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Abstract

The complexity of modern computer systems may enable minor variations in performance
evaluation procedures to actually determine the outcome. Our case study concerns the compar-
ison of two parallel job schedulers, using different workloads and metrics. It shows that metrics
may be sensitive to different job classes, and not measure the performance of the whole work-
load in an impartial manner. Workload models may implicitlyassume that some workload
attribute is unimportant and does not warrant modeling; this too can turn out to be wrong. As
such effects are hard to predict, a careful experimental methodology is needed in order to find
and verify them.
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1 Introduction

The goal of performance evaluation is often to compare different system designs or implemen-
tations. The evaluation is expected to bring out performance differences that will allow for an
educated decision regarding what design to employ or what system to buy. Thus it is implicitly
assumed that observed performance differences indeed reflect important differences between the
systems being studied.

However, performance differences may also be an artifact ofthe evaluation methodology. The
performance of a system is not only a function of the system design and implementation. It may
also be affected by the workload to which the system is subjected, and even by the metric being
used to gauge the performance. Thus it is important to understand the effect of the workload and
metrics on the evaluation. To complicate matters, in some cases the effect is not due to the metric
or workload alone, but rather to an interaction between themand the system [3]. We present a case
study of a detailed analysis of such a situation.

The domain we will use is the scheduling of parallel jobs for execution on a parallel supercom-
puter. Such scheduling is typically done by partitioning the machine’s processors and running a
job on each partition. This is similar to packing in two dimensions. Regard one dimension as rep-
resenting processors, and the other as representing time. Aparallel job is a rectangle, representing
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the use of a certain number of processors for a certain duration of time. The scheduler has to pack
these rectangles as tightly as possible, within the space provided by the available resources. The
sizes of the rectangles are known, as each submitted job comes with a specification of how many
processors to use, and an estimate of how long it will run.

Given that jobs come in various sizes, they typically do not pack perfectly. Therefore holes
are left in the schedule. Backfilling is the optimization of trying to fill in these holes using newly
submitted small jobs. Two main versions of backfilling have been studied. EASY backfilling is
aggressive in trying to maximize system utilization [10]. When the first queued job cannot be
scheduled because enough processors are not available, it calculates when the required processors
are expected to become free (based on the running jobs’ runtime estimates), and makes a reserva-
tion to run this job at that time. It then continues to scan thequeue of waiting jobs, and allocates
processors to any job that is small enough and will not interfere with the commitment to run the
first queued job. Conservative backfilling places a greater emphasis on predictability [13], and
makes a reservation for every queued job.

The two versions of backfilling make different tradeoffs regarding the number of reservations
and their effect on backfilling and predictability. The question is then which of the two approaches
is better. Our case study is a set of simulations designed to answer this question.

2 Evaluation Methodology and Results

We perform the evaluation by discrete event simulation. Theevents of interest are the arrival and
termination of jobs. Each job requires a certain number of processors, runs for a certain time,
and also has a user estimate of its runtime. As each job terminates, the quality of the service it
had received is tabulated. One of the most commonly used metrics for scheduling is the average
response time (the time from when a job was submitted until itterminated). An alternative is the
slowdown (the response time normalized by the job’s actual running time). This measures how
much slower the job ran due to scheduling conflicts with competing jobs, and seems to better
capture users’ expectations that a job’s response time willbe proportional to its runtime. We use
a version known as “bounded slowdown” [5], where a thresholdof 10 seconds is used rather than
the actual runtime for very short jobs.

The simulation uses the batch means approach to evaluate confidence intervals for the average
response time and slowdown [6]. The batch size is set to be 5000 jobs, as recommended by
MacDougall for open systems under high load [12]. Dependingon the length of the workload log,
10 to 17 batches were completed, and the first discarded to bring the system to a steady state. We
also performed a more sophisticated analysis of these results using the common random numbers
variance reduction technique [8]. In this analysis, we firstcompute the difference in response
times or slowdowns between the two schedulers on a per-job basis, which is possible because
we are using the same workload log. We then compute confidenceintervals on these differences
using the batch means approach. If the confidence intervals do not include zero, the difference is
significant.

The study used workloads from the parallel workloads archive (www.cs.huji.ac.il/labs/parallel/workload).
The main ones are a log of jobs run on the Cornell Theory Center(CTC) IBM SP2 machine from
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July 1996 through May 19971, and a model based on the first2
1

2
months of this workload which

was created by Jann et al. [7]. Despite the close relationship between the two workloads, there are
several differences:

• In the CTC workload, most jobs request a power-of-two numberof nodes. In the Jann
workload it was decided not to favor powers of two, based on the assumption that this is
not a real attribute of the workload but rather a consequenceof administrative policies. This
notion was later borne out by a user survey conducted by Cirneand Berman [2].

• The CTC workload had a sharp administrative limit on runtimeat 18 hours. In the Jann
model there is no such limit, as a continuous distribution isused to represent the runtimes,
so some extend beyond 18 hours. At the other extreme, the CTC log hardly has any jobs
shorter than 30 seconds, probably because the measurement includes the time to start up all
the processes and to report their termination. In the Jann model 10% of the jobs are shorter
than 30 seconds, and many are sub-second.

• The Jann model uses a hyper-Erlang distribution to model runtimes and interarrival times.
While this matches the first three moments of the original distribution, it also leads to a
somewhat bimodal structure that does not exist in the original.

• The Jann model does not include the modeling of user estimates of runtime. We therefore
used the actual runtime in the simulations. This is equivalent to assuming that the estimates
are perfect.

In addition, we also use a log of jobs run on the San-Diego Supercomputer Center (SDSC)
IBM SP2 from May 1998 through April 20002, and a model proposed by Feitelson [4]. These two
workloads have a similar distribution of job sizes which hasfewer small jobs than the CTC and
Jann workloads. The Feitelson model is also unique in havingmany more short jobs. The SDSC
log also has shorter jobs than CTC and Jann, but not as short asin the Feitelson model.

Each workload is represented by a single data file specifyingthe arrival time, runtime, and
number of processors used by each job, and in the case of the CTC and SDSC workloads, also the
estimated runtime. In order to create different load conditions, all the arrival times are multiplied
by a suitable constant. For example, if the original workload file leads to a load of 0.7 of capacity,
multiplying all interarrival times by a factor of7/8 = 0.875 will cause the jobs to arrive faster, and
increase the load to 0.8 of capacity.

The typical methodology for evaluating systems (in our case, schedulers) calls for simulating
their behavior, and tabulating the resulting performance.This is usually repeated numerous times
under different conditions, including different load levels and different parameter settings for the
system. This enables a study of how the system responds to load, and what parameter settings lead
to optimal performance.

1For the simulations and analysis reported here we removed a flurry of 1999 one-node jobs lasting about 42–48
seconds each that were submitted by user 135 in one day; it is assumed that this was the result of a misbehaving
script. This large burst of small jobs is very sensitive to details of the scheduling and tends to cause large fluctuations
in simulation results. It represents 2.55% of the total workload of 78500 jobs. The justification for removing such
flurries is elaborated in [15].

2In this log we also removed two flurries, one composed of 30-second one-node jobs by user 365, and the other
composed of 1-minute 32-node jobs by user 319 [15]; they are known to affect simulation results, but in the specific
simulations used here they seem to have only a marginal effect.
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Figure 1: Simulation results with 90% confidence intervals. “Difference” is conservative minus
EASY.
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In this paper we emphasize two other dimensions instead: theworkload used to drive the
simulation, and the metric used to measure the results. Figure 1 shows results of comparing our two
schedulers using the four different workloads and two different metrics. In all cases, simulations
are run for different load levels, and the behavior of the system as a function of load is plotted.
These results can be divided into four groups:

• Results which show that EASY is better than conservative. These include the results obtained
with the CTC, SDSC, and Jann workloads, when using the response time metric.

• Results which show that conservative is better than EASY. Such results were obtained from
the Jann workload when using the bounded slowdown metric.

• Results showing that both schedulers are essentially the same. The results from the Feitelson
model fall into this class.

• A combination: results that show the schedulers to be equivalent under most loads, and
show an advantage for EASY only under high load. Such resultswere observed for CTC
and SDSC when using the bounded slowdown metric. It should benoted that such high
loads are seldom achieved in practice on this class of machines.

In short, if only a single set of results is used, the conclusions would depend on which specific set
was chosen. Our goal in the next sections is to uncover the root causes for these discrepant results.

3 Analysis of Jann vs. CTC Results

As noted above, the Jann model is specifically meant to mimic the CTC workload. Nevertheless,
the simulation results indicate that the two produce discrepant predictions. For the Jann workload
the response time metric favors EASY backfilling, whereas the slowdown metric favors conserva-
tive backfilling. The CTC workload, at the same time, favors EASY for both metrics (albeit for
slowdown only under very high load). This is therefore actually a triple interaction of scheduler,
workload, and metric. In this section we focus on a detailed analysis of how this triple interaction
comes about.

Both the slowdown metric and the backfilling policy are sensitive to job duration. We therefore
partitioned the jobs into five classes according to their duration, and tabulated the results for each
class separately. The classes used were very short (< 30sec), short (< 5min), medium (< 1hr),
long (< 10hr), and very long (> 10hr). In the results for the CTC workload, both metrics favor
EASY backfilling for each class individually, and also for all of them together. But in the Jann
workload we indeed see a difference that depends on job class. For jobs that are longer than 1
hour, both metrics favor EASY. But for shorter jobs, both metrics favor conservative backfilling.
This behavior leads directly to the results quoted above forthe whole workload. The average
response time of all jobs is dominated by the high values representing long jobs, and is therefore
similar to the response time for long jobs, and favors EASY. For the average slowdown, on the
other hand, the high values come from the short jobs, becausea very small denominator leads
to a high value. Thus the average becomes similar to the slowdown of short jobs, which favors
conservative.
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Figure 2: Increased backfilling with EASY relative to conservative scheduler. Data for load of
0.85.

The breakdown into classes indicates that the difference between the CTC and Jann results is
due to the short jobs, which fare better under conservative in the Jann workload, but not in the
CTC workload. To try and understand why this happens, we needto understand how the scheduler
interacts with the workload. As the difference between our two schedulers is in their backfilling
policy, a good place to start is investigating their backfilling patterns. Figure 2 shows how much
more backfilling is achieved by EASY, as a fraction of the backfilling achieved by conservative;
thus a value of 0.1 means that EASY did 10% more backfilling. Surprisingly, for CTC conservative
backfilling actually achieves somewhat higher backfilling levels! But the main difference between
the workloads is that under the Jann workload, EASY achievedmuch more backfilling of long
jobs.

After checking many other possibilities (see below), the root cause for this was found to be the
use of accurate runtime estimates with the Jann workload. Accurate runtime estimates provide full
information for backfilling decisions. The conservative algorithm has to take multiple reservations
into account, and this is especially problematic for long jobs, that have the potential to interact
with many other jobs. EASY, on the other hand, only has to consider one reservation. Therefore
conservative achieves much less backfilling. But when estimates are inaccurate, jobs tend to ter-
minate before the time expected by the scheduler. This creates holes in the schedule that provide
new backfilling opportunities, that can be exploited by bothschedulers.

To verify this hypothesis, we re-ran the CTC simulations butusing the actual runtimes rather
than the original user estimates to control the backfilling.The results, shown in Figure 3, largely
confirm the conjecture. When using accurate estimates, conservative performed much less back-
filling of long jobs than before. And as expected, this led to an inversion of the results, with
conservative achieving better average slowdown scores. A similar but weaker effect also occurred
when running the SDSC workload with accurate runtime estimates. The results were inverted, but
the difference was much closer to zero.

We are now left with one last question: how does the reduced backfilling under the conserva-
tive policy lead to better performance when measured using the slowdown metric? The reduced
backfilling applies tolong jobs. On the other hand, slowdown is sensitive mainly toshort jobs. Re-
call that under the EASY policy backfilling is allowed provided it does not delay the first queued
job. But it might delay subsequent queued jobs, including short ones, that will then suffer from a
very large slowdown. The conservative policy prohibits such backfilling, with the specific goal of
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Figure 3:Results for the CTC workload when using actual runtimes as estimates, to verify that this
is the cause of the Jann results. Compare with Figures 1 and 2.

preventing such delays for subsequent jobs. In the simulations with the Jann workload, this turned
out to be the decisive factor. Similar observations have been made independently by Srinivasan et
al. [14].

To summarize, our analysis exposed the following triple interaction:

• The Jann and CTC workloads differ (among other things) in that the CTC workload is a
real trace including user estimates of runtime, whereas theJann model does not include this
detail.

• Due to using accurate estimates for the Jann model, the conservative scheduler achieved
less backfilling of long jobs that use few processors. This isobviously detrimental to the
performance of these long jobs, but turned out to be beneficial for short jobs that don’t get
delayed by these long jobs.

• As response time is dominated by long jobs, the response timemetric showed that EASY is
better than conservative for the Jann workload. The slowdown metric, on the other hand, is
dominated by short jobs, so it showed conservative to be better.

It should be noted that other works have also investigated the effect of user runtime estimates on
performance [13, 16, 1]. However, these works did not elucidate the mechanisms by which the
inaccurate estimates cause their effect.

Finding that the difference between the CTC and Jann resultshinges on the runtime estimates
was surprising not only because this is routinely brushed aside as unimportant, but also because
there is no lack of other candidates, which seem much more significant. The usual suspects re-
garding performance variations are the statistical differences between the workloads. The most
striking difference is that the Jann workload has tails at both ends, which the CTC workload does
not (Section 2).

The long jobs in the tail could affect the results by causing longer delays to other jobs that wait
for their termination because they need their processors. To check this, we re-ran the simulations
with a modified version of the Jann workload, in which all jobslonger than 18 hours were deleted.
The results were essentially the same as for the original workload. The short jobs could affect the
results by contributing very high values to the average slowdown metric. This was checked by
removing all the jobs shorter than 30 seconds. Again, the results were not significantly different
from those of the original workload.
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Figure 4:Distributions of runtimes for jobs of different sizes in thevarious workloads.

Another major difference between the workloads is that in the original CTC workload most
jobs use power-of-two nodes, whereas in the Jann model jobs are spread evenly between each two
consecutive powers of two. Previous work has shown that the fraction of jobs that are powers of
two is important for performance, as it is easier to pack power-of-two jobs [11]. However, in our
case this seemed not to make a qualitative difference. It waschecked by running the simulations on
a modified version of the Jann workload in which the sizes of 80% of the jobs (chosen at random)
were rounded up to the next power of two.

Finally, the size of the system is also important. The Jann model specifies the use of 322 pro-
cessors, which is the number used in the simulations. For CTC, we used 430 processors, which is
the size of the batch partition on the CTC machine. Repeatingthe simulations using 512 nodes led
to somewhat lower backfilling rates, because 512 is a power oftwo, and therefore jobs pack much
better, leaving less holes in the schedule. However, the relationship between the two schedulers
did not change significantly.

4 Comparison with Other Results

Having explained the results obtained using the CTC and Jannworkloads, and the reasons for
the differences between them, we now turn to the Feitelson workload (the behavior of the SDSC
workload is less interesting as it is similar to that of CTC).Comparing this workload with the
previous two, the question is why no major differences are observed between the performance of
the two schedulers in this case.

A special feature of the CTC and Jann workloads is that they have very many serial jobs,
and moreover, that most long jobs are serial (Figure 4). We may therefore conjecture that the
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Figure 5: Detailed comparison of different workloads, using the CTC workload as a reference.
The second modification of the Feitelson model only affects serial jobs, and does not in general
resemble the CTC or Jann workloads.

performance differences we saw emanate specifically from the backfilling of long serial jobs, and
the subsequent delaying of larger short jobs. In the Feitelson workload, in contrast, serial jobs tend
to be shorter than larger ones.

To verify this conjecture, we modified the Feitelson workload and re-ran the simulations. Part
of this has been done in the past, as reported in [13]. That paper suggested modifying the following
two attributes of the Feitelson model (Figure 5 “Feitelson→CTC”):

• Modify the distribution of job sizes to emphasize small jobs, and

• Modify the distribution of runtimes to emphasize longer jobs.

The details of implementing these modifications were hand tailored to create a workload that
closely resembled both the CTC and Jann workloads. In particular, the distribution of sizes em-
phasized serial jobs and jobs in the range of sizes from 8 to 31, and serial jobs also received special
treatment in terms of making them longer. Note that this is atodds with the original Feitelson
model, in which a weak correlation exists between job size and runtime [4]. Simulating the behav-
ior of the EASY and conservative schedulers on this modified Feitelson workload indeed showed
behavior similar to that of the Jann workload (Figure 6 top).However, the magnitude of the effect
was smaller.

Based on our current understanding of the matter, we can suggest a simpler modification:
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Feitelson workload modified to resemble Jann/CTC (Feitelson→CTC)
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Feitelson workload modified to include numerous long serialjobs (Feitelson→ser)
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Feitelson workload modified to include numerous long serialjobs, using 139 nodes
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Figure 6: Simulation results for modified Feitelson workloads. Compare with results shown in
Figure 1.

• Specifically create many long serial jobs.

This leads to a model that is quite different from the Jann andCTC workloads, because only the
serial jobs have been changed (Figure 5 “Feitelson→ser”). However, making this change and
re-running the simulations produced results that are quitesimilar to the previous, more elaborate
modified model (Figure 6 middle). Thus we can indeed claim to have identified the crucial aspect
of the workload that is needed in order to create the distinctive results seen with the Jann and CTC
workloads — the presence of long serial jobs.

However, the results are still much less pronounced than those obtained from the Jann work-
load. Given that the original modification of the Feitelson workload (Feitelson→CTC) is extremely
similar to the CTC and Jann workloads, the explanation for this is not the workload statistics.
Rather, it is the size of the machine used in the simulation: using 139 nodes instead of 128 sig-
nificantly increases the gap in performance observed between EASY and conservative (Figure 6
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bottom). The reason for this is that most job sizes are powersof two, so using a machine size that
is not a power of two leads to more idle processors and more options for backfilling. Both the CTC
and Jann workloads specify non-power-of-2 sizes.

5 Conclusions

Simulations of the relative performance of EASY and conservative backfilling, using different
workloads and metrics, exhibit discrepant results. However, detailed analysis of the specific cir-
cumstances of each simulation allows us to elucidate the following general conclusions:

• If the workload does not contain many long serial jobs, both backfilling policies lead to
similar performance results.

• If the workload does indeed contain many long serial jobs, aswas the case at CTC, and to
a lesser degree at SDSC, the relative performance depends onthe accuracy of user runtime
estimates and on the number of nodes in the system.

– If user runtime estimates are inaccurate, the EASY policy leads to better results. This
is expected to be the more common case.

– But if user runtime estimates are highly accurate, conservative backfilling degrades the
performance of the long serial jobs and enhances the performance of larger short jobs.
This leads to better overall slowdown results.

– This effect is intensified when the number of nodes is not a power of two.

Apart for settling the issue of the relative merits of EASY and conservative backfilling, this
work also underscores the importance of workload models andtheir details. All the workloads we
investigated have been accepted as reasonable and representative by researchers who have used
them in the past. But using different workloads can lead to completely different results, none of
which are universally correct. If this happens, one should find the workload features that lead
to the performance differences. This then enables the prediction of performance results for new
workload conditions.

In addition to different workloads, seemingly benign assumptions can also have a decisive
impact on evaluation results. In our case, the assumption ofaccurate runtime estimates, which is
actually unlikely to be true [13, 9], was now shown to be instrumental in the results obtained using
the Jann workload. This underscores the need to collect realdata that can serve as the basis for
performance evaluation, reducing the risk of using unbasedassumptions.
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