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.ilAbstra
tS
heduling jobs on the IBM SP2 system and many other distributed-memory MPPsis usually done by giving ea
h job a partition of the ma
hine for its ex
lusive use. Al-lo
ating su
h partitions in the order that the jobs arrive (FCFS s
heduling) is fair andpredi
table, but su�ers from severe fragmentation, leading to low utilization. This sit-uation led to the development of the EASY s
heduler whi
h uses aggressive ba
k�lling:small jobs are moved ahead to �ll in holes in the s
hedule, provided they do not delaythe �rst job in the queue. We 
ompare this approa
h with a more 
onservative ap-proa
h, in whi
h small jobs move ahead only if they do not delay any job in the queue,and show that the relative performan
e of the two s
hemes depends on the workload:for workloads typi
al on SP2 systems, the aggressive approa
h is indeed better, but forother workloads both algorithms are similar. In addition we study the sensitivity ofba
k�lling to the a

ura
y of the runtime estimates provided by the users, and �nd avery surprising result: ba
k�lling a
tually works better when users over-estimate theruntime by a substantial fa
tor.Keywords: parallel job s
heduling, ba
k�lling, runtime estimates, workload modeling,performan
e metri
s.1 Introdu
tionThe s
heduling s
heme used on most distributed-memory parallel super
omputers is vari-able partitioning, meaning that ea
h job re
eives a partition of the ma
hine with its desirednumber of pro
essors [5℄. Su
h partitions are allo
ated in a �rst-
ome �rst-serve (FCFS)This paper super
edes the preliminary version published in IPPS/SPDP'98 [7℄.
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manner to submitted jobs. But this approa
h su�ers from fragmentation, where free pro
es-sors 
annot meet the requirements of the next job, and therefore remain idle until additionalones be
ome available. As a result system utilization is typi
ally in the range of 50{80%[21, 16, 8, 11, 15℄.It is well known that the best solutions for this problem are to use dynami
 partition-ing [20℄ or gang s
heduling [6℄. However, these s
hemes have pra
ti
al limitations. Theonly eÆ
ient and widely used implementation of gang s
heduling was the one on the CM-5 Conne
tion Ma
hine; other 
ommer
ial implementations are too 
oarse-grained for realintera
tive support, and do not enjoy mu
h use. To the best of our knowledge, dynami
partitioning has not been implemented on produ
tion ma
hines at all.A simpler approa
h is to re-order the jobs in the queue, that is, to use non-FCFS poli
ies[9℄. Consider a s
enario where a number of jobs are running side by side, and the next queuedjob requires all the pro
essors in the system. An FCFS s
heduler would then reserve all thepro
essors that are freed for this queued job, and leave them idle. A non-FCFS s
hedulerwould s
hedule some other smaller jobs, that are behind the big job in the queue, ratherthan letting the pro
essors idle [12, 1℄. Of 
ourse, this runs the danger of starving the largejob, as small jobs 
ontinue to pass it by. The typi
al solution to this problem is to allowonly a limited number of jobs to leapfrog a job that 
annot be servi
ed, and then start toreserve (and idle) the pro
essors anyway. The point at whi
h the poli
ies are swit
hed 
anbe 
hosen so as to amortize the idleness over more useful 
omputation, by 
ausing jobs that
reate signi�
ant idleness to wait more before making a reservation.A somewhat more sophisti
ated poli
y is to require users to estimate the runtime of theirjobs. Using this information, only short jobs | that are expe
ted to terminate in time |are allowed to leapfrog a waiting large job. This approa
h, whi
h is 
alled ba
k�lling, wasdeveloped for the IBM SP1 parallel super
omputer installed at Argonne National Laboratoryas part of EASY (the Extensible Argonne S
heduling sYstem) [17℄, whi
h has sin
e beenintegrated with the LoadLeveler s
heduler from IBM for the SP2 [23℄. Users are expe
ted toprovide a

urate runtime estimates, as a low estimation may lead to killing the job before itterminates, while a high estimation may lead to a long wait time and possibly to ex
essiveCPU quota loss.The EASY ba
k�lling algorithm only 
he
ks that jobs that move ahead in the queuedo not delay the �rst queued job. We show that this aggressive approa
h 
an lead tounbounded queueing delays for other queued jobs, and therefore prevents the system frommaking de�nite predi
tions as to when ea
h job will run. We therefore 
ompare it with analternative 
onservative approa
h, in whi
h short jobs are moved ahead only if they do notdelay any job in the queue. It turns out that for the workloads measured on SP2 systems,the original EASY algorithm provides better performan
e, so the added predi
tability of the
onservative approa
h would 
ome at a 
ost. However, using workloads from other systems,we �nd that both algorithms have about the same performan
e. In this 
ase the 
onservativealgorithm is preferable to the EASY algorithm, due to its improved predi
tability.The main problem with ba
k�lling is that it requires estimates of job runtimes to beavailable. In order to 
he
k the sensitivity to the a

ura
y of estimates, we investigate thea

ura
y of real estimates and their e�e
t on performan
e. The surprising results are one,that user estimates are extremely unreliable, and two, that exaggerated estimates a
tually2



lead to better performan
e than tight estimates! We 
on
lude the paper by 
onsidering waysin whi
h these new insights 
an be put to use in order to improve the s
heduling of parallelsuper
omputers.2 Ba
k�lling AlgorithmsBa
k�lling is an optimization in the framework of variable partitioning. In variable parti-tioning, users de�ne the number of pro
essors required for ea
h job, and this number doesnot 
hange during the exe
ution; thus jobs 
an be des
ribed as requiring a re
tangle in pro-
essor/time spa
e (we will always draw time on the horizontal axis, and pro
essors on theverti
al axis). The jobs then run on dedi
ated partitions of the requested size. The name\variable partitioning" re
e
ts the fa
t that the partitions are 
reated in di�erent sizes asneeded.With ba
k�lling, users also provide an estimate of the runtime. This enables the s
hedulerto predi
t when jobs will terminate, and thus when the next queued jobs will be able to run.In parti
ular, it is possible to identify \holes" in the s
hedule, and small jobs that 
an �tinto these holes. This is the essen
e of ba
k�lling.It is desirable that a s
heduler with ba
k�lling will support two 
on
i
ting goals: to moveas many short jobs forward as possible, in order to improve utilization and responsiveness,and to avoid starvation for large jobs, and in parti
ular, to be able to predi
t when ea
h jobwill run. Di�erent versions of ba
k�lling balan
e these goals in di�erent ways.2.1 Conservative Ba
k�llingConservative ba
k�lling is the vanilla version usually assumed in the literature (e.g. [10, 6℄),although it seems not to be used. In this version, ba
k�lling is done subje
t to 
he
kingthat it does not delay any previous job in the queue. We 
all this version \
onservative"ba
k�lling to distinguish it from the more aggressive version used by EASY, as des
ribedbelow. Its advantage is that it allows s
heduling de
isions to be made upon job submittal,and thus has the 
apability of predi
ting when ea
h job will run and giving users exe
utionguarantees. Users 
an then plan ahead based on these guaranteed response times. Obviouslythere is no danger of starvation, as a reservation is made for ea
h job when it is submitted.In order to perform allo
ations, 
onservative ba
k�lling maintains two data stru
tures.One is the list of queued jobs and the times at whi
h they are expe
ted to start exe
ution.The other is a pro�le of the expe
ted pro
essor usage at future times. When a new jobarrives, the following allo
ation pro
edure is exe
uted:Algorithm 
onservative ba
k�ll:1. Find an
hor point:(a) S
an the pro�le and �nd the �rst point where enough pro
essors areavailable to run this job. This is 
alled the an
hor point(b) Starting from this point, 
ontinue s
anning the pro�le to as
ertain thatthe pro
essors remain available until the job's expe
ted termination3



������
������
������
������

������
������
������
������

����
����
����
����
����
����

����
����
����
����
����
����

������
������
������
������

������
������
������
������

�������
�������
�������

�������
�������
�������

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

free

now
time

free

now
time

free

now

now
time

anchor

time
anchor 1 anchor 2

1st queued job

2nd queued job

3rd queued job

backfill

usage profile

running jobs

pr
oc

es
so

rs
pr

oc
es

so
rs

pr
oc

es
so

rs
pr

oc
es

so
rs

����
����
����
����
����
����

����
����
����
����
����
����

������
������
������
������

������
������
������
������

�������
�������
�������

�������
�������
�������

Figure 1: Example of 
onservative ba
k�lling.(
) If not, return to (a) and 
ontinue the s
an to �nd the next possiblean
hor point2. Update the pro�le to re
e
t the allo
ation of pro
essors to this job, startingfrom its an
hor point3. If the job's an
hor is the 
urrent time, start it immediatelyAn example is given in Fig. 1. The �rst job in the queue does not have enough pro
essorsto run, so a reservation for it is made after the �rst two running jobs terminate. The se
ond4
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Figure 2: Repeated ba
k�lling after a running job terminates earlier than expe
ted may
ause a job that was expe
ted to ba
k�ll to a
tually run later than the original predi
tion.It is therefore better to just 
ompress the original s
hedule.queued job has a potential an
hor point after only one job terminates, but that would delaythe �rst job; therefore the se
ond an
hor point is preferred. Thus adding job reservationsto the pro�le is the me
hanism that guarantees that future arrivals do not delay previouslyqueued jobs. The third job 
an be s
heduled immediately, so it is used for ba
k�lling.It is most 
onvenient to maintain the pro�le in a linked list, as it may be ne
essary tosplit items into two when a newly s
heduled job is expe
ted to terminate in the middle of agiven period. In addition, an item may have to be added at the end of the pro�le whenevera job extends beyond the 
urrent end of the pro�le. The length of the pro�le is thereforeproportional to the number of jobs in the system (both queued and running), be
ause ea
hjob adds at most one item to the pro�le. As the pro�le is s
anned on
e for ea
h new job,the 
omplexity of the algorithm is linear in the number of jobs.The above algorithm leaves one question unanswered. Jobs are assigned a start time whenthey are submitted, based on the 
urrent usage pro�le, and the system guarantees that theywill start by this time at the latest. But they may a
tually be able to run sooner be
auseprevious jobs terminated earlier than expe
ted, leaving a gap in the planned s
hedule.Given su
h a gap, one may de
ide to re-s
hedule all the jobs. However, this may violatethe system's exe
ution guarantees. In some 
ases, this guaranteed time will be the resultof ba
k�lling with this job. If a new round of ba
k�lling is done later, with di�erent dataabout job runtimes due to an early termination, the same job may not be ba
k�lled and willtherefore run mu
h later than the guaranteed time. An example is given in Fig. 2: a

ording5



to the original s
hedule, the se
ond queued job 
an ba
k�ll and start at time T1, but afterthe bottom running job terminates mu
h earlier than expe
ted, the �rst queued job 
an startearlier too, leaving no spa
e for ba
k�lling. The se
ond queued job therefore has to start atthe later time T3.The preferred 
hoi
e is therefore to 
ompress the existing s
hedule. To do so, ea
h job isremoved from the pro�le, and then re-inserted at the earliest possible time. Jobs provablydo not get delayed, be
ause at worse ea
h job will be re-inserted in the same position it heldpreviously. The jobs 
an be 
onsidered in the order of arrival, so jobs that are waiting longerget a better 
han
e to move forward. The 
omplexity of 
ompression is quadrati
, be
ausethe pro�le is s
anned again for ea
h job.2.2 EASY Ba
k�llingConservative ba
k�lling moves jobs forward only if they do not delay any previously queuedjob. EASY ba
k�lling takes a more aggressive approa
h, and allows short jobs to skip aheadprovided they do not delay the job at the head of the queue [17℄. Intera
tion with otherjobs is not 
he
ked, and they may be delayed, as shown below. The obje
tive is to improvethe 
urrent utilization as mu
h as possible, subje
t to some 
onsideration of queue order.The pri
e is that exe
ution guarantees 
annot be made, be
ause it is impossible to predi
thow mu
h ea
h job will be delayed in the queue. Thus the algorithm is a
tually not asdeterministi
 as stated in its do
umentation.The algorithm is as follows:Algorithm EASY ba
k�ll:1. Find the shadow time and extra nodes(a) Sort the list of running jobs a

ording to their expe
ted terminationtime(b) Loop over the list and 
olle
t nodes until the number of available nodesis suÆ
ient for the �rst job in the queue(
) The time at whi
h this happens is the shadow time(d) If at this time more nodes are available than needed by the �rst queuedjob, the ones left over are the extra nodes2. Find a ba
k�ll job(a) Loop on the list of queued jobs in order of arrival(b) For ea
h one, 
he
k whether either of the following 
onditions hold:i. It requires no more than the 
urrently free nodes, and will terminateby the shadow time, orii. It requires no more than the minimum of the 
urrently free nodesand the extra nodes(
) The �rst su
h job 
an be used for ba
k�llingThis is exe
uted repeatedly whenever a new job arrives or a running job terminates, if the�rst job in the queue 
annot start. In ea
h iteration, the algorithm identi�es a job that 
anba
k�ll if one exists. 6
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Figure 3: In EASY, ba
k�lling may delay queued jobs.This algorithm has two properties that together 
reate an interesting 
ombination.Property 1 Queued jobs may su�er an unbounded delay.Proof sket
h: The reason for this is that if a job is not the �rst in the queue, new jobsthat arrive later may skip it in the queue. While su
h jobs are guaranteed not to delay the�rst job in the queue, they may indeed delay all other jobs. This is the reason that thesystem 
annot predi
t when a queued job will eventually run. An example is shown in Fig.3: the ba
k�ll job does not delay the �rst job in the queue, but it does delay the se
ondjob. The length of the delay depends on the length of the ba
k�ll job, whi
h in prin
iple isunbounded.In pra
ti
e, though, the job at the head of the queue only waits for 
urrently runningjobs, so if there is a limit on job runtimes then the bound on the queueing time is the produ
tof this limit and the rank in the queue. But even without su
h a bound, we still have:Property 2 There is no starvation.Proof sket
h: The queueing delay for the job at the head of the queue depends only onjobs that are already running, be
ause ba
k�lled jobs will not delay it. Thus it is guaranteedto eventually run (be
ause the running jobs will either terminate or be killed when theyex
eed their de
lared runtime). Then the next job be
omes �rst. This next job may havesu�ered various delays due to jobs ba
k�lled earlier, but su
h delays stop a

umulating on
eit be
omes �rst. Thus it too is guaranteed to eventually run. The same arguments showthat every job in the queue will eventually run.7



As noted, EASY sa
ri�
es predi
tability for potentially improved utilization, by usingmore aggressive ba
k�lling. However, it is not 
lear that in
reasing themomentary utilizationat a given instant also 
ontributes to the overall utilization over a long time, and 
ounterexamples 
an be 
onstru
ted. Therefore detailed simulations are required to evaluate thereal 
ontribution of this approa
h. The results of su
h simulations are presented next.3 Experimental Results3.1 MethodologyThe experiments are based on an event-based simulation, where events are job arrival andtermination. Upon arrival, the s
heduler is informed of the number of pro
essors the jobneeds, and its estimated runtime. It 
an then either start the job's simulated exe
ution,or pla
e it in a queue. Upon a job termination, the s
heduler is noti�ed and 
an s
heduleother queued jobs on the freed pro
essors. The runtime of jobs is part of the input to thesimulation, but is not given to the s
heduler. It is assumed that the runtime does not dependin any way on s
heduling de
isions.The workloads used to drive the simulations were the following:� Tra
es of the jobs submitted to the following super
omputers:CTC : The Cornell theory Center 512-node IBM SP2 (79296 jobs from July 1996 toMay 1997)KTH : The Swedish Royal Institute of Te
hnology 100-node IBM SP2 (28490 jobsfrom O
tober 1996 to August 1997)SDSC : The San-Diego Super
omputer Center 128-node IBM SP2 (67665 jobs fromApril 1998 to April 2000)Par : The San-Diego Super
omputer Center 416-node Intel Paragon (115595 jobsfrom January 1995 to De
ember 1996)CM5 : The Los Alamos National Lab 1024-node Conne
tion Ma
hine CM-5 (201387jobs from O
tober 1994 to September 1996)� Workload models developed based on these and other tra
es:Feitelson : a general model based on data from 6 di�erent tra
es, in
luding CTC andPar above [4℄ (350000 jobs)Jann : a model developed spe
i�
ally for the CTC tra
e [14℄ (100000 jobs)All these workloads are available on-line from the Parallel Workloads Ar
hive [22℄. Only the�rst three logs 
ontain a
tual user estimates of runtime. In other 
ases, a

urate estimatesare assumed (that is, the a
tual runtime is used for the estimate).Tra
es are simulated using the exa
t data provided, with possible modi�
ations as noted(e.g. to 
he
k the impa
t of di�erent estimates of runtime). For models, the load on thesimulated system is modi�ed by multiplying the interarrival times by a 
ertain fa
tor. For8



example, if by default the model produ
es a load of 0.688, we 
an 
reate a higher load of0.8 by multiplying all interarrival times by a fa
tor of 0:6880:8 = 0:86. Using di�erent fa
torsenables the fun
tional relationship of performan
e on load to be measured.The performan
e metri
s used are the average response time and the average boundedslowdown. Slowdown is response time normalized by running time. Bounded slowdowneliminates the emphasis on very short jobs due to having the running time in the denominator[9℄; a threshold of 10 se
onds was used. For the re
ord, the equation isb sld = 8>>>>><>>>>>: Tw + TrTr if Tr > 10Tw + Tr10 otherwisewhere b sld is the bounded slowdown, Tr is the job's runtime on a dedi
ated system, andTw is the job's waiting time. We also 
olle
ted data on the waiting time; the results weresimilar.When using models, 90% 
on�den
e intervals for the response time were 
al
ulated usingthe bat
h means method [13℄. Ea
h bat
h size was 3333 job terminations, with the �rstbat
h dis
arded to a

ount for warmup e�e
ts (for the Jann model, bat
hes were just under1000 jobs). The simulation 
ontinued until any of the following three 
onditions was met:100 bat
hes were 
ompleted, or the 
on�den
e interval was smaller than 5% of the mean,or the mean response time ex
eeded a 
ertain high threshold (30000 se
onds, determinedexperimentally to be where it starts to shoot up). In pra
ti
e, it turned out that most ofthe simulations took 100 bat
hes and a
hieved an a

ura
y of about 6{9%.3.2 The ResultsThe results of simulations using the two models are presented in Fig. 4. They indi
ate thatthe relative performan
e of EASY and 
onservative ba
k�lling depends on the workloadused and on the performan
e metri
! Spe
i�
ally, a

ording to the Feitelson model (F), boths
hemes are pra
ti
ally identi
al. A

ording to the Jann model (J), EASY has better (lower)average response times under high loads, but slightly worse (higher) bounded slowdown.The results for the a
tual workload tra
es are reported for ea
h month individually, soas to 
reate multiple data points for somewhat di�erent load 
onditions. They are shown inTable 1. Again, there is a di�eren
e between the di�erent workloads and metri
s. In general,the SP2 workloads favor the EASY ba
k�lling over 
onservative ba
k�lling. The only 
asein whi
h 
onservative is a possible 
ontender is when using the bounded slowdown metri
and the KTH tra
e.The non-SP2 tra
es seem to also favor EASY ba
k�lling when measured by the response-time metri
, but not for the bounded slowdown metri
. Using the Par tra
e leads to in
on-
lusive results for this metri
. With the CM-5 tra
e, there seems to be a 
lear preferen
e for
onservative ba
k�lling.
9
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Figure 4: Comparison of 
onservative ba
k�lling and EASY ba
k�lling using two workloadmodels.3.3 Dis
ussionTo summarize, the simulation results are somewhat in
on
lusive, and depend on the workloadand metri
 being used. For most of the 
ombinations 
he
ked, the performan
e of the EASYba
k�lling algorithm was better than that of 
onservative ba
k�lling. However, in some 
asesthe two algorithms seemed to provide similar performan
e, and in one 
ase 
onservative wasbetter than EASY1.To understand the di�eren
es in performan
e, it is instru
tive to study the amount ofba
k�lling performed (Fig. 5). A

ording to the Feitelson model, both do the same amountof ba
k�lling, whi
h mat
hes the predi
tion of equal performan
e a

ording to this model.Using the Jann model, we �nd that EASY ba
k�lls a slightly larger per
entage of the jobs1By 
han
e, the preliminary version of this paper used the 
ombinations that predi
t equal performan
e[7℄. 10



response time bounded slowdowntra
e mon load jobs EASY 
ons di�eren
e EASY 
ons di�eren
eCTC jul 0.539 7950 11394 11605 +1.9% 4.9 5.5 +12.2%aug 0.584 7273 11558 11728 +1.5% 3.3 4.6 +39.4%sep 0.566 6167 14950 15360 +2.7% 5.8 5.9 +1.7%o
t 0.547 7257 9963 10298 +3.4% 3.0 3.6 +20.0%nov 0.531 7917 10621 10684 +0.6% 2.0 2.2 +10.0%de
 0.514 7896 9173 9445 +3.0% 2.5 4.5 +80.0%jan 0.588 7519 10921 11214 +2.7% 3.3 4.1 +24.2%feb 0.580 8189 12669 12911 +1.9% 3.5 4.4 +25.7%mar 0.591 6915 15646 16766 +7.2% 4.5 6.6 +46.7%apr 0.577 6124 12642 13632 +7.8% 5.3 6.1 +15.1%may 0.555 6082 14512 15506 +6.8% 5.0 8.8 +76.0%KTH o
t 0.669 2377 13375 12243 -8.5% 103.4 77.6 -25.0%nov 0.689 2006 18854 18978 +0.7% 152.9 151.6 -0.9%de
 0.689 2313 16694 19209 +15.1% 87.1 125.9 +44.5%jan 0.758 2917 15924 17436 +9.5% 95.4 95.7 +0.3%feb 0.798 2942 16959 18534 +9.3% 119.9 115.5 -3.7%mar 0.724 2074 18333 17934 -2.2% 110.7 131.2 +18.5%apr 0.720 2853 14825 17260 +16.4% 60.7 105.4 +73.6%may 0.678 4066 11055 11179 +1.1% 77.3 69.0 -10.7%jun 0.743 2715 14789 14782 -0.0% 33.6 31.4 -6.5%jul 0.620 2180 17996 18226 +1.3% 35.9 36.1 +0.6%SDSC may 0.621 2755 12711 13189 +3.8% 23.1 21.8 -5.6%jun 0.733 2478 12713 13243 +4.2% 13.9 14.2 +2.2%jul 0.749 2813 13851 14683 +6.0% 23.0 43.5 +89.1%aug 0.858 3540 23243 26087 +12.2% 34.3 36.4 +6.1%sep 0.712 12646 7197 7738 +7.5% 20.4 21.1 +3.4%o
t 0.870 4534 23146 22077 -4.6% 82.3 79.1 -3.9%nov 0.678 3103 10927 12309 +12.6% 33.9 48.0 +41.6%de
 0.765 2896 17884 19080 +6.7% 45.2 45.5 +0.7%jan 0.829 2791 22374 23553 +5.3% 75.1 78.8 +4.9%feb 0.878 2703 26671 34586 +29.7% 119.9 181.6 +51.5%mar 0.830 2946 27144 32519 +19.8% 117.5 115.0 -2.1%apr 0.861 3684 20486 22027 +7.5% 94.9 78.7 -17.1%may 0.875 2535 33708 42438 +25.9% 121.5 151.3 +24.5%jun 0.854 2469 45360 57052 +25.8% 137.4 152.8 +11.2%jul 0.912 1265 55977 86264 +54.1% 206.0 259.4 +25.9%aug 0.909 1902 46507 64178 +38.0% 238.5 295.5 +23.9%sep 0.890 2162 38132 52325 +37.2% 98.6 111.1 +12.7%o
t 0.872 1950 36544 42882 +17.3% 137.2 158.3 +15.4%nov 0.926 1988 48851 64493 +32.0% 271.2 339.8 +25.3%de
 0.855 1733 35331 46306 +31.1% 215.7 237.4 +10.1%jan 0.907 1499 38679 48489 +25.4% 103.8 134.0 +29.1%feb 0.920 1128 59197 75950 +28.3% 81.2 116.1 +43.0%mar 0.854 1199 44866 47946 +6.9% 139.7 98.8 -29.3%apr 0.858 946 48279 54548 +13.0% 131.6 156.5 +18.9%Table 1: (a)Simulation results for the three IBM SP2 tra
e �les. Di�eren
es denote the
hange when swit
hing from EASY to 
onservative.than 
onservative ba
k�lling. However, the simulations based on the tra
es suggest thatthe amount of ba
k�lling performed is similar, and in one 
ase (SDSC), 
onservative evenperforms more ba
k�lling but a
hieves worse results. Thus it is not a question of how mu
hba
k�lling is done, but more of whi
h jobs are ba
k�lled.We are therefore left with a unique situation in whi
h the workloads di
tate the results(the only previous study to systemati
ally 
he
k the in
uen
e of the workload 
on
luded that11



response time bounded slowdowntra
e mon load jobs EASY 
ons di�eren
e EASY 
ons di�eren
ePar jan 0.547 5289 6844 7115 +4.0% 78.8 88.9 +12.8%feb 0.563 4809 8113 8353 +3.0% 60.4 63.9 +5.8%mar 0.686 5084 8361 9075 +8.5% 92.9 103.4 +11.3%apr 0.604 10685 4120 3910 -5.1% 64.7 43.1 -33.4%may 0.736 7251 9637 9322 -3.3% 146.3 105.5 -27.9%jun 0.573 6043 6752 6720 -0.5% 72.4 75.3 +3.9%jul 0.626 4875 6338 6785 +7.1% 38.5 52.9 +37.6%aug 0.602 3072 7349 7578 +3.1% 20.6 24.8 +20.7%sep 0.676 3300 7169 7210 +0.6% 28.0 28.0 +0.1%o
t 0.590 6038 3054 3167 +3.7% 26.5 32.6 +22.9%nov 0.720 12116 3328 3359 +0.9% 95.7 101.1 +5.6%de
 0.595 7495 3244 3207 -1.1% 56.5 53.6 -5.0%jan 0.679 2856 8848 8940 +1.0% 43.2 39.5 -8.6%feb 0.678 5312 7382 7586 +2.8% 154.9 170.4 +10.0%mar 0.634 3781 10255 10964 +6.9% 35.0 44.8 +28.1%apr 0.764 4115 13059 10890 -16.6% 326.7 145.2 -55.6%may 0.742 3255 9328 9489 +1.7% 7.9 8.7 +10.3%jun 0.701 3824 14580 14045 -3.7% 126.2 56.5 -55.2%jul 0.658 2562 12558 12478 -0.6% 23.2 20.7 -10.7%aug 0.578 2542 7698 7908 +2.7% 8.7 17.5 +102.7%sep 0.570 2050 10568 10693 +1.2% 41.0 36.2 -11.7%o
t 0.537 2670 10051 10030 -0.2% 19.7 15.2 -22.7%nov 0.429 2831 7978 7964 -0.2% 1.9 1.5 -19.9%de
 0.430 2123 13078 13108 +0.2% 1.5 1.8 +21.1%CM5 o
t 0.686 5746 5564 5543 -0.4% 30.7 27.2 -11.2%nov 0.884 6069 20270 20519 +1.2% 102.6 84.3 -17.8%de
 0.700 4702 7856 8011 +2.0% 32.9 31.5 -4.3%jan 0.647 3323 7433 7811 +5.1% 24.2 25.9 +7.2%feb 0.711 4413 8211 8295 +1.0% 28.8 27.3 -5.1%mar 0.673 4754 5643 5577 -1.2% 24.7 20.3 -17.9%apr 0.782 4747 7894 8023 +1.6% 34.6 26.8 -22.7%may 0.779 4717 23954 22673 -5.3% 148.2 125.5 -15.3%jun 0.886 5608 18093 18735 +3.5% 124.5 107.3 -13.8%jul 0.902 6457 17679 21747 +23.0% 135.8 112.4 -17.2%aug 0.730 6181 6284 6160 -2.0% 101.6 44.3 -56.4%sep 0.802 5678 17678 17467 -1.2% 110.0 89.9 -18.2%o
t 0.788 5087 6109 6136 +0.4% 39.2 31.1 -20.6%nov 0.818 3706 8411 8919 +6.0% 28.2 26.9 -4.9%de
 0.703 4003 6274 6457 +2.9% 22.5 25.0 +11.4%jan 0.601 4110 4169 4217 +1.2% 16.1 14.2 -12.0%feb 0.461 3842 3358 3406 +1.4% 9.6 8.5 -10.9%mar 0.715 4111 5763 5758 -0.1% 20.1 18.9 -6.3%apr 0.788 4300 5616 6184 +10.1% 28.9 36.0 +24.7%may 0.807 4832 9030 10038 +11.2% 54.7 67.3 +22.9%Table 1: (b)Simulation results for the non-SP2 tra
e �les.workloads a�e
t the quantitative results, but not the qualitative results [18℄). The problemis that these workloads are rather 
omplex, and it is not 
lear exa
tly what features arethe de
isive ones. We therefore turn to Talby et al. [26℄, who made a detailed statisti
al
omparison of workloads and models. That work indi
ates that the CTC and KTH tra
esand the Jann model are indeed similar to ea
h other, and distin
t from other workloads su
has the CM5 and Par tra
es and the Feitelson model (the SDSC tra
e was not in
luded in theTalby paper). Spe
i�
ally, the SP2 workloads seem to have higher than average runtimesand lower than average degrees of parallelism. This also mat
hes the 
ontradi
tory �ndings12
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Figure 5: The amount of ba
k�lling done by the two s
hemes.a

ording to the Jann model, whi
h indi
ate that EASY is sele
tive with respe
t to job size.We have veri�ed the observations regarding the di�eren
es among the workloads by plot-ting the 
umulative distributions of runtimes for di�erent job sizes for all the di�erent tra
esand models. Fig. 6 shows a subset, in
luding the 
omparison of the Feitelson and Jannmodels with the CTC tra
e. We next tried to verify whether these 
hara
teristi
s of theworkloads are indeed responsible for the distin
t behavior of the ba
k�lling algorithms. Todo so, we modi�ed the Feitelson model so that the distributions of runtimes will mimi
 thoseof the CTC tra
e. This in
luded two distin
t modi�
ations: 
hanging the distribution ofjob sizes to emphasize small jobs (denoted by Fs), and 
hanging the distribution of run-times to emphasize longer jobs (Fl). The 
ombination of these modi�
ations (Fsl) leads todistributions that are very 
lose to both the CTC tra
e and the Jann model (Fig. 6).The simulation results were that indeed both the modi�
ations are needed (see the Fs,Fl, and Fsl graphs in Fig. 7). The modi�
ations to the runtime distribution alone made asmall di�eren
e to the response time measurements. Adding the modi�
ations to the sizedistribution enlarged the di�eren
e 
onsiderably. The modi�
ations to the size distributionalone were enough to make a di�eren
e to the bounded slowdown measurements. However,the di�eren
es between the EASY and 
onservative s
hedulers on the modi�ed Feitelsonmodel were still smaller than on the Jann model. It therefore seems that there are someother workload di�eren
es at play as well. We 
he
ked and refuted two additional 
andidates:the distribution of interarrival times, whi
h turned out to be very similar for the two models,and the feature of repetitive exe
ution of jobs that is present only in the Feitelson model.4 User Estimates of RuntimeThe 
on
ept of ba
k�lling is based on estimates of job runtimes. It has been assumed thatusers would be motivated to provide a

urate estimates, be
ause jobs would run faster if13
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Figure 6: Comparisons of 
umulative runtime distributions of jobs with di�erent sizes in theFeitelson, Jann, and CTC workloads.the estimates are tight, but would be killed if the estimates are too low. However, thisassumption needs to be 
he
ked.In order to study user runtime estimates we used workload data from the three IBM SP2installations mentioned above. The workload data 
omes in the form of a log of all jobsexe
uted on the ma
hine during a 
ertain period. The information on ea
h job in
ludes theestimated runtime provided by the user upon submittal, and the time the job a
tually ran.14
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Figure 7: Comparison of 
onservative ba
k�lling and EASY ba
k�lling for modi�ed versionsof the Feitelson model.The following is based on a job-by-job 
omparison of these two times.4.1 The Quality of User EstimatesThe results of the analysis are shown in Fig. 8, with CTC on the top, then KTH, and SDSCbelow. On the left is a histogram showing what per
entage of the requested time was a
tuallyused. At �rst glan
e this seems promising, as it has a very pronoun
ed 
omponent at exa
tly100% (see Table 2 for exa
t numbers). However, 
loser inspe
tion shows that pra
ti
ally allof the jobs in this peak a
tually rea
hed their allo
ated time and were then killed by thesystem2.2Note that this is not ne
essarily bad: appli
ations may 
he
kpoint their state periodi
ally, and then berestarted from the last 
he
kpoint after being killed. However, there is no dire
t data about how often this15
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CTC KTH SDSCparameter number % number % number % 
ommenttotal jobs 79296 28490 67665killed jobs 16671 21.0 7948 27.9 11175 16.5 % of total100% peak 4806 6.1 3601 12.6 3006 4.4 % of totalkilled 4547 94.6 3590 99.7 2855 95.0 % of 100% peak0% peak 9027 11.4 2333 8.2 9553 14.1 % of totalzero jobs 6374 22.4 % of total<90se
 jobs 18589 23.4 9361 32.9 19719 29.1 % of total<2hr jobs 35541 44.8 16128 56.6 43515 64.3 % of totalTable 2: Parameters of the workloads and numeri
al values for 
omponents of the histogramsin Fig. 8.The rest of the distribution is quite 
at, but with somewhat higher values at low per
ent-ages, and another peak at zero, whi
h is obviously bad. The CTC and SDSC data indi
atesthat many of the jobs in the zero peak were killed, and the rest of the ex
ess jobs at lowper
entages were very short (less than 90 se
onds). The KTH data 
ontains additional in-formation: it shows that all the extra jobs at low per
entages, in
luding the zero peak, arewhat we 
all zero-length jobs. These are jobs in whi
h the �rst node was deallo
ated beforethe last node was allo
ated, so there was no time at whi
h all the nodes were being usedsimultaneously. This situation most probably indi
ates that the job failed immediately uponloading. We 
onje
ture that the situation on the other two systems is similar. Thus theextra jobs at low per
entages and the zero peak provide testimony about the diÆ
ulty ofgetting jobs to run, but do not say mu
h about user estimates. On a related vein, about 8%of the jobs in the SDSC data were removed before they even started to run; these were notin
luded in the analysis reported here.Con
entrating on the jobs that ran for 90 se
onds or more and terminated normally,we �nd that the histogram is quite 
at. The 
on
lusion is that user estimates are a
tuallyrather poor. However, it should be noted that they do provide a good upper-bound on therunning time (only a relatively small fra
tion of the jobs were killed be
ause they ex
eededtheir estimated time). The 
on
lusion is that users �nd the motivation to overestimate sothat jobs will not be killed mu
h stronger than the motivation to provide a

urate estimatesto enable the s
heduler to perform better pa
king.The same data is shown again in the s
atter plot on the right of the �gure, whi
h showspairs of estimated runtime and the 
orresponding a
tual runtime (only jobs requesting upto 2 hours are shown, whi
h is about half of the jobs | see \<2hr" line in Table 2). Thisshows that users often, but not always, round their estimates to a \ni
e" number (typi
allymultiples of 5 minutes, or, for longer jobs, multiples of 10 or 30 minutes). However, despitethe relatively wide repertoire of estimates that are used, all of them are equally ina

urate:for every popular estimate, there is a nearly 
ontinuous line of dots representing jobs withruntimes ranging uniformly from zero up to the estimate. The system typi
ally kills jobsis a
tually done. Indire
t data from KTH is that 793 of the jobs killed by the system had requested 4 hours,whi
h is the limit imposed during the daytime. As the peak at 100% 
ontains 3215 jobs, this leads to amaximal estimate of about one job in four. 17



runtime estimatesoriginal uniform in [r; f � r℄metri
 tra
e f = 1 f = 2 f = 4 f = 11 f = 31 f = 101 f = 301using EASY ba
k�llingbounded CTC 3.82 4.10 3.12 3.04 3.02 3.06 3.03 3.01slowdown KTH 84.0 67.6 67.0 62.7 63.7 64.7 64.9 65.8SDSC 84.2 70.1 72.7 76.3 76.3 78.9 82.0 83.9response CTC 12053 12234 11976 11923 11896 11895 11889 11890time KTH 15568 15001 14717 14645 14880 15028 15110 15127SDSC 24519 21976 21801 22451 23148 23977 24739 24978using 
onservative ba
k�llingbounded CTC 5.00 3.71 2.62 2.39 2.38 2.37 2.40 2.37slowdown KTH 89.7 68.7 50.0 49.3 47.5 47.4 49.4 49.8SDSC 96.0 68.3 56.0 58.9 63.9 63.3 67.8 67.3response CTC 12495 12639 12201 12062 11983 11965 11964 11964time KTH 16288 16098 14940 14878 15095 15391 15538 15651SDSC 29422 23239 21550 22800 25220 29284 32999 32862Table 3: The e�e
t of user estimate quality on performan
e.that do not terminate by the estimated time, leading to the triangular shape of the s
atterplot.4.2 Are Good Estimates Really Needed?In order to 
he
k the sensitivity of the ba
k�lling algorithms to su
h poor estimates, wetested them with estimates of various qualities. Using the three workload �les, we generatednew user estimates that (for ea
h job) are 
hosen at random from a uniform distribution inthe range [r; f �r℄, where r is the job's a
tual runtime, and f is a \badness" fa
tor: the largerf , the less a

urate the estimates. f = 1 indi
ates 
ompletely a

urate estimates. For ea
hvalue of f , 10 measurements were made with di�erent random number generator seeds. Thesame set of 10 seeds was used for the di�erent tra
es and di�erent fs.The results are shown in Table 3, together with the results of using the original userestimates from the tra
es. Two 
on
lusions 
an be rea
hed:� A

urate estimates are not ne
essarily the best. It seems that if the estimates aresomewhat ina

urate, this gives the algorithms some 
exibility that leads to betters
hedules. This result has sin
e been 
orroborated by Zotkin and Keleher [27℄.� Our model of ina

ura
y does not 
apture the full badness of real user estimates. Theresults for the original estimates are typi
ally worse than those with our randomizedestimates.4.3 Modeling User Estimates of RuntimeThe se
ond 
on
lusion motivated a sear
h for a better model of the relationship betweenthe a
tual runtime of jobs and the estimates produ
ed by users. Su
h a model is neededfor two reasons. First, it is useful as part of a general workload model that 
an be usedto study di�erent job s
heduling s
hemes. For example, this would allow the simulations18



reported in Se
tion 3 to be repeated with realisti
 user estimates, rather than having to as-sume 
ompletely a

urate estimates (whi
h we now know probably lead to overly pessimisti
performan
e results). Se
ond, an a

urate model is required in order to study whether andhow the ina

ura
y of user estimates 
an be exploited by the s
heduler.The proposed model is quite simple. The 
at histogram of Fig. 8 implies thatTr=Te = ui.e. that the ratio of the a
tual runtime to the estimate 
an be modeled as a uniformlydistributed random variable. By 
hanging sides we getTe = Tr=uso given a runtime Tr we 
an generate an estimate Te that, while unrelated to the a
tual userestimate for this parti
ular job, is expe
ted to lead to the same general statisti
s of all theestimates taken together. To 
omplete the model we just need to note that in about 10% ofthe jobs the estimate is a
tually too small, and for short jobs the estimates are too large bya fa
tor of about 10. The �nal model is therefore1. With probability of 10% return 0:99� Tr2. Otherwise 
reate an estimate of Tr=u, where u is uniform in the range [0; 1℄.3. If Tr < 90, multiply the estimate by 10.4. If the estimate is outrageous, trun
ate it to some upper bound (e.g. 24 hours).4.4 The Alternative: Estimates Based on Histori
al InformationIt is well known that the workload on parallel super
omputers is highly repetitive. Thismeans that the same users tend to run the same programs over and over again, sometimes upto hundreds of exe
utions in a row [8, 3℄. It stands to reason that su
h repeated exe
utions ofthe same appli
ation would have highly 
orrelated runtimes, and indeed several studies haveshown that it is possible to derive 
rude estimates of runtimes using su
h information [10, 2,24℄. However, these studies were done in a 
ontext that does not penalize underestimation,as is the 
ase with ba
k�lling (where jobs that overrun their estimated time are killed). Inthis 
ontext, an estimation method that tends to overestimate is preferred, even if it is lessa

urate in absolute terms.To estimate runtimes based on histori
al information one must �rst be able to identifyrepeated exe
utions. For this purpose, we use the 
ombination of appli
ation (that is, ex-e
utable �lename), user, and number of nodes used as an identi�er [8, 10℄. The estimateis then 
al
ulated as the average of previous runs, plus 112 times their standard deviation.Note that this 
an be done based on storing only three numbers: the number of previousexe
utions, the sum of their runtimes, and the sum of their runtimes squared. If no spe
i�
previous information is available, data for the whole workload is used as a 
onservative upperbound. Finally, in order to avoid stale data, we dis
ard histori
al information if it is morethan a week old and start from s
rat
h. 19
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requested timeFigure 9: Quality of system-generated estimates of runtime.To evaluate the e�e
tiveness of this approa
h we used it to estimate the runtimes of allthe jobs that were not killed in the CTC workload, and 
ompared the estimates to the a
tualruntimes as we did for the a
tual user estimates in Fig. 8. Of the 62630 jobs, there were45159 (72.1%) for whi
h data was available. The resulting histogram and s
atter plot areshown in Fig. 9, and indi
ate that the estimates have a better pro�le than those generatedby users. However, 12001 jobs (19.2%) su�ered from an underestimate, and would have beenkilled by the s
heduler. About half of these (6240, or 10.0%) were jobs for whi
h previousinformation was available.It is easy to redu
e the number of jobs that re
eive underestimates by using a more
onservative approa
h, e.g. the average plus 3 standard deviations. However, this redu
esthe quality of the estimates and leads to a relatively 
at histogram. Thus it seems thatthere is a tradeo� between a

ura
y and the danger of having jobs killed. In any 
ase, giventhe large fra
tion of jobs that are underestimated, it seems that using system-generatedestimates for ba
k�lling is not a feasible approa
h.4.5 Does it Help to Know that Estimates are Ina

urate?Based on a repeated exe
ution of experiments su
h as those des
ribed in Se
tion 4.2, Zotkinand Keleher have proposed that the performan
e of ba
k�lling s
hedulers 
an be improvedby simply multiplying user estimates by a fa
tor of 2 or more, thus 
reating looser estimatesthat give the s
heduler more 
exibility. However, as we noted above, real user estimatesprodu
e worse results than the results produ
ed by a

urate runtimes multiplied by a fa
tor.Therefore it is not obvious that this s
heme will work with real user estimates.To evaluate how well this idea works, we simulated the exe
ution of the three SP2 work-loads under EASY ba
k�lling and 
onservative ba
k�lling, with both the original user esti-mates and these estimates multiplied by a fa
tor of two. The results for average responsetime and average bounded slowdown are shown in Table 4. They indi
ate that in generalmultiplying the user estimates by two does indeed improve the performan
e. In the 
ase of20



EASY 
onservativemetri
 tra
e orig �2 di� orig �2 di�bounded KTH 84.0 80.0 -4.8% 89.7 69.1 -23.0%slowdown CTC 3.8 3.5 -7.9% 5.0 4.1 -18.0%SDSC 84.2 88.1 +4.6% 96.0 82.4 -14.2%response KTH 15568 15060 -3.3% 16288 15147 -7.0%time CTC 12053 11944 -0.9% 12495 12291 -1.6%SDSC 24519 24134 -1.6% 29422 26222 -10.9%Table 4: E�e
t of multiplying user estimates by two.
onservative ba
k�lling as measured by the bounded slowdown metri
, the improvement isquite signi�
ant.5 Con
lusionsBa
k�lling is advantageous be
ause it provides improved responsiveness for short jobs 
om-bined with no starvation for long ones. This is done by making pro
essor reservations for thelarge jobs, and then allowing short jobs to leapfrog them if they are expe
ted to terminatein time. The expe
ted termination time is based on user input.SP2 installations using EASY, whi
h introdu
ed ba
k�lling, report mu
h improved sup-port for large jobs relative to early versions of LoadLeveler [19, 15℄. However, EASY su�ersfrom some un
ertainty regarding the time at whi
h a job will run, be
ause of its aggressiveba
k�lling algorithm. We showed that it is possible to add predi
tability by using a more
onservative form of ba
k�lling, in whi
h short jobs 
an start running provided they do notdelay any previously queued job.The most interesting aspe
t of the performan
e evaluation of this idea is that the resultsdepend on the workload and metri
. Spe
i�
ally, we found that when using workloads
hara
teristi
 of SP2 sites, the use of 
onservative ba
k�lling typi
ally 
omes at the 
ostof degraded performan
e; this was not so pervasive for other workloads. This leads tothe 
onje
ture that the workload at the SP2 sites may have evolved to mat
h the EASYba
k�lling algorithm used at these sites. A more detailed study of the workload attributesis now being 
ondu
ted to try and verify this 
onje
ture.In addition, we showed that user estimates of runtime are quite bad, but that in fa
tthis has the potential to be bene�
ial, be
ause ba
k�lling works better if it is allowed some
exibility. Even a simple approa
h of just multiplying user estimates by a 
onstant leads toimprovements. More sophisti
ated approa
hes, su
h as that re
ently proposed by Talby etal. [25℄, may be even better.A
knowledgementsThis resear
h was supported by the Ministry of S
ien
e and Te
hnology and by the Is-rael S
ien
e Foundation founded by the Israel A
ademy of S
ien
es and Humanities. Theworkload log from the CTC SP2 was gra
iously provided by the Cornell Theory Center,a high-performan
e 
omputing 
enter at Cornell University, Itha
a, New York, USA. The21



workload log from the KTH SP2 was gra
iously provided by Lars Malinowsky, who alsohelped with ba
kground information and interpretation. The workload log from the SDSCSP2 was gra
iously provided by Vi
tor Hazlewood of the HPC Systems group of the SanDiego Super
omputer Center (SDSC), whi
h is the leading-edge site of the National Partner-ship for Advan
ed Computational Infrastru
ture (NPACI), and is available from the NPACIJOBLOG repository at http://joblog.npa
i.edu. The 
ode for the Jann workload model wasgra
iously provided by Joefon Jann of IBM Resear
h.Referen
es[1℄ D. Das Sharma and D. K. Pradhan, \Job s
heduling in mesh multi
omputers". In Intl.Conf. Parallel Pro
essing, vol. II, pp. 251{258, Aug 1994.[2℄ A. B. Downey, \Using queue time predi
tions for pro
essor allo
ation". In Job S
hedul-ing Strategies for Parallel Pro
essing, D. G. Feitelson and L. Rudolph (eds.), pp. 35{57,Springer Verlag, 1997. Le
t. Notes Comput. S
i. vol. 1291.[3℄ A. B. Downey and D. G. Feitelson, \The elusive goal of workload 
hara
terization".Perf. Eval. Rev. 26(4), pp. 14{29, Mar 1999.[4℄ D. G. Feitelson, \Pa
king s
hemes for gang s
heduling". In Job S
heduling Strategies forParallel Pro
essing, D. G. Feitelson and L. Rudolph (eds.), pp. 89{110, Springer-Verlag,1996. Le
t. Notes Comput. S
i. vol. 1162.[5℄ D. G. Feitelson, A Survey of S
heduling in Multiprogrammed Parallel Systems. Resear
hReport RC 19790 (87657), IBM T. J. Watson Resear
h Center, O
t 1994.[6℄ D. G. Feitelson and M. A. Jette, \Improved utilization and responsiveness with gangs
heduling". In Job S
heduling Strategies for Parallel Pro
essing, D. G. Feitelson andL. Rudolph (eds.), pp. 238{261, Springer Verlag, 1997. Le
t. Notes Comput. S
i.vol. 1291.[7℄ D. G. Feitelson and A. Mu'alem Weil, \Utilization and predi
tability in s
heduling theIBM SP2 with ba
k�lling". In 12th Intl. Parallel Pro
essing Symp., pp. 542{546, Apr1998.[8℄ D. G. Feitelson and B. Nitzberg, \Job 
hara
teristi
s of a produ
tion parallel s
ienti�
workload on the NASA Ames iPSC/860". In Job S
heduling Strategies for ParallelPro
essing, D. G. Feitelson and L. Rudolph (eds.), pp. 337{360, Springer-Verlag, 1995.Le
t. Notes Comput. S
i. vol. 949.[9℄ D. G. Feitelson, L. Rudolph, U. S
hwiegelshohn, K. C. Sev
ik, and P. Wong, \Theoryand pra
ti
e in parallel job s
heduling". In Job S
heduling Strategies for Parallel Pro-
essing, D. G. Feitelson and L. Rudolph (eds.), pp. 1{34, Springer Verlag, 1997. Le
t.Notes Comput. S
i. vol. 1291. 22



[10℄ R. Gibbons, \A histori
al appli
ation pro�ler for use by parallel s
hedulers". In JobS
heduling Strategies for Parallel Pro
essing, D. G. Feitelson and L. Rudolph (eds.),pp. 58{77, Springer Verlag, 1997. Le
t. Notes Comput. S
i. vol. 1291.[11℄ S. Hotovy, \Workload evolution on the Cornell Theory Center IBM SP2". In JobS
heduling Strategies for Parallel Pro
essing, D. G. Feitelson and L. Rudolph (eds.),pp. 27{40, Springer-Verlag, 1996. Le
t. Notes Comput. S
i. vol. 1162.[12℄ Intel Corp., iPSC/860 Multi-User A

ounting, Control, and S
heduling Utilities Manual.Order number 312261-002, May 1992.[13℄ R. Jain, The Art of Computer Systems Performan
e Analysis. John Wiley & Sons,1991.[14℄ J. Jann, P. Pattnaik, H. Franke, F. Wang, J. Skovira, and J. Riodan, \Modeling ofworkload in MPPs". In Job S
heduling Strategies for Parallel Pro
essing, D. G. Feitelsonand L. Rudolph (eds.), pp. 95{116, Springer Verlag, 1997. Le
t. Notes Comput. S
i.vol. 1291.[15℄ J. P. Jones and B. Nitzberg, \S
heduling for parallel super
omputing: a histori
al per-spe
tive of a
hievable utilization". In Job S
heduling Strategies for Parallel Pro
essing,D. G. Feitelson and L. Rudolph (eds.), pp. 1{16, Springer-Verlag, 1999. Le
t. NotesComput. S
i. vol. 1659.[16℄ P. Krueger, T-H. Lai, and V. A. Dixit-Radiya, \Job s
heduling is more important thanpro
essor allo
ation for hyper
ube 
omputers". IEEE Trans. Parallel & DistributedSyst. 5(5), pp. 488{497, May 1994.[17℄ D. Lifka, \The ANL/IBM SP s
heduling system". In Job S
heduling Strategies forParallel Pro
essing, D. G. Feitelson and L. Rudolph (eds.), pp. 295{303, Springer-Verlag,1995. Le
t. Notes Comput. S
i. vol. 949.[18℄ V. Lo, J. Ma
he, and K. Windis
h, \A 
omparative study of real workload tra
es andsyntheti
 workload models for parallel job s
heduling". In Job S
heduling Strategies forParallel Pro
essing, D. G. Feitelson and L. Rudolph (eds.), pp. 25{46, Springer Verlag,1998. Le
t. Notes Comput. S
i. vol. 1459.[19℄ L. Malinowsky and P. �Oster, \S
heduling of a parallel workload: implementation and useof the Argonne EASY s
heduler at PDC". In Applied Parallel Computing, B. K�agstr�om,J. Dongarra, E. Elmroth, and J. Wa�sniewski (eds.), pp. 309{314, Springer-Verlag, 1998.Le
t. Notes Comput. S
i. vol. 1541.[20℄ C. M
Cann, R. Vaswani, and J. Zahorjan, \A dynami
 pro
essor allo
ation poli
y formultiprogrammed shared-memory multipro
essors". ACM Trans. Comput. Syst. 11(2),pp. 146{178, May 1993.[21℄ P. Messina, \The Con
urrent Super
omputing Consortium: year 1". IEEE Parallel &Distributed Te
hnology 1(1), pp. 9{16, Feb 1993.23



[22℄ Parallel workloads ar
hive. URL http://www.
s.huji.a
.il/labs/parallel/workload/.[23℄ J. Skovira, W. Chan, H. Zhou, and D. Lifka, \The EASY - LoadLeveler API proje
t".In Job S
heduling Strategies for Parallel Pro
essing, D. G. Feitelson and L. Rudolph(eds.), pp. 41{47, Springer-Verlag, 1996. Le
t. Notes Comput. S
i. vol. 1162.[24℄ W. Smith, I. Foster, and V. Taylor, \Predi
ting appli
ation run times using histori-
al information". In Job S
heduling Strategies for Parallel Pro
essing, D. G. Feitelsonand L. Rudolph (eds.), pp. 122{142, Springer Verlag, 1998. Le
t. Notes Comput. S
i.vol. 1459.[25℄ D. Talby and D. G. Feitelson, \Supporting priorities and improving utilization of theIBM SP s
heduler using sla
k-based ba
k�lling". In 13th Intl. Parallel Pro
essing Symp.,pp. 513{517, Apr 1999.[26℄ D. Talby, D. G. Feitelson, and A. Raveh, \Comparing logs and models of parallel work-loads using the 
o-plot method". In Job S
heduling Strategies for Parallel Pro
essing,D. G. Feitelson and L. Rudolph (eds.), pp. 43{66, Springer Verlag, 1999. Le
t. NotesComput. S
i. vol. 1659.[27℄ D. Zotkin and P. J. Keleher, \Job-length estimation and performan
e in ba
k�llings
hedulers". In 8th High Performan
e Distributed Computing Conf., 1999.Ahuva W. Mu'alem re
eived the B.S
. in Mathemati
sfrom the Te
hnion, and the M.S
. in Computer S
ien
e fromthe Hebrew University in 1999. She is 
urrently a pursuing aPh.D. in Computer S
ien
e at the Hebrew University. She isalso a digital artist: see http://www.
s.huji.a
.il/~ahumu.

24



Dror G. Feitelson is on the fa
ulty of the S
hool of Com-puter S
ien
e and Engineering at the Hebrew University ofJerusalem, Israel, where he 
ondu
ts resear
h on parallel op-erating systems. His re
ent fo
us is on the 
hara
terizationand modeling of workloads on produ
tion parallel ma
hines,with the goal of putting the evaluation of parallel job s
hedul-ing poli
ies on a more solid basis. He is the 
o-organizer ofan annual series of workshops on the topi
 of Job S
hedulingStrategies for Parallel Pro
essing, now in its seventh year.He re
eived a B.S
. in Mathemati
s, Physi
s, and ComputerS
ien
e in 1985, an M.S
. in Computer S
ien
e in 1987 (
umlaude), and a Ph.D. in 1991, all from the Hebrew University.He then spent 3 years at the IBM T. J. Watson Resear
hCenter, where he 
ontributed to the system software of theSP1 and SP2. At Hebrew University, he has lead the designand implementation of the ParPar 
luster system, and of theBoW on-line bibliographi
al repository.

25


