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Abstract

The complexity of modern computer systems may enable miadatons in performance
evaluation procedures to actually determine the outconoe c@se study concerns the compar-
ison of two parallel job schedulers, using different wodds and metrics. It shows that metrics
may be sensitive to different job classes, and not measarpatiormance of the whole work-
load in an impartial manner. Workload models may implicilgsume that some workload
attribute is unimportant and does not warrant modelings thd can turn out to be wrong. As
such effects are hard to predict, a careful experimentahoaetogy is needed in order to find
and verify them.
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1 Introduction

The goal of performance evaluation is often to compare miffesystem designs or implemen-
tations. The evaluation is expected to bring out perforraatitferences that will allow for an
educated decision regarding what design to employ or whaesyto buy. Thus it is implicitly
assumed that observed performance differences indeedtrefleortant differences between the
systems being studied.

However, performance differences may also be an artifattteoévaluation methodology. The
performance of a system is not only a function of the systesigdeand implementation. It may
also be affected by the workload to which the system is stdje@nd even by the metric being
used to gauge the performance. Thus it is important to utadeighe effect of the workload and
metrics on the evaluation. To complicate matters, in sorsesthe effect is not due to the metric
or workload alone, but rather to an interaction between thetthe system [3]. We present a case
study of a detailed analysis of such a situation.

The domain we will use is the scheduling of parallel jobs fa@ition on a parallel supercom-
puter. Such scheduling is typically done by partitioning thachine’s processors and running a
job on each partition. This is similar to packing in two dirsems. Regard one dimension as rep-
resenting processors, and the other as representing tinparailel job is a rectangle, representing
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the use of a certain number of processors for a certain darafitime. The scheduler has to pack
these rectangles as tightly as possible, within the spamadad by the available resources. The
sizes of the rectangles are known, as each submitted jobscwitiea specification of how many
processors to use, and an estimate of how long it will run.

Given that jobs come in various sizes, they typically do rextkpperfectly. Therefore holes
are left in the schedule. Backfilling is the optimization nfing to fill in these holes using newly
submitted small jobs. Two main versions of backfilling haeet studied. EASY backfilling is
aggressive in trying to maximize system utilization [10].h& the first queued job cannot be
scheduled because enough processors are not availalalleulates when the required processors
are expected to become free (based on the running jobsimargstimates), and makes a reserva-
tion to run this job at that time. It then continues to scangheue of waiting jobs, and allocates
processors to any job that is small enough and will not ieterfvith the commitment to run the
first queued job. Conservative backfilling places a greatgphasis on predictability [13], and
makes a reservation for every queued job.

The two versions of backfilling make different tradeoffsastjng the number of reservations
and their effect on backfilling and predictability. The qgties is then which of the two approaches
is better. Our case study is a set of simulations designexdsiwer this question.

2 Evaluation Methodology and Results

We perform the evaluation by discrete event simulation. @yents of interest are the arrival and
termination of jobs. Each job requires a certain number ot@ssors, runs for a certain time,
and also has a user estimate of its runtime. As each job tatesnthe quality of the service it
had received is tabulated. One of the most commonly usedanédr scheduling is the average
response time (the time from when a job was submitted urtgrminated). An alternative is the
slowdown (the response time normalized by the job’s actuahing time). This measures how
much slower the job ran due to scheduling conflicts with caimgegobs, and seems to better
capture users’ expectations that a job’s response timeb@ipiroportional to its runtime. We use
a version known as “bounded slowdown” [5], where a threslbltO seconds is used rather than
the actual runtime for very short jobs.

The simulation uses the batch means approach to evaludidexare intervals for the average
response time and slowdown [6]. The batch size is set to b@ i}, as recommended by
MacDougall for open systems under high load [12]. Dependimthe length of the workload log,
10 to 17 batches were completed, and the first discardedrig thre system to a steady state. We
also performed a more sophisticated analysis of thesetsassihg the common random numbers
variance reduction technique [8]. In this analysis, we fo@inpute the difference in response
times or slowdowns between the two schedulers on a per-jeis,bahich is possible because
we are using the same workload log. We then compute confidatex®als on these differences
using the batch means approach. If the confidence intergat®tinclude zero, the difference is
significant.

The study used workloads from the parallel workloads aectwww.cs.huji.ac.il/labs/parallel/workload
The main ones are a log of jobs run on the Cornell Theory C4GEEC) IBM SP2 machine from



July 1996 through May 1997and a model based on the fi@} months of this workload which
was created by Jann et al. [7]. Despite the close relatipristiveen the two workloads, there are
several differences:

e In the CTC workload, most jobs request a power-of-two numdfenodes. In the Jann
workload it was decided not to favor powers of two, based @nabsumption that this is
not a real attribute of the workload but rather a consequehadministrative policies. This
notion was later borne out by a user survey conducted by @mdeBerman [2].

e The CTC workload had a sharp administrative limit on runtiael8 hours. In the Jann
model there is no such limit, as a continuous distributionsied to represent the runtimes,
so some extend beyond 18 hours. At the other extreme, the 63 Gdrdly has any jobs
shorter than 30 seconds, probably because the measuremeneis the time to start up all
the processes and to report their termination. In the Jardehi®% of the jobs are shorter
than 30 seconds, and many are sub-second.

e The Jann model uses a hyper-Erlang distribution to mode¢imas and interarrival times.
While this matches the first three moments of the originairidhstion, it also leads to a
somewhat bimodal structure that does not exist in the algin

e The Jann model does not include the modeling of user estnediteintime. We therefore
used the actual runtime in the simulations. This is equitai® assuming that the estimates
are perfect.

In addition, we also use a log of jobs run on the San-Diego Ropaputer Center (SDSC)
IBM SP2 from May 1998 through April 2060and a model proposed by Feitelson [4]. These two
workloads have a similar distribution of job sizes which feser small jobs than the CTC and
Jann workloads. The Feitelson model is also unique in haviagy more short jobs. The SDSC
log also has shorter jobs than CTC and Jann, but not as shartlesFeitelson model.

Each workload is represented by a single data file specifthegarrival time, runtime, and
number of processors used by each job, and in the case of tiea@d SDSC workloads, also the
estimated runtime. In order to create different load coons, all the arrival times are multiplied
by a suitable constant. For example, if the original worHl&ke leads to a load of 0.7 of capacity,
multiplying all interarrival times by a factor af/8 = 0.875 will cause the jobs to arrive faster, and
increase the load to 0.8 of capacity.

The typical methodology for evaluating systems (in our cashedulers) calls for simulating
their behavior, and tabulating the resulting performanfdes is usually repeated numerous times
under different conditions, including different load l&vand different parameter settings for the
system. This enables a study of how the system respondsttoend what parameter settings lead
to optimal performance.

For the simulations and analysis reported here we removedrg #f 1999 one-node jobs lasting about 42—48
seconds each that were submitted by user 135 in one day; ssisreed that this was the result of a misbehaving
script. This large burst of small jobs is very sensitive ttadle of the scheduling and tends to cause large fluctuations
in simulation results. It represents 2.55% of the total w@all of 78500 jobs. The justification for removing such
flurries is elaborated in [15].

2In this log we also removed two flurries, one composed of 3@1se one-node jobs by user 365, and the other
composed of 1-minute 32-node jobs by user 319 [15]; they aosvk to affect simulation results, but in the specific
simulations used here they seem to have only a marginakeffec
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Figure 1: Simulation results with 90% confidence intervals. “Diffece” is conservative minus
EASY.



In this paper we emphasize two other dimensions insteadwtrkload used to drive the
simulation, and the metric used to measure the resultsré-igshows results of comparing our two
schedulers using the four different workloads and two difé metrics. In all cases, simulations
are run for different load levels, and the behavior of thaeysas a function of load is plotted.
These results can be divided into four groups:

o Results which show that EASY is better than conservativesé&hnclude the results obtained
with the CTC, SDSC, and Jann workloads, when using the regptime metric.

e Results which show that conservative is better than EAS¥hS3esults were obtained from
the Jann workload when using the bounded slowdown metric.

¢ Results showing that both schedulers are essentially the.sBhe results from the Feitelson
model fall into this class.

e A combination: results that show the schedulers to be etpnvainder most loads, and
show an advantage for EASY only under high load. Such reswéte observed for CTC
and SDSC when using the bounded slowdown metric. It shoulddbed that such high
loads are seldom achieved in practice on this class of mashin

In short, if only a single set of results is used, the condsiwould depend on which specific set
was chosen. Our goal in the next sections is to uncover theauses for these discrepant results.

3 Analysis of Jann vs. CTC Results

As noted above, the Jann model is specifically meant to mingcXTC workload. Nevertheless,
the simulation results indicate that the two produce djzané predictions. For the Jann workload
the response time metric favors EASY backfilling, whereasslbwdown metric favors conserva-
tive backfilling. The CTC workload, at the same time, favosSSY for both metrics (albeit for
slowdown only under very high load). This is therefore altyua triple interaction of scheduler,
workload, and metric. In this section we focus on a detailelysis of how this triple interaction
comes about.

Both the slowdown metric and the backfilling policy are sewsito job duration. We therefore
partitioned the jobs into five classes according to theiatian, and tabulated the results for each
class separately. The classes used were very shasbgec), short£ 5min), medium & 1hr),
long (< 10hr), and very long$ 10hr). In the results for the CTC workload, both metrics favor
EASY backfilling for each class individually, and also fol af them together. But in the Jann
workload we indeed see a difference that depends on job. ckmsjobs that are longer than 1
hour, both metrics favor EASY. But for shorter jobs, both nostfavor conservative backfilling.
This behavior leads directly to the results quoted abovelerwhole workload. The average
response time of all jobs is dominated by the high valuesessmting long jobs, and is therefore
similar to the response time for long jobs, and favors EASY. the average slowdown, on the
other hand, the high values come from the short jobs, becawsey small denominator leads
to a high value. Thus the average becomes similar to the slawaf short jobs, which favors
conservative.
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Figure 2: Increased backfilling with EASY relative to conservativéeduler. Data for load of
0.85.

The breakdown into classes indicates that the differentedsm the CTC and Jann results is
due to the short jobs, which fare better under conservativee Jann workload, but not in the
CTC workload. To try and understand why this happens, we teedderstand how the scheduler
interacts with the workload. As the difference between e schedulers is in their backfilling
policy, a good place to start is investigating their baakiglpatterns. Figure 2 shows how much
more backfilling is achieved by EASY, as a fraction of the biglakg achieved by conservative;
thus a value of 0.1 means that EASY did 10% more backfillingp&singly, for CTC conservative
backfilling actually achieves somewhat higher backfilliegdls! But the main difference between
the workloads is that under the Jann workload, EASY achiewadh more backfilling of long
jobs.

After checking many other possibilities (see below), thet ause for this was found to be the
use of accurate runtime estimates with the Jann workloadur&te runtime estimates provide full
information for backfilling decisions. The conservativgaithm has to take multiple reservations
into account, and this is especially problematic for lonigsjothat have the potential to interact
with many other jobs. EASY, on the other hand, only has to iciemne reservation. Therefore
conservative achieves much less backfilling. But when edgémare inaccurate, jobs tend to ter-
minate before the time expected by the scheduler. Thisegdutles in the schedule that provide
new backfilling opportunities, that can be exploited by &thedulers.

To verify this hypothesis, we re-ran the CTC simulationsumihg the actual runtimes rather
than the original user estimates to control the backfillifge results, shown in Figure 3, largely
confirm the conjecture. When using accurate estimatesgceaats/e performed much less back-
filling of long jobs than before. And as expected, this led moiraversion of the results, with
conservative achieving better average slowdown scoresmias but weaker effect also occurred
when running the SDSC workload with accurate runtime es@mal he results were inverted, but
the difference was much closer to zero.

We are now left with one last question: how does the reduceHfiiang under the conserva-
tive policy lead to better performance when measured us$iaglowdown metric? The reduced
backfilling applies tdong jobs. On the other hand, slowdown is sensitive mainishtw't jobs. Re-
call that under the EASY policy backfilling is allowed proeil it does not delay the first queued
job. But it might delay subsequent queued jobs, includirgrtsbnes, that will then suffer from a
very large slowdown. The conservative policy prohibitstsbackfilling, with the specific goal of
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Figure 3:Results for the CTC workload when using actual runtimes tis1ates, to verify that this
is the cause of the Jann results. Compare with Figures 1 and 2.

preventing such delays for subsequent jobs. In the sinomgivith the Jann workload, this turned
out to be the decisive factor. Similar observations have lbeade independently by Srinivasan et
al. [14].

To summarize, our analysis exposed the following triplernattion:

e The Jann and CTC workloads differ (among other things) in tha CTC workload is a
real trace including user estimates of runtime, whereagdaha model does not include this
detail.

e Due to using accurate estimates for the Jann model, the matise scheduler achieved
less backfilling of long jobs that use few processors. Thighgiously detrimental to the
performance of these long jobs, but turned out to be benkfaiahort jobs that don’t get
delayed by these long jobs.

e As response time is dominated by long jobs, the responsentietec showed that EASY is
better than conservative for the Jann workload. The slowdmetric, on the other hand, is
dominated by short jobs, so it showed conservative to betbett

It should be noted that other works have also investigatectfect of user runtime estimates on
performance [13, 16, 1]. However, these works did not elieidhe mechanisms by which the
inaccurate estimates cause their effect.

Finding that the difference between the CTC and Jann relsulges on the runtime estimates
was surprising not only because this is routinely brushédkass unimportant, but also because
there is no lack of other candidates, which seem much morgfisgnt. The usual suspects re-
garding performance variations are the statistical dé¢fiees between the workloads. The most
striking difference is that the Jann workload has tails dhlemds, which the CTC workload does
not (Section 2).

The long jobs in the tail could affect the results by causorgkr delays to other jobs that wait
for their termination because they need their processarsh&ck this, we re-ran the simulations
with a modified version of the Jann workload, in which all jésger than 18 hours were deleted.
The results were essentially the same as for the origingtlead. The short jobs could affect the
results by contributing very high values to the average dtmwn metric. This was checked by
removing all the jobs shorter than 30 seconds. Again, thateesere not significantly different
from those of the original workload.
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Figure 4:Distributions of runtimes for jobs of different sizes in terious workloads.

Another major difference between the workloads is that andhginal CTC workload most
jobs use power-of-two nodes, whereas in the Jann model jelspaead evenly between each two
consecutive powers of two. Previous work has shown thatrdeion of jobs that are powers of
two is important for performance, as it is easier to pack pevégwo jobs [11]. However, in our
case this seemed not to make a qualitative difference. Itivasked by running the simulations on
a modified version of the Jann workload in which the sizes 8 &® the jobs (chosen at random)
were rounded up to the next power of two.

Finally, the size of the system is also important. The Jandehgpecifies the use of 322 pro-
cessors, which is the number used in the simulations. For, @BQised 430 processors, which is
the size of the batch partition on the CTC machine. Reped#t@gimulations using 512 nodes led
to somewhat lower backfilling rates, because 512 is a powsvafand therefore jobs pack much
better, leaving less holes in the schedule. However, tlaioaekhip between the two schedulers
did not change significantly.

4 Comparison with Other Results

Having explained the results obtained using the CTC and vamkloads, and the reasons for
the differences between them, we now turn to the Feitelsakload (the behavior of the SDSC
workload is less interesting as it is similar to that of CTCphmparing this workload with the
previous two, the question is why no major differences aseoled between the performance of
the two schedulers in this case.

A special feature of the CTC and Jann workloads is that thex wary many serial jobs,
and moreover, that most long jobs are serial (Figure 4). W therefore conjecture that the
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The second modification of the Feitelson model only affeet&@agjobs, and does not in general
resemble the CTC or Jann workloads.

performance differences we saw emanate specifically frenb#ckfilling of long serial jobs, and
the subsequent delaying of larger short jobs. In the Femelgorkload, in contrast, serial jobs tend
to be shorter than larger ones.

To verify this conjecture, we modified the Feitelson workl@and re-ran the simulations. Part
of this has been done in the past, as reported in [13]. Thargamgested modifying the following
two attributes of the Feitelson model (Figure 5 “Feitelse@TC"):

e Modify the distribution of job sizes to emphasize small jodnsd
¢ Modify the distribution of runtimes to emphasize longergob

The details of implementing these modifications were haidréa to create a workload that
closely resembled both the CTC and Jann workloads. In pdaticthe distribution of sizes em-
phasized serial jobs and jobs in the range of sizes from 8,tar&1 serial jobs also received special
treatment in terms of making them longer. Note that this isdats with the original Feitelson
model, in which a weak correlation exists between job sizkrantime [4]. Simulating the behav-
ior of the EASY and conservative schedulers on this modifieitelson workload indeed showed
behavior similar to that of the Jann workload (Figure 6 téfwever, the magnitude of the effect
was smaller.
Based on our current understanding of the matter, we carestiggimpler modification:
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e Specifically create many long serial jobs.

This leads to a model that is quite different from the Jann@n@ workloads, because only the
serial jobs have been changed (Figure 5 “Feitelsear”). However, making this change and
re-running the simulations produced results that are cumdar to the previous, more elaborate
modified model (Figure 6 middle). Thus we can indeed claimawehdentified the crucial aspect
of the workload that is needed in order to create the disti@acesults seen with the Jann and CTC
workloads — the presence of long serial jobs.
However, the results are still much less pronounced thasetbtained from the Jann work-
load. Given that the original modification of the Feitelsaorioad (Feitelsor>CTC) is extremely
similar to the CTC and Jann workloads, the explanation fa ith not the workload statistics.
Rather, it is the size of the machine used in the simulati@ngi139 nodes instead of 128 sig-
nificantly increases the gap in performance observed bet&&&SY and conservative (Figure 6
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bottom). The reason for this is that most job sizes are powfdrso, so using a machine size that
is not a power of two leads to more idle processors and morerggpfor backfilling. Both the CTC
and Jann workloads specify non-power-of-2 sizes.

5 Conclusions

Simulations of the relative performance of EASY and consive backfilling, using different
workloads and metrics, exhibit discrepant results. Howedetailed analysis of the specific cir-
cumstances of each simulation allows us to elucidate th@ioilg general conclusions:

¢ If the workload does not contain many long serial jobs, bathkifilling policies lead to
similar performance results.

¢ If the workload does indeed contain many long serial jobsyas the case at CTC, and to
a lesser degree at SDSC, the relative performance depents ancuracy of user runtime
estimates and on the number of nodes in the system.

— If user runtime estimates are inaccurate, the EASY poliag$eto better results. This
is expected to be the more common case.

— But if user runtime estimates are highly accurate, consies/backfilling degrades the
performance of the long serial jobs and enhances the peafuzenof larger short jobs.
This leads to better overall slowdown results.

— This effect is intensified when the number of nodes is not ago@#/two.

Apart for settling the issue of the relative merits of EASYdatonservative backfilling, this
work also underscores the importance of workload modeldfaiddetails. All the workloads we
investigated have been accepted as reasonable and reptiesely researchers who have used
them in the past. But using different workloads can lead tometely different results, none of
which are universally correct. If this happens, one should the workload features that lead
to the performance differences. This then enables the girediof performance results for new
workload conditions.

In addition to different workloads, seemingly benign asptions can also have a decisive
impact on evaluation results. In our case, the assumpti@ca@irate runtime estimates, which is
actually unlikely to be true [13, 9], was now shown to be instental in the results obtained using
the Jann workload. This underscores the need to collectegalthat can serve as the basis for
performance evaluation, reducing the risk of using unbassdmptions.
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