Experimental Analysis of the Root Causes
of Performance Evaluation Results:
A Backfilling Case Study

Dror G. Feitelson
School of Computer Science and Engineering
The Hebrew University of Jerusalem
91904 Jerusalem, Israel

Abstract

Modern computer systems are very complex, and many factdiisence their perfor-
mance. It may therefore happen that seemingly minor variator assumptions in the per-
formance evaluation procedures actually determine theoous. We provide a detailed case
study, in which two parallel job schedulers based on batidilare compared, using four dif-
ferent workloads and two different metrics. Simulationsvghhat sometimes the same work-
load gives different results when using different metritss is explained by the fact that the
metrics are sensitive to different job classes, and do nasore the performance of the whole
workload in an impartial manner. Likewise, the same mebimatimes gives different results
when using different workloads; this turned out to dependurtle details, such as the use of
accurate runtime estimates when real estimates are ndafaeaior using a machine size that
is not a power of two. More worrisome is the fact that such segly minor details had more
effect than the basic features of the different workloadshsas the distributions of job sizes
and runtimes. This motivates the use of experimental melbgg to investigate the effect of
different factors, and uncover those that lead to the olesergsults.

Keywords:

C.1.4.d Scheduling and task partitioning

C.4.g Measurement, evaluation, modeling, simulation ofipla-processor systems
D.4.8.f Simulation

K.6.2.d Performance and usage measurement

1 Introduction

The goal of performance evaluation is often to compare wiffesystem designs or implemen-
tations. The evaluation is expected to bring out perforraattferences that will allow for an
educated decision regarding what design to employ or whatesyto buy. Thus it is implicitly
assumed that observed performance differences indeedtrefieortant differences between the
systems being studied.

However, performance differences may also be an artifattieoévaluation methodology. The
performance of a system is not only a function of the systesigdleand implementation. It may
also be affected by the workload to which the system is stéje@nd even by the metric being
used to gauge the performance. Thus it is important to utatetshe effect of the workload and
metrics on the evaluation. To complicate matters, in sorsesthe effect is not due to the metric
or workload alone, but rather to an interaction between theththe system [6].

We present a case study of a detailed analysis of such aigituslfe start by providing the re-
quired background: first a description of the systems beamgpared, which are two rather similar
versions of parallel job schedulers (Section 2), and thessaription of the methodology, includ-
ing the workloads used to drive the schedulers, and the meaiace metrics that were measured
(Section 3). Next we report the performance results obthlnyerunning simulations as described
above (Section 4). While each set of results seems to ankeejuiestion of the relative merit of
the two schedulers, the set as a whole includes some dismiegavhen using different workloads
and metrics. The main part of the paper is the analysis o&thesilts (Sections 5 and 6). It shows
that they do not stem from inherent differences betweendhedulers, or from significant statisti-
cal differences between the workloads (even though subtreifced do in fact exist). Rather, the
different results stem from intricate interactions betwélge schedulers, the workloads, and the
metrics. Moreover, these interactions involve minor detand assumptions that are easy to over-
look. We conclude that a detailed analysis as to the sourperédrmance differenced is required
in order to assess whether the results are credible, andxpatimental methodology is needed to
verify that suspected factors are indeed the cause of axdelifferences.

2 Parallel Job Scheduling with Backfilling

The domain we will use is the scheduling of parallel jobs fa¥aution on a parallel supercomputer.
Such scheduling is typically done in two dimensiopartitioning, in which disjoint subsets of
processors are allocated to different jobs, &éng slicing, in which processors serve processes
belonging to different jobs. We will focus on partitioningnd specifically, on an optimization
called backfilling.

Scheduling jobs using partitioning is akin to packing in ZBegard one dimension (say the
vertical) as representing processors, and the other (theombal) as representing time. A parallel
job is a rectangle, representing the use of a certain nunflggooessors for a certain duration of
time. The scheduler has to pack these rectangles as tighflgssible, within the space provided
by the available resources. In the context of backfilling,gfzes of the rectangles are known: each
submitted job comes with a specification of how many proasssouse, and an estimate of how
long it will run.

Given that jobs come in various sizes, they typically do raatkgperfectly. Therefore holes are
left in the schedule. Backfilling is the process of trying toifi these holes using newly submitted
small jobs. Two main versions of backfilling have been stddhethe literature: EASY backfilling
and conservative backfilling.

EASY backfilling is part of the Extensible Argonne SchedglgY stem developed for the IBM
SP1 machine [16]. This version of backfilling is rather aggnee in trying to maximize system
utilization. The scheduler is called whenever there are jdbcessors (e.g. due to the termination

backfill

idle

reservation

\

A
tme O\

total processors

first

o gueued jobs
now running jobs

Figure 1.An example of EASY backfilling.

of a running job) and jobs are waiting (because sufficient@ssors were not available earlier). Its
operations can be summarized as follows:

1. Scan the queue of waiting jobs in the order they had ar{WM&GFS), and allocate processors
as requested.

2. When you reach a job that requires more processors thaainewailable, calculate when
the required processors are expected to become free (bast ounning jobs’ runtime
estimates). Make a reservation to run this job at that time.

3. Continue to scan the queue of waiting jobs. Allocate msces to any job that is small
enough (i.e. sufficient processors are available) and wilimerfere with the commitment
to run the first queued job.

A simple example is given in Figure 1.

EASY backfilling makes a reservation for the first queued jobazh stage, but its backfilling
may cause delays to other queued jobs [19]. Conservativdiltiag aims to reduce this risk. To
do so, it makes a reservation for each newly submitted jobraeduture time, based on the current
knowledge of the system state. This commitment may be baséadckfilling the new job, but is
subject to the condition that such backfilling will not vitdaany previous commitments.

The two versions of backfilling therefore make differendtaffs in their backfilling policy.
EASY performs as much backfilling as possible, thus redutiegresponse time of backfilled
jobs, at the possible expense of delaying other jobs. Ceates prevents the delaying of jobs, so
their response time will not grow in an uncontrolled manbat,this comes at the price of limiting
the reduction of response time of backfill jobs. The quessdhen which of the two approaches
is better. Our case study is a set of simulations designexdsiwer this question.

It should be noted that other variants of backfilling have dlsen suggested. The main ideas
are to allow the scheduler more flexibility, by allowing itrse slack in fulfilling reservations
[24, 23], or by considering different sets of jobs for badkfg [21]. Backfilling has also been
integrated with multiple-queue scheduling [14] and witihgacheduling [26]. But here we focus
on the two simpler variants.

3 Evaluation Methodology

There are many ways to evaluate the performance of schedudemajor distinction is between
the off-line scheduling of a given set of jobs, and the ondickeeduling of a very long sequence of
jobs that arrive at unknown times. We prefer the latter, Wigcmore realistic.

3.1 Simulation

We perform the evaluation by discrete event simulation. @yents of interest are the arrival and
termination of jobs. Each job requires a certain number ot@ssors, runs for a certain time,
and also has a user estimate of its runtime. As each job tatesnthe quality of the service it
had received is tabulated. One of the most commonly usedanédr scheduling is the average
response time (the time from when a job was submitted urigtihinated). The problem with this
metric is that it is typically dominated by long jobs: a jolathruns for several hours has much
more weight than a job that only runs for a few seconds.

An attempt to solve this problem is the use of slowdown as aim&lowdown is the response
time normalized by the job’s actual running time. Thus it sweas how much slower the job ran
due to scheduling conflicts with competing jobs, and seentetier capture users’ expectations
that a job’s response time will be proportional to its rurgiriVhile this seems to put all jobs on an
equal footing, it turns out to be dominated by short jobsalise the job’s runtime appears in the
denominator. This is especially problematic when usingde@d models which may contain jobs
that are much shorter than a second. We therefore use awvérsiovn as “bounded slowdown”
[8], defined as

bounded slowdows:= max { Tresp , 1}
max{ Ty, 10}
The threshold of 10 seconds is chosen to represent the miaxiteactive time — that is, short
jobs are allowed this much delay without penalty. In additiine metric is set to 1 if the response
time is shorter than this threshold, to avoid values sm#iien 1 (which would imply a false sense
of speedup).

The simulation uses the batch means approach to evaludidexore intervals for the average
response time and slowdown [9]. The batch size is set to b@ i}, as recommended by
MacDougall for open systems under high load [18]. Dependimthe length of the workload log,
10 to 17 batches were completed, and the first discardedrtg tive system to a steady state. The
number of queued jobs at the end of each batch is also recondmder to enable the identification
of situations in which the system is actually saturated abd pccumulate in the queue.

Due to the large variability of job durations, the metrice afso highly variable. As a con-
sequence the results often seem not to be statisticallyfisemt, as the 90% confidence intervals
overlap. We therefore performed a more sophisticated aisaty these results, using the common
random numbetsvariance reduction technique [13]. In this analysis, we fimmpute the dif-
ference in response times or slowdowns between the two slgredn a per-job basis, which is
possible because we are using the same workload log. We timepute confidence intervals on

1The name is somewhat of a misnomer in this case, as we are aisigged workload rather than generating it
using a random number generator.

cTC —— P cTC —— '
08 Jann | 0s | Jann |
2 ez 2
y 2 S
S 06} Y S o6} ,
a / Q ~
o _) ~
2 _— 2
© ©
S o4y T 04 /
£ £ /
=1 > /
o =} /
0.2 1 0.2 /
/'/
O L L L L L L L L L O L L L L
1 2 4 8 16 32 64 128 256 1 10 100 1000 10000 100000
job size runtime [s]

Figure 2:Comparison of workloads.

these differences using the batch means approach. If tHeleooe intervals do not include zero,
the difference is significant.

3.2 Workloads

Workloads for parallel job scheduling are interesting du¢hie combination of being relatively
small and at the same time relatively complex. The size atatpvorkloads is tens of thousands
of jobs, as opposed to millions of packets in communicatiamkiwads. These workloads are
characterized by a large number of factors, including tloesjaes, runtimes, runtime estimates,
and arrival patterns. The complexity derives not only frdra tnultiple factors themselves, but
from various correlations between them. Research on tkeses is facilitated by the availability
of data and models in the Parallel Workloads Archive [1]. didiion, these workloads are often
used for parallel system evaluations (e.qg. [5, 22, 26, 192B,

The main workloads we used are a log of jobs run on the Corrdbily Center (CTC) IBM
SP2 machine from July 1996 through May 189@nd a model based on the fi@%t months of this
workload which was created by Jann et al. [10]. Despite theectelationship between the two
workloads, there are several differences (Figure 2):

¢ In the CTC workload, most jobs request a power-of-two nundfenodes. In the Jann
workload it was decided not to favor powers of two, based @nassumption that this is
not a real attribute of the workload but rather a consequehadministrative policies. This
notion was later borne out by a user survey conducted by @mdeBerman [4].

e The CTC workload had a sharp administrative limit on runtiael8 hours. In the Jann
model there is no such limit, as a continuous distributionsied to represent the runtimes.
But given that the chosen distribution is supposed to mitngc@TC workload statistics,

2For the simulations and analysis reported here we removedrg Bf 1999 one-node jobs lasting about 42—48
seconds each that were submitted by user 135 in one day; ssisreed that this was the result of a misbehaving
script. This large burst of small jobs is very sensitive ttaile of the scheduling and tends to cause large fluctuations
in simulation results. It represents 2.55% of the total w@all of 78500 jobs. The justification for removing such
flurries is elaborated in [25].

relatively few jobs have runtimes longer than 18 hours. &takther extreme, the CTC log
hardly has any jobs shorter than 30 seconds, whereas thentaidel has many such jobs.

e The Jann model uses a hyper-Erlang distribution to mode¢imas and interarrival times.
While this matches the first three moments of the originalrihistion, it also leads to a
somewhat bimodal structure that does not exist in the algin

e The Jann model does not include the modeling of user estinwdteintime. We therefore
used the actual runtime in the simulations. This is equitai® assuming that the estimates
are perfect.

In addition, we also use a log of jobs run on the San-Diego @apeputer Center (SDSC)
IBM SP2 from May 1998 through April 20§pand a model proposed by Feitelson [7]. As can be
seen from the graphs, these two workloads have a similaraiibn of job sizes which has fewer
small jobs than the CTC and Jann workloads. The Feitelsorehi®dlso unique in having many
more short jobs. The SDSC log also has shorter jobs than C@#iQam, but not as short as in the
Feitelson model.

Each workload is represented by a single data file specifthegarrival time, runtime, and
number of processors used by each job, and in the case of tGea@d SDSC workloads, also the
estimated runtime. In order to create different load coond, all the arrival times are multiplied
by a suitable constant. For example, if the original worklike leads to a load of 0.7 of capacity,
multiplying all interarrival times by a factor af/8 = 0.875 will cause the jobs to arrive faster, and
increase the load to 0.8 of capacity.

4 Simulation Results

The typical methodology for evaluating systems (in our casbedulers) calls for simulating their
behavior, and tabulating the resulting performance. Thisually repeated numerous times under
different conditions, including different load levels adifferent parameter settings for the system.
This enables a study of how the system responds to load, aat penameter settings lead to
optimal performance.

In this paper we emphasize two other dimensions insteadwtrkload used to drive the
simulation, and the metric used to measure the results.ré&gshows results of comparing our
two schedulers using four different workloads, and twoettéht metrics. In all cases, simulations
are run for different load levels, and the behavior of thaeysas a function of load is plotted.
These results can be divided into four groups:

o Results which show that EASY is better than conservatives€&hnclude the results obtained
with the CTC, SDSC, and Jann workloads, when using the regptime metric.

e Results which show that conservative is better than EAS¥h3esults were obtained from
the Jann workload when using the bounded slowdown metric.

3In this log we also removed two flurries, one composed of 3@1se one-node jobs by user 365, and the other
composed of 1-minute 32-node jobs by user 319 [25]; they aosvk to affect simulation results, but in the specific
simulations used here they seem to have only a marginakeffec

CTC workload

10000 | A

50000 ‘ T2 100 ‘
) EASY | S EASY =
— | conservative —— M) | conservative ——
g 40000 difference s £ kS 80 difference -
= 5
@ 30000] >
S i °
% i c
© 20000 - I R 3
_ 4 j o
8’ %7777**’}”’%/% * [}
c 2
s &
© s

1
SDSC workload
50000 . : 300 :
@ EASY - ‘ S EASY -
';‘ 40000 | conservative —— i @ 250 | conservative —+—— I
£ difference s S difference s | %
= 2 200 ¢ [
)
§ 30000 | i c
S g 150 ¢
@ 20000 -] 5
© S 100} ,3
€ 10000 g ;
o i ® 50
o ©) A
s 2 M2 o "
0 i @© [0 PRE— S N VRN TR
04 05 06 07 08 09 1 04 05 06 07 08 09
load load
Jann workload
50000 ‘ : 300 : : .
& EASY ——x— § c | EASY - 3
% 40000 | conservative —— X | g 250 conservative ——+— !
£ difference | T 200} difference -
= k]
@ 30000 1 2 150 |
(]
2 T 100 f
g 20000 o 3
S 10000 1 g
(] IR =
@ o ¥ 2
[V W MM KK i 4 ©
04 05 06 07 08 09 1
load
Feitelson workload
40000 ‘ 500 ‘
% 35000 | EASY - i S EASY =
— conservative —+— o 400 conservative —+—
g 30000 difference 1 2 difference —*—
= k]
o 25000 . © 300
S 20000 i 3
o
¢ 15000 - i § 200
© 10000 s/kjf . ® 100}
g 5000 i : g —
[0 ,,,,,,,,,,,,*,.,.*,,..;*_,,,*,1»,—%é::—-,rgg:::::K::,—-ﬂx»;li%, R % 0 Wer-- oK e oo ® ® *-
04 05 06 07 08 09 1 04 05 06 07
load load

7
Figure 3:Simulation results with 90% confidence intervals.

¢ Results showing that both schedulers are essentially the.sBhe results from the Feitelson
model fall into this class.

e A combination: results that show the schedulers to be ebpnvainder most loads, and
show an advantage for EASY only under high load. Such reswdte observed for CTC
and SDSC when using the bounded slowdown metric. It shoulddbed that such high
loads are seldom achieved in practice on this class of meslijiri, 20].

In short, if only a single set of results is used, the condisiwould depend on which specific set
was chosen. Our goal in the next sections is to uncover theeauses for these discrepant results.

5 Analysis of Jann vs. CTC Results

As noted above, the Jann model is specifically meant to min@cXTC workload. Nevertheless,
the simulation results indicate that the two produce djzané predictions. For the Jann workload
the response time metric favors EASY backfilling, whereassfiowdown metric favored conser-
vative backfilling. The CTC workload, at the same time, faB@ASY for both metrics (albeit for
slowdown only under very high load). This is therefore altyua triple interaction of scheduler,
workload, and metric. In this section we focus on a detailemlyssis of how this triple interaction
comes about.

5.1 Producing Discrepant Results

Both the slowdown metric and the backfilling policy are sewsito job duration. We therefore
start by partitioning the jobs into five classes accordinth&r duration, and tabulating the results
for each class separately. The classes used were very shaftsgc), short{ 5min), medium
(< 1hr), long (< 10hr), and very long ¥ 10hr). The results are shown in Table 1. For the CTC
workload, both metrics favor EASY backfilling for each clasdividually, and also for all of them
together. But in the Jann workload we indeed see a differémaiedepends on job class. For
jobs that are longer than 1 hour, both metrics favor EASY.fBushorter jobs, both metrics favor
conservative backfilling.

Given that for each job class both metrics agree, how dogéitin into discrepant results when
the whole workload is considered? The answer is due to siarfilametic. The average response
time of all jobs is a weighted average of response times oflitferent classes, with the weights
proportional to the number of jobs in each class. The samg fgoslowdown. But when response
times are used, the high values that dominate the average ftom the long jobs, whereas when
we calculate the average slowdown the high values come fnenshort jobs. Thus the average
response time is similar to the response time for long jobg;wfavors EASY, whereas the average
slowdown is similar to the slowdown of short jobs, which fes/zoonservative.

5.2 Source of Performance Differences

The results in Table 1 indicate that the difference betwberdTC and Jann results is due to the
short jobs, which fare better under conservative in the Yamhkload, but not in the CTC workload.

number response time bounded slowdowr]
job class | ofjobs* | EASY vs. cons | EASY vs. cons
Jann model
very short|] 33728| 10737.46> 7699.22| 837.22> 488.89
short 74642| 11384.41> 8368.95| 144.14> 79.72
medium | 106331| 10484.76> 8788.11| 15.44> 9.38
long 76974| 48652.08< 66560.68 2.56< 2.59
very long | 41624| 91151.88< 112610.74 1.79< 1.82
all 333300| 29600.57< 34892.05 122.75> 90.53
CTC workload
very short 380| 6640.05< 11020.90| 627.92< 1062.75
short 28746| 6378.98< 6564.45] 64.38< 75.91
medium 16906| 9689.79%< 10580.02| 11.76< 12.65
long 20334| 28829.00< 36771.25 2.36< 2.87
very long | 10133| 67616.53< 84720.34 1.29< 1.63
all 76500| 21190.66< 25855.42| 30.71< 37.58

* the numbers may differ slightly for the two schedulers afediint
jobs may remain in the queue at the end of the simulation.

Table 1:Simulation results for different job classes. EASY backiglis better in all cases for the
CTC workload, and for long jobs in the Jann workload. Reshitsvn are for load of 0.85.

To try and understand why this happens, we need to underbtamdhe scheduler interacts with
the workload.

As the difference between our two schedulers is in their til#inlg policy, a good place to start
is investigating their backfilling patterns. Figure 4 shalasabsolute numbers of backfilled jobs as
a function of job length (top), as well as the additional Hdlokg achieved by EASY, as a fraction
of the backfilling achieved by conservative (bottom); thugahue of 0.1 means that EASY did
10% more backfilling. Surprisingly, for CTC conservativekiling actually achieves somewhat
higher backfilling levels! But the main difference betwete tvorkloads is that under the Jann
workload, EASY achieved much more backfilling of long jobs.

After checking many other possibilities (see below), th& ause for this was found to be the
use of accurate runtime estimates with the Jann workloadurate runtime estimates provide full
information for backfilling decisions. The conservativgaithm has to take multiple reservations
into account, and this is especially problematic for lonigsjothat have the potential to interact
with many other jobs. EASY, on the other hand, only has to icemone reservation. Therefore
conservative achieves much less backfilling. But when etgémare inaccurate, jobs tend to ter-
minate before the time expected by the scheduler. Thisesdutles in the schedule that provide
new backfilling opportunities, that can be exploited by bexthedulers.

To confirm this hypothesis, we re-ran the CTC simulationaisutg the actual runtimes rather
than the original user estimates to control the backfillinge results, shown in Figure 5, largely
confirm the conjecture. When using accurate estimatesgecams/e performed much less back-
filling of long jobs than before. And as expected, this led moirversion of the results, with

Jann CTC

25000 -
80000 — E easy
20000 —
S 3 W cons
= 60000 — =
g 2 15000 |
g g
0 40000 — o
. , 10000 —
Qo o)
220000 £ 5000
0 - 0 -
<30s <5min <lhr <10hr >10hr <30s <5min <lhr <10hr >10hr
job length job length
05 _Jann 05 _CTC

0 0

Z 04 K 04

i w

3 0.3 = 03

£ 02 4 £ 02

Y2 ¥4

& S

8 01 8 01

B o0 T o+

© ©

01 = I I I I 01 = I I I
<30s <5min <lhr <10hr >10hr <30s <5min <lhr <10hr >10hr
job length job length

Figure 4: Increased backfilling with EASY relative to conservativéaaduler. Data for load of
0.85.

conservative achieving better average slowdown scoregnias but weaker effect also occurred
when running the SDSC workload with accurate runtime esgmal he results were inverted, but
the differences was much closer to zero.

We are now left with one last question: how does the reducekfilang under the conservative
policy lead to better performance when measured using thedsiwn metric? The answer is
in the details. The reduced backfilling appliesltmg jobs. On the other hand, slowdown is
sensitive mainly t@hort jobs. So the performance change results from less bacgfolifong jobs,
which leads to better performance of short jobs. This isared as follows. Under the EASY
policy, backfilling is allowed provided it does not delay tfirst queued job. But it might delay
subsequent queued jobs, including short ones, that will tudfer from a very large slowdown.
The conservative policy prohibits such backfilling, witle tfpecific goal of preventing such delays
for subsequent jobs. In the simulations with the Jann wadk|ahis turned out to be the decisive
factor. Similar observations have been made independeyntBrinivasan et al. [23].

To summarize, our analysis exposed the following triplerattion:

e The Jann and CTC workloads differ (among other things) in tha CTC workload is a
real trace including user estimates of runtime, whereagdaha model does not include this
detail.

e Due to using accurate estimates for the Jann model, the m@atise scheduler achieved
less backfilling of long jobs that use few processors. Thighgiously detrimental to the
performance of these long jobs, but turned out to be benkfaighort jobs that don’t get
delayed by these long jobs.

10

50000 T T T T —
% 40000 | cons_ervative — i 25000 —~CT1C w/ accurate estimates
£ difference -
8= i E Eeasy
/ i
© 30000 | /I g2 B cons
5 /% £ 15000
2 20000 | e 1 g
o }} © 10000
o - {,}% | a
o F— ¥ ; o
g 10000 f Lok = 5000
g T
© O PR BT 3 * oo K *%] 0 !
))))) <30s <5min <lhr <10hr >10hr
04 05 06 07 08 09 1 Job length
load
80 T T T T T — o5 —CTC w/ accurate estimates
c > '
% conservative —— 2 04 A
T 60r difference =~ 1 ul
s / = 03+
E 40 L/ b —;4% 02
5 = 0.1
L o i o 0.1 7
8 20 o - {/ '%
o s F T o I == T T
© 0 B e g g e e e <30s <5min <lhr <10hr >10hr
g o ETR job length
© *
_20 1 1 1 1 1 W
04 05 06 07 08 09 1 (for load of 0.8)
load

Figure 5:Results for the CTC workload when using actual runtimes tis1ates, to verify that this
is the cause of the Jann results. Compare with Figures 3 and 4.

e As response time is dominated by long jobs, the responsentietec showed that EASY is
better than conservative for the Jann workload. The slowdmetric, on the other hand, is
dominated by short jobs, so it showed conservative to betbett

As real workloads have inaccurate runtime estimates [18gems that in this particular case the
CTC results should be favored over the Jann results.

It should be noted that other works have also investigateeétfect of user runtime estimates
on performance [19, 27, 2]. However, these works did notidate the mechanisms by which the
inaccurate estimates cause their effect.

5.3 Non-Issues

Finding that the difference between the CTC and Jann rdsiniges on the runtime estimates was
surprising not only because this it routinely brushed aaglenimportant, but also because there
is no lack of other candidates, which seem much more signtfida this section we demonstrate
that they are indeed unimportant in our case.

The usual suspects regarding performance variations arstétistical differences between
the workloads. Figure 6 shows histograms of the distrilbuaibjob sizes for jobs with different
runtimes, comparing the two workloads. The most strikinffedence is that the Jann workload

11

CTC < 30sec Jann < 30sec

probability [%)]
o N £ (2]
probability [%)]
o N S (2]
L L L L

1 2 4 8 16 32 64 128 256 512 1 2 4 8 16 32 64 128 256 512
CTC < 5min Jann < 5min
-
6
& &
2 2 a4
3 3
« 5]
Qo Q
° o 2
o o
0
1 2 4 8 16 32 64 128 256 512 1 2 4 8 16 32 64 128 256 512

CTC < 1hr Jann < 1hr

probability [%]

o N £ (2]
probability [%]

o N S (2]

1 2 4 8 16 32 64 128 256 512 1 2 4 8 16 32 64 128 256 512

CTC < 18hrs3min Jann < 18hrs3min
—

probability [%)]

o N S o
probability [%)]

o N S o

1 2 4 8 16 32 64 128 256 512 1 2 4 8 16 32 64 128 256 512

CTC > 18hrs3min Jann > 18hrs3min

probability [%]
o N £ o
L L L
probability [%]
o N B o

T T T T T T
1 2 4 8 16 32 64 128 256 512 1 2 4 8 16 32 64 128 256 512

Figure 6: Histograms of job sizes for jobs of different durations. EE&ar represents a sequence
of sizes between powers of two. Note that some of the highwrdre truncated.

12

has tails at both ends, which the CTC workload does not. Thé @drkload is bounded at 18
hourd (an administrative issue), whereas the Jann workload had that extends beyond 30
hours. The CTC workload hardly has any jobs shorter than 80r&ks, probably due to the fact
that the measurement includes the time to start up the etjpnocesses on all the nodes, and to
report their termination. In the Jann model, by contradedton, over 10% of the jobs are shorter
than 30 seconds, and many jobs only run for a fraction of arekco

The long jobs in the tail could affect the results by causorgker delays to other jobs that wait
for their termination because they need their processareh&ck this, we re-ran the simulations
with a modified version of the Jann workload, in which all jésger than 18 hours were deleted.
The results were essentially the same as for the originatioad.

The short jobs could affect the results by contributing \regh values to the average slowdown
metric. This argument is not very strong, as we use the balst®vdown metric, which is
designed to reduce the impact of very short jobs. Neverkele re-ran the simulations with a
modified Jann workload, this time removing all the jobs shiattan 30 seconds. Again, the results
were not significantly different from those of the originabrkload.

Another major difference between the workloads is that enahginal CTC workload most
jobs use power-of-two nodes, whereas in the Jann model jelspaead evenly between each two
consecutive powers of two. Previous work has shown thatrdeion of jobs that are powers of
two is important for performance, as it is easier to pack pevfgwo jobs [17]. However, in our
case this seemed not to make a qualitative difference. Itolvasked by running the simulations
on a modified version of the Jann workload in which the size¥086 of the jobs were rounded up
to the next power of two.

Finally, the size of the system is also important. The Jandehgpecifies the use of 322 pro-
cessors, which is the number used in the simulations. For, @EQised 430 processors, which is
the size of the batch partition on the CTC machine. Reped#t@gimulations using 512 nodes led
to somewhat lower backfilling rates, because 512 is a powsvamfand therefore jobs pack much
better, leaving less holes in the schedule. However, tlaioaekhip between the two schedulers
did not change significantly.

6 Comparison with Feitelson Results

Having explained the results obtained using the CTC and vamkloads, and the reasons for
the differences between them, we now turn to the Feitelsaklaad (the behavior of the SDSC
workload is less interesting as it is similar to that of CTCphmparing this workload with the
previous two, the question is why no major differences aseoled between the performance of
the two schedulers in this case.

6.1 Long Serial Jobs

A special feature of the CTC and Jann workloads is that they ary many serial jobs, and
moreover, that most long jobs are serial. This is a resuli®fact that when the CTC SP2 machine

4About 2.4% of the workload exceed this bound and are killethleysystem. Of these, 90% are killed within one
minute, and another 5% within 5 minutes. The highest runtlveerved is 20 hours.

13

CTC Jann

08 58 - |
06 | 2

0.4 / / : 0.4 / 1

cummulative probability
o
(e}
cummulative probability
N
\
\

:
: /
0.2 f o 1 02 r 1
j ,
fi //

0 1 /’JL’ il 1 1 0 - / = . N 1 1
1 10 100 1000 10000 100000 1 10 100 1000 10000 100000
runtime [s] runtime [s]

SDSC Feitelson

ffffff

2-4 oo T
08 58----- A 081 cg <]

06 - 7 f 0.6 / T
0.4 |]

02 / 1

0 1 l 1 1 1 0 e 1 1 1 1
1 10 100 1000 10000 100000 1 10 100 1000 10000 100000

runtime [s] runtime [s]

0.4 e 1

0.2 r) R

cummulative probability
cummulative probability

Figure 7:Distributions of runtimes for jobs of different sizes in terious workloads.

was installed, it replaced a large ES/9000 mainframe, dmerited the mainframe’s workload (the
Jann model, in an attempt to model the CTC workload, copiedfdature). Indeed, the large
number of serial jobs and the large proportion of long sgolag are seen clearly in Figures 2 and
6. We may therefore conjecture that the performance diffaze we saw emanate specifically from
the backfilling of long serial jobs, and the subsequent detpyf larger short jobs. In the Feitelson
workload, in contrast, serial jobs tend to be shorter thegelaones.

To check that this explanation is viable, we first comparedis&ibutions of runtimes in the
various workloads, and how it correlates with job size. Trepfs are shown in Figure 7, with
a separate line for jobs in different ranges of size. Apamfimany interesting variations, one
feature does indeed stand out: in the CTC and Jann worklseda] jobs are generally very long
in comparison with larger job sizes. In the Feitelson woakloby contradistinction, serial jobs are
generally very short in comparison with larger job sizesthe SDSC workload, they are in the
middle.

6.2 \Verification Using the Feitelson Model

To verify this conjecture, we modified the Feitelson worklcend re-ran the simulations. Part
of this has been done in the past, as reported in [19]. Thagrpsygygested the following two
modifications to the Feitelson model (Figure 8 “Feitelse@TC"):

14

fraction of jobs Jann

fraction of jobs

b CTC —— cTC ——
0.4 4 0.4
0.2 0.2
01 A =7 > 100000 0.1 100000
0 o8 s BTEEDDD 1000 0) - 1000
. . - i 4 time
16 37 0.1 runtime 8 16 3 0.1 run
64 64
degree of parallelism 26256 0-001 degree of parallelism - 128256 0.001
i r
7 /
fraction of jobs / fraction of jobs /
/ cTC —— CTC ——
0.4 / 0.4
0.3 0.3
o > 100000 01 > 100000
0 1000 0 1000
1 o 1 0
0.1 runtime 0.1 runtime

2 64
degree of parallelism +28256 0.001

2 64
degree of parallelism +28256 0.001

Figure 8: Detailed comparison of different workloads, using the CT@kioad as a reference.
The second modification of the Feitelson model only affeet&@gjobs, and does not in general

resemble the CTC or Jann workloads.

e Modify the distribution of job sizes to emphasize small jodsd

e Modify the distribution of runtimes to emphasize longergob

The details of implementing these modifications were harldréal to create a workload that
closely resembled both the CTC and Jann workloads. In péaticthe distribution of sizes em-
phasized serial jobs and jobs in the range of sizes from 8,targl serial jobs also received special
treatment in terms of making them longer. Note that this isdats with the original Feitelson
model, in which a weak correlation exists between job sizerantime [7]. Simulating the behav-
ior of the EASY and conservative schedulers on this modifieitelson workload indeed showed
behavior similar to that of the Jann workload (Figure 9 téfwever, the magnitude of the effect
was smaller.
Based on our current understanding of the matter, we carestggimpler modification:

e Specifically create many long serial jobs.

This leads to a model that is quite different from the Jann@n@ workloads, because only the
serial jobs have been changed (Figure 8 “Feitelssar”’). However, making this change and re-

15

Feitelson workload modified to resemble Jann/CTC

50000 \

- EASY =

= 40000 | conservative —+—

g difference - x-

@ 30000 |

c

=

o 20000 r -

& 1

5 o

& 10000 r

g %

© 0 F-meee B T cEe T

04 05 06 07 08 09

load

average bounded slowdown

140
120
100

Feitelson workload modified to include numerous long s¢oias

100000
o
o 80000
£
@ 60000
c
S
& 40000
o
(]
g 20000
e
® 0

EASY -
conservative —+—
difference - -

load

average bounded slowdown

500

400

300

200

100

0

-100

I EASY =

I conservative ——

L difference =

o Ry s ey

0.4 0.5 0.6 0.7 0.8 0.9
load

EASY - !
L conservative ——— '
difference -

e * * Fo K ¥y

0.4 0.5 0.6 0.7 0.8 0.9
load

Feitelson workload modified to include numerous long sgoias, using 139 nodes

100000
@
o 80000
£
@ 60000
c
2
@ 40000
o
S
g 20000
g
© 0

Figure 9: Simulation results for modified Feitelson workloads. Corepaith results shown in

Figure 3.

EASY -
conservative —+—
difference -x-

16

average bounded slowdown

500

400

300

200

100

0

-100

EASY -
conservative ——
difference - -

running the simulatiortsproduced results that are quite similar to the previous,enababorate
modified model (Figure 9 middle). Thus we can indeed claimaehdentified the crucial aspect
of the workload that is needed in order to create the disti@cesults seen with the Jann and CTC
workloads.

However, the results are still much less pronounced thasetlbbtained from the Jann work-
load. Given that the original modification of the Feitelsaorioad (Feitelson-CTC) is extremely
similar to the CTC and Jann workloads, the explanation f@ ih not the workload statistics.
Rather, it is the size of the machine used in the simulati@ngi139 nodes instead of 128 sig-
nificantly increases the gap in performance observed bet&&&Y and conservative (Figure 9
bottom). The reason for this is that most job sizes are powfergo, so using a machine size that
is not a power of two leads to more idle processors and morerggpfor backfilling. Both the CTC
and Jann workloads specify non-power-of-2 sizes.

7 Conclusions

Simulations of the relative performance of EASY and consive backfilling, using different
workloads and metrics, exhibit discrepant results. Howedetailed analysis of the specific cir-
cumstances of each simulation allows us to elucidate tthewolg general conclusions:

e If the workload does not contain many long serial jobs, babkifilling policies lead to
similar performance results.

¢ If the workload does indeed contain many long serial jobsyas the case at CTC, and to
a lesser degree at SDSC, the relative performance depents ancuracy of user runtime
estimates and on the number of nodes in the system.

— If user runtime estimates are inaccurate, the EASY poliag$eto better results. This
is expected to be the more common case.

— But if user runtime estimates are highly accurate, consies/backfilling degrades the
performance of the long serial jobs and enhances the peafurenof larger short jobs.
This leads to better overall slowdown results.

— This effect is intensified when the number of nodes is not ago@#/two.

This can be formulated as a decision tree for use in predigtarformance.

Apart for settling the issue of the relative merits of EASYdatonservative backfilling, this
work also underscores the importance of workload modeldfaiddetails. All the workloads we
investigated have been accepted as reasonable and repteselny researchers who have used
them in the past. But using different workloads can lead tometely different results, none of
which are universally correct. If this happens, one should the workload features that lead

5The Feitelson model is somewhat problematic in the sensé #tanetimes produces workloads that are not well-
behaved when the load is increased by multiplying all artivaes by a constant smaller than unity. The causes for
this behavior, and indeed how to model different load cdod# in general, is the subject of a separate research.effort
In our case, the suggested modification seemed to accentgafgoblem. The solution was to generate multiple
workloads using different random number streams, and wsertbk in which the load could be increased in the most

predictable manner.

17

to the performance differences. This then enables the girediof performance results for new
workload conditions.

In addition to different workloads, seemingly benign asptions can also have a decisive
impact on evaluation results. In our case, the assumpti@ecairate runtime estimates, shown to
be unlikely to be true in [19, 15], was now shown to be instratakin the results obtained using
the Jann workload. This underscores the need to collectegalthat can serve as the basis for
performance evaluation, reducing the risk of using unbassdmptions.

Acknowledgments

This research was supported in part by the Israel Sciencadation (grant no. 219/99). The workload
models and logs on which it is based are available on-line fiiwe Parallel Workloads Archive [1]. The

workload log from the CTC SP2 was graciously provided by tben@€ll Theory Center, a high-performance
computing center at Cornell University, Ithaca, New Yorl§Al The workload log from the SDSC SP2 was
graciously provided by the HPC Systems group of the San D&gmercomputer Center (SDSC), which is
the leading-edge site of the National Partnership for AdeanComputational Infrastructure (NPACI). The
code for the Jann model was graciously provided by Joefon gaiBM Research. Many thanks to them
for making the data available and for their help with backapa information and interpretation.

References

[1] “Parallel workloads archive URL http://www.cs.huji.ac.il/labs/parallel/worklo

[2] S-H. Chiang, A. Arpaci-Dusseau, and M. K. VernoitHe impact of more accurate requested runtimes
on production job scheduling performaficeln Job Scheduling Srategies for Parallel Processing,
D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn (edp.)19§3-127, Springer Verlag, 2002. Lect.
Notes Comput. Sci. vol. 2537.

[3] W. Cirne and F. Berman,A comprehensive model of the supercomputer workloaal 4th Workshop
on Workload Characterization, Dec 2001.

[4] W. Cirne and F. Berman,A model for moldable supercomputer jébdn 15th Intl. Parallel & Dis
tributed Processing Symp., Apr 2001.

[5] A. B. Downey, “Predicting queue times on space-sharing parallel congiuter 11th Intl. Parallel
Processing Symp., pp. 209-218, Apr 1997.

[6] D. G. Feitelson, Metric and workload effects on computer systems evaluatioBomputer 36(9),
pp. 18-25, Sep 2003.

[7] D. G. Feitelson, Packing schemes for gang schedulingn Job Scheduling Strategies for Parallel
Processing, D. G. Feitelson and L. Rudolph (eds.), pp. 89-110, Sprivgelag, 1996. Lect. Notes
Comput. Sci. vol. 1162.

[8] D. G. Feitelson, L. Rudolph, U. Schwiegelshohn, K. C. 8kvand P. Wong, Theory and practice
in parallel job schedulirig In Job Scheduling Strategies for Parallel Processing, D. G. Feitelson and
L. Rudolph (eds.), pp. 1-34, Springer Verlag, 1997. LecteN@omput. Sci. vol. 1291.

[9] R. Jain,The Art of Computer Systems Performance Analysis. John Wiley & Sons, 1991.

18

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]

[22]

[23]

J. Jann, P. Pattnaik, H. Franke, F. Wang, J. Skovira JaRiodan, Modeling of workload in MPPs
In Job Scheduling Srategies for Parallel Processing, D. G. Feitelson and L. Rudolph (eds.), pp. 95—
116, Springer Verlag, 1997. Lect. Notes Comput. Sci. va@112

J. P. Jones and B. Nitzbergstheduling for parallel supercomputing: a historical pecsive of achiev-
able utilizatiori. In Job Scheduling Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph
(eds.), pp. 1-16, Springer-Verlag, 1999. Lect. Notes Cdntpei. vol. 1659.

E. Krevat, J. G. Castafios, and J. E. Moreirdoti scheduling for the BlueGene/L systemn Job
Scheduling Strategies for Parallel Processing, D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn
(eds.), pp. 38-54, Springer Verlag, 2002. Lect. Notes Cdngai. vol. 2537.

A. M. Law and W. D. KeltonSmulation Modeling and Analysis. McGraw Hill, 3rd ed., 2000.

B. G. Lawson and E. Smirni, Multiple-queue backfilling scheduling with priorities amdserva-
tions for parallel systenis In Job Scheduling Strategies for Parallel Processing, D. G. Feitelson,
L. Rudolph, and U. Schwiegelshohn (eds.), pp. 72-87, Serikgrlag, 2002. Lect. Notes Comput.
Sci. vol. 2537.

C. B. Lee, Y. schwartzman, J. Hardy, and A. Snavelte' user runtime estimates inherently inaccu-
rate?. In Job Scheduling Strategies for Parallel Processing, Springer-Verlag, 2004. (to appear).

D. Lifka, “ The ANL/IBM SP scheduling systémIn Job Scheduling Strategies for Parallel Process-
ing, D. G. Feitelson and L. Rudolph (eds.), pp. 295-303, Sprilvgdag, 1995. Lect. Notes Comput.
Sci. vol. 949.

V. Lo, J. Mache, and K. Windisch,A comparative study of real workload traces and synthetic
workload models for parallel job scheduling In Job Scheduling Strategies for Parallel Process-

ing, D. G. Feitelson and L. Rudolph (eds.), pp. 25-46, Springatad, 1998. Lect. Notes Comput.
Sci. vol. 1459.

M. H. MacDougall,Smulating Computer Systems. Techniques and Tools. MIT Press, 1987.

A.W. Mu’'alem and D. G. FeitelsonUtilization, predictability, workloads, and user runtiragtimates
in scheduling the IBM SP2 with backfillirig |EEE Trans. Parallel & Distributed Syst. 12(6), pp. 529—
543, Jun 2001.

L. Rudolph and P. Smith,Valuation of ultra-scale computing systeémin Job Scheduling Strategies
for Paralldl Processing, D. G. Feitelson and L. Rudolph (eds.), pp. 39-55, Springelad, 2000. Lect.
Notes Comput. Sci. vol. 1911.

E. Shmueli and D. G. FeitelsonBackfilling with lookahead to optimize the performance ofgiel
job scheduling. In Job Scheduling Strategies for Parallel Processing, D. G. Feitelson, L. Rudolph, and
U. Schwiegelshohn (eds.), pp. 228-251, Springer-Verla@§32Lect. Notes Comput. Sci. vol. 2862.

M. S. Squillante, D. D. Yao, and L. ZhangThe impact of job arrival patterns on parallel scheduling
Performance Evaluation Rev. 26(4), pp. 52-59, Mar 1999.

S. Srinivasan, R. Kettimuthu, V. Subramani, and P. $adpan, Selective reservation strategies
for backfill job scheduling In Job Scheduling Strategies for Parallel Processing, D. G. Feitelson,
L. Rudolph, and U. Schwiegelshohn (eds.), pp. 55-71, Serikgrlag, 2002. Lect. Notes Comput.
Sci. vol. 2537.

19

[24] D. Talby and D. G. Feitelson Supporting priorities and improving utilization of the IB&P scheduler
using slack-based backfillingln 13th Intl. Parallel Processing Symp., pp. 513-517, Apr 1999.

[25] D. Tsafrir and D. G. FeitelsoWbrkload Flurries. Technical Report 2003-85, Hebrew University, Nov
2003.

[26] Y. Zhang, H. Franke, J. E. Moreira, and A. Sivasubramami‘/Improving parallel job scheduling by
combining gang scheduling and backfilling technigués 14th Intl. Parallel & Distributed Process-
ing Symp., pp. 133-142, May 2000.

[27] D. Zotkin and P. J. KeleherJbb-length estimation and performance in backfilling safed’. In 8th
Intl. Symp. High Performance Distributed Comput., Aug 1999.

20

