two logs aresimilar, but 
ertainly do have signi�
ant di�eren
es. The main 
hange is the redu
tion inthe number of intera
tive jobs in the 1996 log: from 55208 jobs to 17807 jobs (the numberof bat
h jobs remained about the same, a bit more than 20000). As the 
hara
teristi
s ofintera
tive and bat
h jobs are quite di�erent, this led to noti
eable 
hanges in the overallworkload: on average, in 1996, jobs used more pro
essors and ran longer, but arrived atlarger intervals.9 Summary and Con
lusions9.1 Summary of the ModelThe �nal model is somewhat involved, and in
ludes the following 
omponents:� A model of job sizes based on a two-stage uniform distribution with 4 parameters,in
luding the two spe
ifying the minimal and maximal sizes desired. Two additionalparameters a

ount for the fra
tions of serial and power-of-two jobs.� A model of job runtimes based on the hyper-Gamma distribution. This has 6 ratherthan 5 parameters, be
ause the p parameter is repla
ed by a linear model of how pdepends on the job size.� A model of arrivals based on two Gamma distributions: one for the peak interarrivaltimes, and the other for the daily arrivals 
y
le. Two additional parameters are theshift used to model the daily 
y
le, and the ARAR value to mat
h the peak arrivalsto the overall arrivals.All the above is repli
ated three times: on
e for the full workload, and again for intera
tiveand bat
h jobs separately.A program that implements this model is available on-line at Parallel Workloads Ar
hive[19℄.9.2 Comparison with Other ModelsSeveral other models of parallel workloads have been proposed in the literature.Probably the �rst detailed model, whi
h is also a pre
ursor of the 
urrent model, wasproposed by Feitelson in 1996 [5℄. This model used a two-stage hyperexponential distributionfor the runtimes, 
hoosing the parameters so that the CDF \looked right" (that is, similarto that in various logs). A subsequent version used a three-stage hyperexponential [6℄. Toa

ommodate the slight 
orrelation observed between runtime and the degree of parallelism,the probability of using ea
h exponential depended on the degree of parallelism. The arrivalpro
ess was not modeled, and was assumed to be a Poisson pro
ess.25



Jann et al. used a hyper-Erlang distribution for both the runtimes and for the interarrivaltimes, with parameters based on mat
hing the �rst three moments of the data in the CTC-SP2 log [11℄. In addition, they divided the jobs submitted to a parallel ma
hine a

ordingto their degree of parallelism, and 
reated a separate model for ea
h range of degrees ofparallelism. However, this ignores the extra weight of powers of two that appears in theoriginal log. The result was a model with a large number of parameters (about 90) that
losely mimi
s the original data.Downey has proposed the log-uniform distribution for total work based on observationof the SDSC-Paragon log [3℄. This uses the smallest number of parameters, unless multiplesegments are used. Unlike the other distributions, it has an upper bound on the values itmight produ
e. Given the total work, a model of the speedup fun
tion is used to derive theruntime based on the number of pro
essors allo
ated. Thus this model is for moldable jobsrather than for rigid jobs.The 
urrent model improves upon these models in several respe
ts. It employs morerigorous statisti
al pro
edures that have not been used previously in this �eld. It usesmat
hing to the CDF of distributions, without relying on moments that may be undulyin
uen
ed by outliers. It is based on logs from three di�erent lo
ations, rather than onlyone or two. It is more thorough, by modeling parallelism, runtimes, the 
orrelation betweenthem, and the arrival pro
ess (in
luding daily 
y
les).An analysis by Talby et al., whi
h 
ompared these models and the logs upon whi
h theyare based, has found that the 
urrent model is 
losest to the average of all the others in allthe metri
s 
he
ked [23℄. These metri
s in
lude the mean and varian
e of runtimes, totalwork, interarrival times, and degree of parallelism. Thus it 
an be said that this model isthe most representative available in a general sense, albeit it does not 
ompletely mat
h anyof the di�erent logs used in its 
reation.A
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