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Abstract

Scheduling in the context of parallel systems is often thought of in terms of assigning

tasks in a program to processors, so as to minimize the makespan. This formulation

assumes that the processors are dedicated to the program in question. But when the

parallel system is shared by a number of users, this is not necessarily the case. In the

context of multiprogrammed parallel machines, scheduling refers to the execution of

threads from competing programs. This is an operating system issue, involved with

resource allocation, not a program development issue.

Scheduling schemes for multiprogrammed parallel systems can be classi�ed as one

or two leveled. Single-level scheduling combines the allocation of processing power with

the decision of which thread will use it. Two level scheduling decouples the two issues:

�rst, processors are allocated to the job, and then the job's threads are scheduled using

this pool of processors. The processors of a parallel system can be shared in two basic

ways, which are relevant for both one-level and two-level scheduling. One approach is

to use time slicing, e.g. when all the processors in the system (or all the processors in

the pool) service a global queue of ready threads. The other approach is to use space

slicing, and partition the processors statically or dynamically among the di�erent jobs.

As these approaches are orthogonal to each other, it is also possible to combine them

in various ways; for example, this is often done in gang scheduling. Systems using the

various approaches are described, and the implications of the di�erent mechanisms are

discussed. The goals of this survey are to describe the many di�erent approaches within

a uni�ed framework based on the mechanisms used to achieve multiprogramming, and

at the same time document commercial systems that have not been described in the

open literature.

Keywords: parallel system, scheduling, multiprogramming, time slicing, space slicing,

processor allocation, mapping, two-level scheduling, partitioning, gang scheduling.
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1 Introduction

In uniprocessors, scheduling is the activity of deciding which thread of control gets to run

on the CPU. In multiprocessors and multicomputers, scheduling has another dimension: not

only deciding when a thread will run, but also where it will run, i.e. on which Processing

Element (PE). Thus parallel systems allow a two-dimensional division of resources among

competing jobs, both in time and in space.

Apart from the allocation of computing resources to competing jobs, there is also the

question of allocation to cooperating threads within a single job. This can be done by the

operating system, by the language runtime system, or by the application itself. The scope

of this paper is oriented more towards scheduling by the operating system, but some of the

mechanisms that are surveyed are equally applicable to scheduling at a higher level. We

start with a distinction between two basic approaches to scheduling in multiprogrammed

parallel systems: single-level and two-level. The single level approach combines the issues

of PE allocation to the job and scheduling threads on those PEs. The two-level approach

decouples the two issues. First, the operating system allocates PEs to the job, and then the

application itself (or the language runtime library) schedules the threads. This eliminates

operating system overhead from each scheduling decision, and allows for application-speci�c

optimizations.

While single-level scheduling and two-level scheduling are conceptually very di�erent, the

mechanisms used are largely overlapping. Indeed, two-level scheduling can often be viewed

as a combination of two scheduling mechanisms, one for PE allocation and the other for

scheduling on a given set of PEs, where each of the two can also be considered a single-level

scheduling scheme in its own right. The bulk of the survey therefore focuses on a framework

for describing scheduling mechanisms, emphasizing the fact that most mechanisms can be

used alone or as part of a two-level scheme.

The major distinction among di�erent mechanisms is whether they are based on time

slicing or space slicing. This distinction is extremely important, because space slicing is

often associated with exclusive allocation of the PEs to a given application. This entails

some degree of loss of control by the operating system. Time slicing is more 
exible, and

scheduling decisions have less impact on future performance. However, this comes at the

price of higher overheads.

Section 2 presents a classi�cation of scheduling mechanisms based on the use of time slic-

ing, space slicing, or both. Speci�c systems are then surveyed according on the mechanisms

used: partitioning, whether �xed, variable, adaptive, or dynamic (Section 3), independent

PEs with global or local queues (Section 4), and gang scheduling, where PEs are scheduled

in unison (Section 5). For each scheme, we identify the models of computation for which

it is useful, and discuss the interaction of the scheduling scheme with other aspects of the

parallel operating system activities, such as thread mapping, load balancing, and memory

management. The implications of various combinations and options are explored in Section

6. Finally, Section 7 surveys a number of real systems which use di�erent mechanisms to
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support di�erent classes of applications. A glossary of terms is given in Appendix A, and a

discussion of \threads" is given in Appendix B.

Scope of this survey

The issues mentioned above are not relevant for all parallel systems; as the title implies,

we are dealing only with multiprogrammed machines, and speci�cally those that support

interactive use. However, it should be noted that this is not the only mode in which parallel

machines are used.

Many parallel machines are not intended to provide multiprogramming services, because

they are perceived as high-performance systems that should be dedicated to production

computing. Examples start with many early parallel machines and continue into the present.

They include the Illiac IV [45, 77], which was designed to carry out numerical solutions for

partial di�erential equations such as those in weather codes, the Goodyear MPP [50, 470],

used by NASA to process satellite images, the IBM GF11 [54, 342], dedicated for a whole

year to a single computation involving the masses of eight fundamental particles, in an e�ort

to validate the predictions of quantum chromo-dynamics [93], and the Warp systolic array

[24], which is used for the real-time signal processing required in robotic navigation and

vision.

The use of dedicated machines is not a privilege of large government agencies and philan-

thropists in search of basic truths. Businesses as diverse as oil companies, car manufacturers,

and wall-street �rms are known to employ parallel computers in everyday operations. Typi-

cally these machines are dedicated to running the same single application for as long as the

machine is in use. In the case of oil companies, this application is oil reservoir modelling

based on seismic data. Car and plane manufacturers run computational 
uid dynamics

applications to evaluate the aerodynamics of new designs. Wall street uses parallel super-

computers for market analysis, based on huge databases of market activity. The advantage

of dedicated machines is that the application has complete control over the hardware, with

no operating system interference. Thus interprocessor communication can be done with less

software layers of protection, leading to higher performance [343, 76].

It is interesting to see how history repeats itself, even after 40 years in a fast-changing in-

dustry such as computers. The �rst uniprocessors were also dedicated to a single application,

e.g. census tabulation, and many mainframes remain dedicated to transaction processing or

payroll processing to this day. Nevertheless, the idea of batch processing came close on the

heels of dedicated machines. Many parallel machines are following in those footsteps, using

either signup sheets or automated queueing systems such as NQS to coordinate resource al-

location [323]. In parallel systems, the allocation is done in three dimensions: PEs, memory,

and time. This allows a high degree of resource utilization to be achieved. For example, a

utilization above 80% after factoring in down-time was reported for the experimental Touch-

stone Delta machine at Caltech [400].

Parallel machines are also taking the next step from batch systems to interactive ones.

It can be argued that this leads to ine�ciency and lesser utilization, because interactive
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response times require time slicing to be used, leading to higher system overheads and

reduced cache e�ciency. Nonetheless, the market requirement is there, and most vendors of

parallel machines make a point of their support for interactive use. This includes program

development, debugging, testing, and just learning about parallelism. After decades of

performing such activities interactively on uniprocessors, most users consider it unacceptable

to resort to batch processing on parallel machines.

Some installations, mainly small-scale ones at academic institutions, are even used pri-

marily for interactive use. It is safe to speculate that this will also be the primary use

of parallel workstations. Other systems attempt to combine interactive and batch usage

modes. For example, it is possible to partition the machine statically into a large batch

partition and a smaller interactive partition [400, 422, 606]. Alternatively, it is possible to

initially allocate all the resources to batch processing, and preempt PEs and memory in favor

of interactive jobs as needed. This leads to the notion of adaptive resource allocation for

the batch jobs, using the same techniques as for interactive jobs (e.g. time slicing), but at a

much coarser time scale.

This survey is oriented primarily towards issues relating to interactive use. The main

consideration is thus shifted from performance, utilization, and throughput to response time

and user satisfaction. However, it is practically impossible to draw a line betweenmechanisms

used for batch scheduling and those used in interactive systems. Therefore the full range of

schemes developed for multiprogramming on parallel machines are reviewed. This includes

both paper designs from academia and practical ones that are commercially available.

The following issues will not be surveyed. First, we shall not discuss the classic NP-

complete problem of task scheduling a.k.a. the mapping problem [590, 293, 238, 58, 434,

13, 7]. This problem deals with how to schedule a program represented as a graph of tasks

with interdependencies on multiple processors. Variants of the problem take granularity

considerations and inter-processor communication into account. This problem is relevant to

the design of parallel programs that will execute on a given number of processors, because

then the overhead associated with runtime scheduling can be avoided [622]. Heuristics for its

solution are mentioned in Section 4.1.1. However, it is largely irrelevant to situations where

the computation is programmed in a way that does not resemble a task graph, as is often

the case for control parallelism and the SPMD

1

indexSPMD model. It is also irrelevant if the

availability of PEs is not known in advance, as is the case in multiprogrammed systems. In

these cases the scheduling must be done by the parallel operating system, using techniques

described in this paper.

Second, scheduling under real-time constraints is also not discussed, as it is quite di�erent

from scheduling in multiprogrammed general-purpose systems. Real-time systems try to

�nd a schedule that satis�es a set of designated deadlines [478, 477, 548, 525, 300, 35, 326],

whereas multiprogramming is more concerned with throughput and fair sharing of resources.

1

SPMD stand for Single Program Multiple Data [144]. Under this paradigm, the same program is

loaded onto all the PEs. Each PE runs a single thread, and they all start execution from the same entry

point. However, each PE knows its serial number, operates on data in its local memory, and may branch

independently of other PEs.
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Likewise, scheduling issues on parallel database machines are not included [75, 159], as they

too are quite di�erent from general purpose systems.

Third, we will not discuss scheduling on heterogeneous networks (usually identi�ed by

the new buzzword \metacomputing") [233, 109, 247, 480, 226]. The issue there is to match

parts of the application to the most appropriate hardware, taking other load into account.

Thus schedulers for metacomputing environments must interact with the local schedulers of

(parallel) machines that compose the environment, such as those described in this survey.

Finally, many multiprocessor multiprogrammed systems are used as throughput ma-

chines, running independent sequential jobs on the di�erent PEs. This was a design goal

in many multiprocessors such as the VAX 11/784, which had four processors, each equiva-

lent to that of a VAX 11/780. But many machines that were designed to execute parallel

programs are also used in this mode [464]. This is especially true of small scale bus-based

machines such as the Sequent Balance, and also of Cray multiprocessors such as the Cray

X-MP, Y-MP, and C-90. This survey does not cover such usage. It deals exclusively with

scheduling of parallel programs.

A note on terminology

For the sake of self-containment and completeness, the following paragraphs de�ne our usage

of some basic terminology. Additional terms are added as needed throughout the paper. All

the terms are also summarized in Appendix A.

Throughout this paper, we use the term PE (processing element) to denote the con-

stituents of a parallel system. A PE typically includes a CPU, some memory, and mecha-

nisms to communicate with other PEs in the system (either directly or through the use of

shared memory). We use the term thread to indicate the entity that may be scheduled to

run on a PE. Depending on the context, this may be something like a full Unix process or

else it could be a light-weight process. In addition, we make no a-priori distinction between

kernel threads and user threads. Such distinctions are only made in those cases where the

described mechanisms are only suitable for one type but not for the other. A more detailed

discussion of the thread model is given in Appendix B.

A job is an application in execution, as known by the operating system. Thus the set of

threads that together execute a given application typically comprise a job. The exception

is when a set of processes, which are autonomous as far as the operating system knows, are

actually part of a single application. In this case, the operating system regards each one as

a separate job.

A thread has some state information, e.g. its program counter and other registers, and

executes within some context, e.g. its address space and open �les. Switching from one thread

to another within the same context requires the state of the running thread to be o�oaded

from the PE, and the state of the newly scheduled thread to be loaded onto it. Switching

from a thread in one context to a thread in another context requires the context information

to be changed as well.

The title of this survey refers to multiprogrammed systems. We use this term to denote
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systems that support the concurrent execution of multiple independent jobs. In parallel

systems, this can be done either by context switching among threads from the di�erent jobs,

or by partitioning the machine and executing di�erent jobs on di�erent partitions. The term

multitasking will be used to denote cases where a number of threads | from the same job

or from competing jobs | execute concurrently on the same PE. This is a straightforward

adaptation of the use of these terms in uniprocessor systems [456].

Scheduling is the decision of which thread of control will execute on a certain PE at

a certain time. In some cases the relation of threads to PEs is restricted in some way,

e.g. threads belonging to a certain application will only execute on a certain subset of the

PEs. If the PEs only execute threads from this application, it implies some sort of processor

allocation prior to the scheduling. This can also be regarded as a partitioning of the system

among the applications.

The assignment of threads to PEs may also be further restricted, e�ectivelymapping each

thread to a speci�c PE. This can be done by the operating system, based on considerations

such as the desire to reduce contention for global data structures. In this case the operating

system may later change its mind and change the mapping in the interest of load balancing.

Alternatively, the mapping of threads to PEs can be done by the application based on

knowledge of what the threads do and how they interact. Such mapping depends on the fact

that the operating system had already allocated the PEs to the application, and is not going

to interfere with their use. Technically, the operating system schedules a single thread on

each allocated PE, and the application maps its logical threads onto these system threads.

The selection of the next thread to run from those that are ready and memory-resident is

called dispatching.

2 A Classi�cation of Multiprogramming Schemes

Multiprogramming is the activity of executing multiple jobs concurrently on the same ma-

chine. Textbooks on operating systems introduce multiprogramming as a solution to the

problem of low resource utilization, where an adequate mix of jobs with complementary re-

quirements keep all parts of the system busy [322, 456]. For example, I/O operations from

one job can be overlapped with useful computation for another job, rather than leaving the

CPU idle until the I/O completes. This is achieved by time slicing, which also creates the

opportunity for interactive response times. For many users, the capacity for interactive use

is even more important than the improved utilization.

The same considerations apply to parallel systems. Again, utilization is improved by a

proper mix of jobs, but with the added dimension of having jobs with di�erent degrees of

parallelism running side by side (i.e., one job utilizes PEs left over by another) [558, 362,

197, 594, 464, 201]. Again, sharing provides users with better access to the system, and |

depending on the application | even with interactive response times [518]. Again, this is

important both because it enables users to make faster progress towards a solution [574],
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and because adequate access for multiple users is often crucial in order to fund costly parallel

supercomputers [78, 151].

The importance of multiprogramming is clear, and many systems provide this feature.

However, they do so in a variety of ways. In this section, we look at di�erent classi�cations

of multiprogramming schemes, and at the reasons that led to the development of di�erent

schemes.

2.1 Single-Level Scheduling and Two-Level Scheduling

Probably the most basic dichotomy in parallel scheduling is the distinction between single-

level scheduling and two-level scheduling. In single-level scheduling the act of allocating a

processing resource is combined with the act of deciding which thread will use this resource.

In two-level scheduling, these two aspects of scheduling are decoupled. The �rst level deals

with resource allocation, and the second with its use. The distinction between single-level

and two-level scheduling is typically apparent in the operating system interface: either the

application creates a set of parallel threads, and then the system is responsible for scheduling

them, or the application just requests an allocation of PEs, and manages their use on its

own.

The problem with single-level scheduling is the fear that leaving all scheduling to the

operating system is too expensive, and not responsive enough to application needs. Note

that many scheduling decisions are a result of synchronization conditions among the threads

of the application. For example, one thread may block waiting for another thread to send a

message or reach a synchronization point. In �ne grain applications, such interactions can

be numerous and can come at high rates. Paying the operating system overhead for each

one would be prohibitively expensive. In addition, the operating system cannot optimize the

scheduling because it lacks information about the application's characteristics and patterns

of interaction.

The proposed solution is two-level scheduling. The operating system just allocates the

computing resources, i.e. PEs and memory. This is done at a relatively low rate related to

the job submission rate. Because PEs are allocated to jobs, sharing is done by space slicing,

and applications might have more threads than PEs. The application itself (or the runtime

system) then does the actual �ne-grain scheduling of threads on the allocated PEs, in a way

that satis�es the synchronization constraints. This level of internal scheduling provides high


exibility in resource allocation. For example, it is possible to create systems where the PE

allocation changes at runtime, and the application is expected to adjust accordingly. This

approach is suitable for systems where the computation is represented as a task graph or

as a workpile of chores, which are executed by a variable number of worker threads. Such

systems are reviewed in Section 3.4.

It should be noted, however, that two-level scheduling is not universally accepted. This

is largely due to the fact that its use is somewhat limited in its applicability. It is perfectly

suitable for relatively small, shared memorymachines, using the workpile of chores program-

ming model, because then chores can indeed be executed on any PE. It is less suitable for
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distributed memory architectures, especially if programs are written in the prevalent SPMD

style.

In fact, it is possible to identify three types of single-level scheduling that are commonly

used. One is single-level scheduling that corresponds to the �rst level of two-level scheduling,

i.e. processor allocation. Such systems just partition the PEs among the submitted jobs, and

then run a single thread on each PE. For example, this approach is suitable for programs

written in the SPMD style and executed in batch mode. It is also very simple to implement,

and has low operating system overhead. Consequently, it has received widespread use on

many systems. Partitioning is reviewed in Section 3.

Another approach corresponds to the second level of two-level scheduling, i.e. time slicing

to execute more threads than there are PEs. The di�erences from two-level scheduling are

that all the PEs are used rather than only a pre-allocated subset, and that all threads

are considered, rather than only those belonging to a certain application. However, the

mechanisms used are the same. Furthermore, scheduling multiple threads on a smaller

number of PEs is a relatively simple extension of uniprocessor systems, where the number

of PEs happens to be 1. Therefore time slicing systems have also been quite popular; they

are reviewed in Section 4.

The time slicing systems described above are distinguished by the fact that the scheduling

on each PE is independent of the others. A third approach to single-level scheduling is to

perform coordinated scheduling on all the PEs (or on subsets of PEs). This is known as

gang scheduling. The justi�cation is that if all the threads in an application are scheduled to

run simultaneously on di�erent PEs, the application sees the same environment as it would

on a dedicated machine. In particular, synchronization constraints will be limited to those

that are inherent to the application, and will not result in operating system activity. On the

other hand, gang scheduling provides more 
exible resource sharing than pure partitioning,

because time slicing is also used. While harder to implement than the previous two types of

single-level scheduling, gang scheduling has the bene�t of providing applications with a better

approximation of a dedicated machine. Therefore this approach is gaining in approval, as

witnessed by the increasing number of commercial system that provide it. Gang scheduling

systems are reviewed in Section 5.

2.2 The Two Dimensions of Sharing

Other surveys of scheduling and resource allocation have used various classi�cations. For

example, Casavant and Kuhl classify di�erent scheduling algorithms according to their al-

gorithmic design [104]. Mauny et al. take a broader look at resource allocation in general

(including vector registers, memory, etc.), and study its interactions with the programming

model and architecture [392]. Our classi�cation of scheduling schemes for multiprogrammed

parallel systems is based on the way in which computing resources are shared: temporal shar-

ing, spatial sharing, or both. Fig. 1 presents a taxonomy based on these options. Naturally,

scheduling schemes used in real machines are not designed speci�cally to ease their classi�-
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Figure 1: Grid of combinations of mechanisms for time-slicing and space-slicing.

cation. Therefore this classi�cation is not always completely adequate for the description of

certain systems. However, it provides insights into the basic choices.

The main observation is that the mechanisms of time-slicing are largely independent of

those for space-slicing. Thus the classi�cation can be represented by a two-dimensional grid,

with time-slicing on one axis and space-slicing on the other. The fact that practically all the

squares in the grid are occupied with examples of real systems testi�es to the independence

of the mechanisms for the two sharing schemes. This is in contrast with other types of

classi�cations, where some combinations don't make sense, such as the MISD part of Flynn's

classi�cation of parallel architectures [214].

On the time-slicing axis, the main distinction is between mechanisms that apply to each

PE individually and mechanisms that handle a group of PEs as a single unit. Mechanisms
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for independent PEs are further divided into those that use local queues, thereby requiring

that threads be mapped to PEs before they can be scheduled, and those that use a shared

global queue, thereby blending the actions of mapping and scheduling. These mechanisms

are described in detail and compared in Section 4.

Mechanisms that perform time-slicing on groups of PEs actually implement gang schedul-

ing, which we de�ne to mean preemptive scheduling of a certain set of threads simultaneously

on distinct PEs, with a one-to-one mapping of threads to PEs (i.e. either all these threads

execute or none execute). Gang scheduling requires coordinated context switching across the

PEs (also called multi-context-switching), which is harder to implement than independent

context switching. However, this approach is gaining in popularity, and a number of recent

commercial systems provide gang scheduling (including the Cray T3E, Connection Machine

CM-5, the Intel Paragon, the Meiko CS-2, and SGI multiprocessors). In addition, a number

of experimental systems have also been reported in the literature These systems and others

are reviewed in Section 5.

It should be noted that the groups of PEs that perform coordinated context switching

may be created as part of a space-slicing scheme that partitions the machine. On the other

hand, there may be no partitioning at all: all the PEs can be used for only one job at a

time. The same applies for groups of PEs sharing the use of a global queue. This is another

manifestation of the independence of time-slicing from space-slicing.

Space-slicing mechanisms are reviewed in Section 3. In essence, space-slicing is a bin

packing problem: how to �t applications side by side, with best utilization of the available

PEs. many di�erent heuristics have been proposed. Some use a hierarchical structure to

guide the partitioning. Others limit the number of options that have to be considered by

performing the partitioning within a framework of prede�ned static partitions. Still others

relay the problem to the application programmer, by requiring applications to adjust to

whatever number of PEs the system can provide under the current loading conditions.

The large number of possible mechanisms and the fact that they are independent of each

other implies that the design space for multiprogrammed parallel systems is very large. To

help evaluate these options, Section 6 lists the implications of the various sharing schemes

in terms of performance and functionality.

2.3 The Roots of Divergence

As seen from the grid of Fig. 1, many di�erent scheduling schemes have been proposed and

implemented. While similar machines often use similar scheduling schemes, di�erent types

of machines are often scheduled in very dissimilar ways. Moreover, there is a rather wide

gap between theoretical studies and schemes proposed by academia on the one hand, and

what is done in practice in large installations on the other hand.

The reasons for such divergence are that the assumptions leading to and justifying the

di�erent schemes are usually quite di�erent [205, 206]. Thus, while all the schemes are de-

signed to solve the general problem of \how to schedule parallel jobs on a parallel machine",

the detailed assumptions make each instance of this problem distinct from the others. Nat-
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Figure 2: (a) Rigid jobs de�ne a rectangle in processor-time space. (b) Moldable jobs use

one out of a choice of such rectangles. (c) Evolving and malleable jobs both have a pro�le

with a changing number of processors. The di�erence is that in evolving jobs the changes

are initiated by the job, while in malleable ones they are initiated by the system.

urally, this leads to di�erent solutions. Regrettably, it also means that it is often hard if not

meaningless to try and compare the di�erent solutions with each other | in many cases,

this is like comparing apples to oranges.

A basic conceptual di�erence that underlies much of the divergence is the type of system

and how it is used. Many theoretical studies involve o�-line systems, and search for opti-

mal solutions given that everything is known up front and nothing changes. Real systems,

however, operate in an on-line open environment, and need to contend with unpredictable

arrivals of new work.

A more concrete source of di�erences is assumptions about the system architecture. For

example, the availability of shared memory makes the use of a shared queue natural and

straightforward, while its absence makes it harder to implement. Furthermore, if the shared

memory is centrally located, rather than being distributed among the PEs, its allocation

is completely decoupled from the allocation of processors. This means that it is easy to

re-allocate processors at runtime, because such reallocations do not require any data move-

ments. If global memory is not available, then processor reallocation becomes a more expen-

sive operation. In addition, there may be di�erent assumptions about the basic operations

supported by the system software (preemption, migration, swapping), and the amount of

information available to the scheduler [206].

Another source of di�erences is assumptions about the jobs and their capabilities in

relation to processor allocation. The following classi�cation has been proposed (Fig. 2)

[205]:

Rigid: jobs that require a certain prede�ned number of processors. They will not run on

less, and will not utilize more. The system has no choice but to grant the requested

number.
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Moldable: jobs that allow the number of processors to be set at the outset, but it cannot

change thereafter. Thus the system may a�ect the number of PEs used, for example

reducing it if the job is submitted under conditions of heavy load.

Evolving: jobs with changing requirements, e.g. a sequence of serial and parallel phases.

At the beginning of each phase, the job requests the system for the resources it needs

for this phase, and at the end of the phase it releases them. This allows the system to

re-assign processors that fall out of use.

Malleable: jobs that can adjust to changing allocations at runtime. This allows the most


exibility to the system: when PEs become available, they can be immediately allo-

cated to running jobs so as to reduce fragmentation; when new jobs arrive, they can

run immediately using PEs preempted from other jobs.

Quite naturally, malleable jobs have been assumed in many academic studies, and the result-

ing systems have been shown to be very e�cient. However, this model is much less popular

with users, and is not supported by most programming environments. As a consequence,

the suggested scheduling schemes cannot be used in most real production systems, leaving

system administrators with other \suboptimal" solutions.

In addition to explicit assumptions about the environment and workload, the gap between

theory and practice is also fueled by simple non-technical concerns. Practitioners who need to

support large communities of real users are bound by such issues as standard user interfaces,

backward compatibility, the need to support political scheduling, etc. Academics have the

freedom to ignore such dull issues. On the other hand, academics are sometimes limited

by questions of mathematical tractability, whereas practitioners may devise complex and

elaborate schemes that defy any type of rigorous analysis.

3 Partitioning

Space-slicing is done by partitioning the machine among a number of applications that

execute side by side. This approach is motivated by the desire to reduce operating system

overhead on context switching [581], and by the desire to exploit architectural decisions not

to provide support for virtual memory and paging, but rather to give all the physical memory

to a single application.

Sometimes partitioning is the only mode of sharing. In this case, the operating system

is actually involved more in PE allocation than in scheduling. The application's runtime

system may then schedule user threads on these PEs, leading to a two-level scheduling

scheme [633, 580]. This is especially common on shared-memory multiprocessors. The

second level of scheduling is often done using a global queue, with the same considerations

and optimizations as described in Section 4.2, e.g. taking processor a�nity into account. On

distributed-memory multicomputers, it is more common to have only one thread on each

PE.
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Alternatively, partitioning may be combined with preemption, either on independent

PEs within each partition or synchronously across the partition. Systems that provide such

combinations are reviewed in other sections. This section concentrates on the mechanisms

of partitioning per se.

In general, partitioning is limited by the hardware. Not every machine can be partitioned.

For example, SIMD

2

architectures cannot be partitioned unless it is possible to associate an

instruction interpretation unit with each partition, together with a mechanism to broadcast

the instructions to the PEs in the partition. Likewise, some interconnection topologies cannot

be partitioned e�ectively. For example, a mesh can be partitioned easily, but partitioning a

torus requires special switches that re-link the row and column rings. Hypercubes can only

be partitioned into subcubes.

Given that the hardware allows for partitioning, the main issue that remains is where

to place the partition boundaries. Some systems do not provide much of a choice. This

makes the implementation simple, but risks waste and user frustration due to mismatch

between the available partitioning patterns and the actual requirements. Other systems

allow any partitioning that one might wish for. This provides welcome 
exibility, but requires

sophisticated algorithms to make the partition decisions. The following criteria have been

proposed to evaluate and compare partitionable systems [381, 489]:

� Independence | distinct partitions should be as independent as possible. In particular,

they should not share hardware such as switches or links.

� Flexibility | it should be possible to allocate partitions of arbitrary sizes, composed

of arbitrary subsets of PEs. Otherwise, PEs will be lost to fragmentation.

� Adaptiveness | the partitioning should re
ect the requirements of the workload, so as

to promote good utilization. As the workload typically changes with time, so should

the partitioning.

� Cost and complexity | should be low. This refers both to the hardware needed to

build the system, and to the algorithms used to run it.

� Modularity and scalability | solutions should be useful for large systems.

The classi�cation of partitioning schemes is complicated by the fact that three players

are involved: the architecture, the operating system, and the applications. The architecture

might impose restrictions on the ways in which the PEs can be partitioned. The operating

systemmight make partitioning decisions in an oblivious manner, or else it might take system

load into account. It might even want to change the partitioning dynamically at runtime.

2

SIMD stands for Single Instruction-stream Multiple Data-stream, and MIMD stands for Multiple

Instruction-stream Multiple Data-stream [214]. In SIMD architectures there is a single instruction decod-

ing unit, which broadcasts the instructions to multiple processing units. Thus each instruction is applied

synchronously and in parallel to multiple data elements that reside in the same address on distinct PEs. In

MIMD architectures PEs execute independently of each other, except for explicit synchronization.

12



type operating system application runtime advantages disadvantages

�xed prede�ned

partitions

parallelism

hardcoded or a

parameter

simple, preserves

locality

internal

fragmentation,

limited

multiprogramming,

arbitrary queueing

variable allocation

according to

request (possibly

rounded up)

hardcoded

parallelism

matches requests,

preserves locality

external (and

possibly internal)

fragmentation,

arbitrary queueing

adaptive allocation subject

to load when

launched

parallelism is a

parameter

preserves locality,

adapts to load,

improved e�ciency

external

fragmentation,

some queueing

dynamic allocation changes

at runtime to

re
ect changes in

load and

requirements

express changes in

potential

parallelism, and

adapt to changes

in available

parallelism

no fragmentation,

queueing only

under high load,

adapts to load,

improved e�ciency

does not preserve

locality, partitions

not independent,

restriction on

programming

model

Table 1: The four types of partitioning.

Applications might require a speci�c number of PEs, and might even require a speci�c

con�guration. On the other hand, applications may be structured so that the number of

PEs is set only when the application is loaded, thus allowing the application to run on

di�erent sizes of partitions. Applications that run on systems that change the PE allocation

at runtime must be able to adjust to whatever number of PEs the system gives them.

We shall classify the partitioning mechanisms into four types, based on how the operating

system behaves and the requirements this places on applications [422, 489]: �xed, variable,

adaptive, and dynamic. These are summarized in Table 1 and discussed in Subsections

3.1 through 3.4, respectively. As indicated in the table, the progress towards dynamic

partitioning is motivated by the desire to eliminate fragmentation and improve resource

utilization. However, this comes at the price of reduced locality and independence: PEs

from di�erent parts of the machine may be called to take part in executing the same job,

and local state may be wiped out when a PE is re-allocated to another job. Therefore

dynamic partitioning has been proposed mainly for small-scale shared memory machines.

If time slicing is not used, jobs will be queued when the requested resources are not avail-

able. A review of FCFS, SJF, and other algorithms for scheduling queued jobs onto partitions
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is therefore included in Section 3.2.3. This e�ect is reduced under dynamic partitioning, as

PEs can then be preempted from jobs that are already running. Alternatively, queueing can

be eliminated by combining partitioning and time slicing, as in gang scheduling. This is

especially relevant for �xed and variable partitioning.

Section 3.5 mentions another option, that of allocating PEs one at a time.

3.1 Fixed Partitioning

Fixed partitions are set by the system administrator, typically for reasons related to access

control. This allows certain parts of the machine to be dedicated to certain groups of users,

possibly according to their investment in procuring the machine. Alternatively, the partitions

can be designated for di�erent job classes [400, 422]. For example, many commercial parallel

systems include provisions for creating a batch partition and an interactive partition. This

provides adequate resources for the interactive part of the workload, without starving the

batch part. Batch jobs are typically identi�ed by the fact that they are submitted via NQS

(the Network Queueing System, described in Section 7.1.1). The sizes of these partitions

can be changed automatically twice a day, to accommodate the di�erences between daytime

activity and nighttime activity. However, the partitioning is not changed to accommodate

individual jobs.

A major concern with �xed partitioning is internal fragmentation: jobs get all the PEs

in the partition, or none. If the job only requires a small number of PEs, the rest are left

unused. A partial solution is to create several partitions with di�erent sizes, so that users

can choose the most appropriate one. However, internal fragmentation can still occur. In

addition, excessive load on the best partition might induce users to choose a less appropriate

one. Another solution is to use a second level of variable partitioning or time slicing within

the �xed partitions. Such mechanisms are provided on the Connection Machine CM-5, the

IBM SP2, the Intel Paragon, and the Meiko CS-2, among others. They are described in

Section 7. Likewise, the mechanisms described next can be used within the con�nes of a

prede�ned partition, rather than applying to the whole machine.

3.2 Variable Partitioning According to Requests

Variable partitioning is similar to �xed partitioning, except for the fact that partition sizes

are not prede�ned | rather, they are set on the 
y according to incoming requests. This

is done in either of two ways: by using combinations of prede�ned partition sizes, or by

creating arbitrary partitions.

The most common reason for using combinations of prede�ned partitions is that the

partitioning is required to match the architecture of the machine. For example, this is the

case in the partitioning of hypercubes. Jobs on hypercubes typically rely on the hypercube

topology, and therefore cannot execute on an arbitrary subset of nodes. Rather, the hyper-

cube is partitioned into subcubes (Fig. 3). In this case, there is no internal fragmentation.
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Figure 3: Example of partitioning a 4-cube into a 3-cube and a pair of 2-cubes. Dashed links

are not used in this con�guration.

However, internal fragmentation may occur in cases where the allocation is rounded up to

one of the prede�ned sizes, but the job does not utilize the extra PEs.

If the architecture does not impose any restrictions, arbitrary partitions can be created.

This eliminates internal fragmentation, because a job is never allocated more PEs than it

can use. However, external fragmentation remains an issue because a set of idle PEs might

be left which is not large enough to satisfy the requests of any queued jobs.

The following subsections review partitioning based on powers of two, which is a very

common design, and arbitrary partitioning. Then the question of scheduling order is ad-

dressed.

3.2.1 Combinations of Partitions Based on Powers of Two

Many parallel machines are not just an ensemble of PEs. Rather, they are built as a group of

constituents, each of which may be further divided into even smaller parts, before single PEs

are reached. For example, a full-sized Connection Machine CM-2, with 65536 single-bit PEs,

is composed of four quadrants of 16384 PEs each [582]. Each quadrant has an independent

sequencer | the unit that interprets the SIMD instruction stream and broadcasts it to the

PEs | and can thus be used to run a separate program. Thus the machine can be partitioned

into a maximum of four partitions. Alternatively, two or four quadrants can be combined

and used to run a single program. This is controlled by the nexus, which is a 4�4 crosspoint

switch that interfaces the host front-ends to the sequencers (Fig. 4).

The repertoire of partition sizes o�ered by the CM-2 is very limited. This is so because

enabling smaller partitions would require additional sequencers, and would complicate the

hardware design. The same consideration also guided the design of the Illiac IV [45], an

earlier SIMD machine that was to have four quadrants, although only one was actually built.

Other non-SIMD architectures do not have this problem, and allow for �ner partitioning.

This gives users more 
exibility, by providing the option for many small partitions that are

used for program development and testing.
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Figure 4: Partitioning the CM-2 SIMD array (adapted from [582]).

In many cases the structure of the machine is based on powers of two: PEs are grouped

into pairs, then groups of four, eight, and so on. The possible partitions follow the same

structure, so partition sizes can be any power of two between 1 and the full machine. Two

important examples of this are parallel machines based on multistage networks and hyper-

cubes. In the multistage machines, each partition contains a power-of-two PEs, the same

number of memory modules, and a unique part of the network. In hypercubes each partition

is a subcube, that is a hypercube of a smaller dimension. Both these architectures create

independent partitions, but su�er from lack of 
exibility that may lead to fragmentation.

Considering the similarities in the methodology of constructing these two architectures, it

is not surprising that the mechanisms used to partition them are practically identical. Given

that a large partition of the machine is free, it is easy to satisfy a request for a small partition

by repeatedly breaking the free large partition in half. The harder problem is uniting small

partitions into large ones when they are released, because this uni�cation must match the

hardware structure. For example, only adjacent 2-D cubes can be combined into a 3-D cube.

We shall start with an overview of partitionable systems based on multistage networks, and

then proceed to hypercubes. The question of uni�cation will be treated only for hypercubes,

because it is easier to visualize in that context.
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Partitioning multistage networks

Multistage networks connect n input ports to n output ports, with a log n delay and a

1

2

n log n component count. Such networks are used both for shared memory machines and

for distributed memory machines. In shared memory machines, the input ports are PEs and

the output ports are memory modules; examples include the BBN Butter
y [503], The NYU

Ultracomputer [244, 243], the IBMRP3 [458], PASM [535, 534], TRAC [83, 372, chap. 7], and

Cedar (where clusters are connected to the network rather than individual PEs) [222, 319].

In distributed memory machines, all ports are connected to PEs. Examples include the

CM-5 [356], the Meiko CS-2, and the IBM SP2 [553].

Multistage networks are generally considered to be a realistic alternative to crossbar

switches, which have unit delay but n

2

components. They are arranged as log n stages of

2�2 switching elements (hence the logarithmic delay), with n=2 such elements in each stage.

The outputs of each stage are connected to the inputs of the next stage is a certain pattern.

Various patterns have been proposed, and much work has been devoted to analyzing the

capabilities of the resulting networks. Luckily, most of them turn out to be largely equivalent

[619, 530, chap. 5].

As a concrete example, consider the generalized cube network. The input ports to this

network are connected to the �rst stage in a \shu�e" pattern. This pattern derives its

name from the perfect shu�ing of a pack of cards: the �rst half ends in the even-numbered

positions (counting from 0), and the second half in the odd-numbered positions. The stages

are then connected to each other in the \cube-i" pattern, where i is the serial number of the

stage. With this pattern, each switch is connected to the corresponding switch in the next

stage, and also to the switch whose number (in binary representation) di�ers only in the ith

bit position, counting from the left. An example for n = 16 is given in Fig. 5.

At �rst glance the shu�e pattern before the �rst stage of this network seems redundant:

it just changes the numbering of the ports, without adding any functionality. Its usefulness

becomes evident when we partition the network into disjoint parts. The partitioning is

achieved by setting some of the switches to the \straight" mode, meaning that they just

connect their top input to their top output, and their bottom input to their bottom output

[533]. Setting the �rst stage to \straight" partitions the machine into two halves. Within

each partition, setting an additional stage to \straight" halves that partition. The setting

shown in Fig. 5 results in partitions of 8, 2, 2, and 4 PEs. These partitions may be described

by the serial numbers of the PEs and memory modules included in them as f0; x; x; xg,

f1; 0; 0; xg, f1; 0; 1; xg, and f1; 1; x; xg, where x represents either 0 or 1. Networks can also

be partitioned in other ways, e.g. by setting the last stage to \straight" rather than the �rst

one, resulting in partitions that are de�ned by other bit patterns [531, 292, 530, chap. 5].

A number of prototype systems have used the idea of partitioning a multistage network.

Perhaps the best known is PASM, a partitionable SIMD/MIMD machine built at Purdue

[535, 534]. This architecture imposes a limit on how small partitions can be, because | like

the CM-2 | it needs a control module to allow each partition to operate in SIMD mode. The

prototype has 16 PEs and 4 controllers, so partitions can have 4, 8, or 16 PEs. However, the
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Figure 5: partitioning a multistage network into independent partitions (adapted from [533]).

The elements of each partition are identi�ed by a di�erent shading. Switches set to \straight"

are not shaded.

architecture scales to much larger sizes, with a design point of 1024 PEs and 32 controllers,

leading to a minimal partition size of 32 PEs. Only prede�ned pairs of partitions, chosen by

bit patterns similar to those shown above, can be combined to create larger partitions. The

matching of jobs that can execute side by side is done by keeping separate queues for the

di�erent partition sizes [584].

The Texas Recon�gurable Array Processor (TRAC) is based on a banyan network. The

prototype has four PEs and nine memory modules. While partitioning is not very mean-

ingful in such a small machine, the architecture is scalable and provides a rich variety of

con�gurations that can be changed at high speed [83, 372, chap. 7].

An interesting variant is the Flagship parallel reduction machine, which is based on a

Delta network [610, 611]. In this machine the network is used to propagate global load

information in addition to its use for data transfer. Overloaded PEs can inject reductions

into the network, and they are automatically routed to the least loaded PE. Applications
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that do not have a su�cient degree of parallelism can be limited to a subset of the PEs,

based on bit positions, e�ectively partitioning the machine [561]. This is done to prevent

too many remote accesses, which degrade performance.

Research prototypes are not the only machines that use partitionable multistage net-

works. The Connection Machine CM-5 is based on a network that is logically seen as a fat

tree (a tree in which links near the root are \thicker" and provide more bandwidth so as to

prevent congestion), but actually implemented as a multistage network [356]. Unlike PASM

or TRAC, the CM-5 is a distributed memory machine. The machine is partitioned among

competing jobs by partitioning the network. Each partition includes 2

k

PEs for some k � 5

(i.e., the minimal partition size is 32), with the adjoining k=2 stages of the network

3

. Thus

there is no network interference from other jobs. A separate partition is devoted to I/O

devices. It is accessed via that part of the network that is farther away from the PEs.

Finally, it is worth noting that not all machines based on multistage networks that

support partitioning do so by partitioning the network. The Meiko CS-2, IBM SP2, and

BBN Butter
y allow arbitrary nodes to be grouped into the same partition. This increases

the 
exibility of PE allocation, at the price of creating partitions that are not independent.

Partitioning hypercubes

Hypercubes are multicomputers with a power-of-two PEs, which are interconnected in a

hypercube pattern. A hypercube with 2

n

PEs is said to be n-dimensional. The 2

n

PEs are

identi�ed by unique n-bit long IDs. PEs with IDs that di�er in exactly one bit position have

a direct link connecting them. The ancestor of all contemporary hypercubes is the Cosmic

Cube built at Caltech in the early '80s [513]. A number of commercial o�erings have been

made since then, the most enduring of which are the iPSC series from Intel [28] and the

nCUBE machines [258, 443, 174]. Both provide partitioning as described below.

Many hypercube applications are speci�cally tailored to the topology (e.g. [41, 495, 475]).

Therefore if an application is to run on a partition of the machine, that partition must itself

be a hypercube, albeit of a smaller dimensionality

4

. It is easy to see that there are many

ways in which to satisfy this requirement. For example, all the nodes whose IDs start with

the bit \1" in an n-dimensional hypercube form an (n�1)-dimensional hypercube. Likewise,

it is possible to use any other of the n bit positions to partition the hypercube into two halves

which are hypercubes smaller by one dimension.

It is relatively straightforward to satisfy requests for the allocation of a subcube. If

a free subcube of the requested size exists, it is allocated. If there is no free subcube of

the requested size, but there exists a larger free subcube, then that subcube is successively

divided in two until a subcube of the desired size is obtained. The only complication that

might arise is handling faults. The suggested approach is to integrate knowledge about faults

into the data structures, and avoid faulty components during allocation [476].

3

It is k=2 stages rather than k stages because 4� 4 switches are used.

4

If the application does not require a subcube, it is still convenient to allocate a subcube, and then

possibly to reclaim the leftover nodes [588].
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Figure 6: The buddy system maps dimensions of the hypercube to levels of a binary tree,

and uses the tree structure to partition the hypercube.

It is harder to re-unite subcubes after an application terminates. Needless to say, not

any arbitrary set of 2

n�1

nodes in an n-dimensional hypercube form a subcube. It is also

not true that any pair of, say, (n � 4)-dimensional subcubes form an (n � 3)-dimensional

subcube. Thus if two jobs terminate after being executed on disjoint subcubes, we need to

be able to recognize whether or not these subcubes can be joined into a larger subcube. If

they cannot be joined directly, it might be advantageous to migrate a job running next to

one free subcube to the other free subcube [115, 114, 110], thereby creating two adjacent free

subcubes that can be joined together. Such migration is also guided by the recognition of

the potential to free a large subcube. Therefore the issue of subcube recognition has received

much attention in the literature.

The �rst and simplest method is based on the natural mapping between a hypercube and

a buddy system

5

, where dimensions of the cube correspond to levels of the tree [113, 173,

146, 35] (Fig. 6). This scheme is used in the nCUBE system. Implementations can use a bit

vector or more sophisticated data structures based on the buddy system tree [331].

In the �rst dimension, or top level, the whole hypercube is viewed as composed of two

subcubes: one comprising PEs with a �rst bit \0", and the other PEs with a �rst bit \1".

Each of these subcubes is further partitioned in the second dimension, or second level of the

tree, according to the second bit in the PEs' IDs. This continues for all n dimensions. This

mapping uses only the �rst bit position to partition the whole cube, so it can recognize just

one of the n possible ways to do the partitioning. In the example of Fig. 6, the recognized

2-D subcubes are marked with arrows. These are the horizontal 2-D subcubes of the 4-D

hypercube on the left. Other 2-D subcubes are not recognized.

Recognition is improved if the PE IDs are regarded as a Gray code [113, 114], rather

than as a re
ection of the cube's dimensions. In a Gray code, successive elements di�er by

exactly one bit position. Following the order of the Gray code, we can visit all the PEs

in one cycle. As shown at the left of Fig. 7, this can also be interpreted as a tree with

5

In a buddy system, a set of resources is allocated in blocks whose sizes are de�ned by a recurrence

equation. Here, we consider the binary buddy system, where B

i

= 2� B

i�1

. This was originally proposed

for fast allocation of contiguous memory segments [316, 457, 317, pp. 442{445].
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Figure 7: In the Gray code method, pairs of successive (k � 1)-dimensional subcubes are

considered for creating a k-dimensional subcube. In the modi�ed buddy system, partners

along all possible dimensions are considered.

re
ected sub-trees. With this arrangement, every pair of successive (k � 1)-dimensional

subcubes form a legitimate k-dimensional subcube, even if they are not in the same subtree.

Thus the Gray code doubles the recognition capability of the buddy system (except for 0-

dimensional subcubes and the full cube, which are already fully recognized by the buddy

system). Additional subcubes can be recognized by using multiple Gray codes, and full

recognition is achieved when

 

n

bn=2c

!

codes are used [113].

Further improvements are achieved if all possible (k � 1)-dimensional partners are con-

sidered, even if they are not adjacent in the tree structure [12]. This has been called the

\modi�ed buddy system". A similar method is used in Intel iPSC hypercubes, with the

restriction that the address of the �rst node allocated must be a multiple of the subcube

size [46]. Fig. 7 right shows the partners for the �rst 4 1-dimensional subcubes, resulting in

multiple ways to create a 2-dimensional subcube out of the original 4-D hypercube. This

can be improved even further by rotating the bit positions used to de�ne the lowest k � 1

levels in the tree [12]. By searching all levels, full recognition is achieved [10].

Full recognition is also be achieved by using a lattice structure. A lattice is a partially

ordered set where every two elements have a unique least upper bound and a unique greatest

lower bound [292]. PE IDs in a hypercube form a lattice if we use the following order relation:

the bit string x

1

x

2

: : : x

n

is smaller than or equal to the bit string y

1

y

2

: : : y

n

if x

i

� y

i

for

every 1 � i � n. Using this structure, every two comparable elements in the lattice de�ne

a subcube comprising all the elements that are smaller than or equal to one of them, but
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description recognition

�

complexity

y

reference

buddy system 2

n+1

� 1 O(n) [113, 331]

gray code 3 � 2

n

� 3 O (2

n

) [113]

multiple gray codes 3

n

O

  

n

n=2

!

2

n

!

[113]

modi�ed buddy system: check multiple

combinations for creating subcubes

n2

n

+ 1 O (k(n � k)2

n

) [12]

free lists for di�erent subcube sizes 3

n

O

�

n2

n�k

�

z

[309]

tree collapsing and transformations

applied to the buddy system

3

n

O

  

n

k

!

2

n�k

!

[123]

gray code combined with two sets of free

lists for the di�erent sizes

3 � 2

n

� 3 O(n) [148]

lattice 3

n

O (n

2

) [292]

graph of prime free subcubes (those not

covered by larger free subcubes) and

their intersections

3

n

O

 

3

2n

n

2

!

x

[625, 476]

heuristic to maintain an approximation of

a maximal set of (disjoint) free subcubes

< 3

n

O (n2

n

)

#

[173]

graph of adjacent free subcubes with

heuristic to coalesce them when released,

using free lists to limit search space

3

n

O

�

2

2n

2

2

n

�

{

[627]

�

The total number of di�erent subcubes recognized. The maximum is 3

n

, so such entries imply full

recognition.

y

n is the dimension of the hypercube, and k is the dimension of the requested subcube.

z

The worst case is when one free list has O

�

2

n�k

�

elements. In a more typical case where list lengths are

O(n), the complexity is O

�

n

3

�

, or O

�

n

2

�

if done in parallel.

x

The worst case is based on an estimate of O

�

3

n

n

�

prime cubes [148]. In more typical cases this is

expected to be O(n), leading to a complexity of O

�

n

4

�

.

#

A version that actually computes the maximal set of subcubes achieves full recognition at a cost of

O

�

2

3

n

�

.

{

This worst case analysis is based on an approximate bound on the number of cycles in the graph, which

is itself based on bounds on the number of nodes and their degrees. Assuming O(n) free subcubes, the

complexity becomes O

�

n

2

2

n

�

.

Table 2: Listing of subcube recognition algorithms. The complexity measure is for the larger

of the allocation and deallocation procedures, which is typically the deallocation.
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lattice for 4-D hypercube pairs identfying 2-D subcubes

1111
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0001 0010 0100 1000

0000

0011 0101 0110 1001 1010 1100

1111

10110111 1101 1110

0001 0010 0100 1000

0000

0011 0101 0110 1001 1010

Figure 8: Subcube identi�cation using a lattice structure.

larger than or equal to the other. The left part of Fig. 8 shows the lattice corresponding to

the 4-D hypercube. The right part uses arrows to indicate the 24 pairs of elements which

have two other elements smaller than one, but larger than the other. Such pairs de�ne 2-D

subcubes, thus giving full recognition of all such subcubes in the original 4-D hypercube.

The splitting and combining algorithms can be performed in a distributed manner, by the

a�ected PEs.

Additional algorithms have also been proposed. Short descriptions and their properties

are listed in Table 2. It should be noted that recognition ability is not the only criterion

by which these algorithms should be judged. It is also important that the subcubes be

recognized quickly [331, 148]. Algorithms based on appropriate simple data structures,

while not achieving full recognition, have a complexity of O(n) [331, 148] (which is O(logN)

relative to N = 2

n

, the number of nodes in the system). Algorithms based on bit vectors

have a complexity of O(2

n

) = O(N). The more sophisticated graph-based algorithms have

an even higher complexity, and are therefore completely impractical for large hypercubes.

Another problem with algorithms that provide full recognition is that they might expose

multiple choices. For example, if a freed subcube can be combined with any of a number of

adjoining subcubes, which one should be used? A good heuristic is to follow the path that

leads to the maximal set of free subcubes, where sets are ordered according to the largest

subcubes in them (e.g. a set composed of a 4-cube and a pair of 2-cubes is \bigger" than a

set of three 3-cubes) [173]. The rationale is that this reduces the fragmentation, and allows

for more e�cient allocation in the future. Another possibility is to perform allocation and

deallocation such that the free nodes stay in a single connected component [625], or form

subcubes that have the least overlap with the allocated one [476].

All the above rests on the assumption that jobs do indeed require subcubes. An alterna-

tive is to virtualize the topology: if wormhole routing is used, the question of whether nodes

are actually adjacent is not as important as with earlier store-and-forward routing mecha-
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nisms. Therefore it is possible to allocate the correct number of non-contiguous nodes, and

treat them as a subcube. This will be e�cient provided the sets of links used by di�erent

subcubes are disjoint [310].

Other systems

Partitioning based on powers of two, using a buddy system, is conceptually simple and easy

to implement. Therefore it has also been suggested for systems in which the architecture is

not in itself based on powers of two. One example of this approach is a 2-D buddy system

proposed for the partitioning of mesh computers [364, 363]. The Cray T3D, which has a

3D torus topology, also requires partitions to be powers of two

6

[474]. The DHC and DQT

schemes for gang scheduling are based on a buddy system [197, 204, 217, 273, 272] (DHC

is described in Section 5.4). A similar approach has also been proposed in the context of a

parallel reduction engine [269].

3.2.2 Flexible Partition Sizes

The architectural considerations that motivate the use of combinations of prede�ned parti-

tion sizes are mainly based on the topology of the interconnection network. But with modern

multicomputers, the importance of topology is decreasing. This is largely due to improved

hardware routing mechanisms, that support an abstraction of a fully connected network with

uniform distances among all pairs of PEs [512, 435] (or an actual implementation of all-to-all

communication, as in the VPP500 [407, 592]). This allows arbitrary partitions to be made,

including partitions composed of PEs attached to arbitrary ports of the interconnection net-

work. Among other things, this feature is important because it allows faulty processors to

be con�gured out of the system without invalidating a whole partition.

A number of algorithms for variable partitioning have been devised. The simplest ap-

proach is to use a central resource manager, which keeps track of the allocation of PEs to

partitions [427]. This approach is used on the IBM SP2 [284]. It is adequate because the

resource manager is only activated when jobs are submitted or terminated. As this happens

at a relatively low rate, the centralized controller does not become a bottleneck.

Another approach is to coordinate the PE allocation using a hierarchical structure. For

example, a buddy system can be used where a partition can be composed of a number of

blocks from di�erent levels, such that the sum of the allocated PEs is the requested number

[375, 606]. Alternatively, one can use a virtual hierarchy of control on the PEs themselves.

Such a structure forms the basis of the so called \wave scheduling" mechanism developed

for the MICROS distributed operating system [595, 596]. It guarantees that the allocated

PEs are close to each other in the network, so it reduces interference among partitions. A

similar scheme was proposed in the context of the original CHoPP project, where the goal

was to partition a large hypercube among multiple users [558].

6

This restriction has been alleviated in the newer Cray T3E.
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Figure 9: Allocations for 6� 3 and 3� 3 jobs in an 8� 8 mesh, using variants of the buddy

system approach. Fragmentation is shown in gray.

Submesh allocation

Going back to architectures with topological constraints, there are such architectures that

nevertheless allow for partitions with various sizes. A case in point is mesh-based machines,

where allocations may be required to be rectangular sub-meshes of various dimensions. Sim-

ilar algorithms can be used for tori [474].

A simple approach to submesh allocation is the frame sliding algorithm [122]. In this

algorithm, a rectangular frame representing the exact request size is placed on the mesh,

starting with the leftmost and lowest free node. It is then slid across and up in increments

of the frame size, until a free region of the required size is found. Note, however, that not

all potential locations are checked (so as to shrink the search space and reduce cost), and

therefore a free region might be missed.

Another simple approach mentioned above is to use a 2-D version of the buddy system.

However, this is limited to square systems where the side is a power of two. Moreover,

allocations are also squares with sides that are powers of two, leading to signi�cant internal

fragmentation [364, 363]. These problems are solved by using the buddy system only to

identify free submeshes, and allocating a number of free submeshes of di�erent sizes to

satisfy each request [375, 606]. Such a scheme is used by NQS to pack batch jobs on the

Intel Paragon. The price is that the allocation is not necessarily a rectangle, and may even

be non-contiguous. Another interesting modi�cation is to use a precise buddy system, in

which buddy sizes are not prede�ned powers of two, but rather they are determined by the

sizes of requests [398]. An example comparing the three approaches is given in Fig. 9.

The interval set algorithm �nds a submesh of the desired size, if it exists anywhere in the

system [416, 415]. Interval sets are a data structure used to keep track of allocated nodes

in rows of the mesh; in a nutshell, each sequence of busy nodes in the row is an interval,

and all such intervals are recorded. When a submesh of x � y is requested, a condensed

representation of the �rst y rows is generated. This includes intervals of nodes that are busy

in any of the y rows. This representation is searched for x adjacent free columns, which
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reference point

requested submesh

reject set
too close to boundary

allocated job

coverage set
of job

Figure 10: Submesh allocation based on a coverage set.

indicate that a free x� y submesh is available. If none are found, the �rst row is removed

and the next row added in its place. The resulting data structure is again searched for x free

columns. This is repeated until a free submesh of the required size is found, or the whole

mesh is exhausted.

Another algorithm that �nds all possible allocations is based on computing the coverage

sets of all current jobs [637, 60]. The coverage set includes all those nodes that cannot be

used as the origin (lower left node) for the allocation, because they are too close to an existing

job. In addition, there is a reject set of nodes that are too close to the system boundary (for

a torus, the reject set is empty). An example is shown in Fig. 10. The extent of the coverage

and reject sets depends on the size of the request. Thus only nodes not in these sets need be

considered as locations for the origin of a new allocation. A �rst-�t allocation uses the �rst

such node found. A best-�t version checks all of them to �nd the one that will cause least

additional fragmentation, by choosing a candidate in a corner of the smallest free space that

has the most busy neighbors. If no candidates are found, the dimensions of the request can

be switched (e.g. look for a 5 � 3 submesh rather than a 3 � 5 submesh) [163].

Other e�cient schemes use a list of maximal free submeshes or a list of allocated jobs.

Upon allocation, the list of free submeshes is updated using table lookup indexed by the

relative position of the free submesh and the allocated one, yielding a set of new smaller free

submeshes [474]. Alternatively, an overlapping set of dominant submeshes can be maintained

[308]. With the list of jobs, an attempt is made to allocate each new request adjacent to

an allocated submesh, or in a corner of the system, thus reducing the search space [149].

If placing the request adjacent to an allocated submesh overlaps with another allocated

submesh, the algorithm checks other locations by sliding the request up or down (along the

vertical edges of the original allocated submesh) or left and right (along the horizontal edges).

After all possible locations are identi�ed, the one with the highest boundary value is chosen
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to satisfy the request. The boundary value is computed as the sum of nodes on boundaries of

the system and nodes neighboring allocated nodes. This tends to reduce fragmentation. It

is also possible to consider busy nodes that are near the allocated submesh, but not adjacent

to it, in order to choose the most crowded area and further reduce fragmentation [121]. A

�nal optimization is to perform lookahead into the queue of waiting jobs, and take their

requirements into account too [60, 474].

If the exact con�guration cannot be found, embeddings can be used [380]. This is also

useful for supporting programs that use a di�erent logical structure, e.g. embedding a 3-D

torus in a 2-D mesh partition with the same number of PEs. Alternatively, the requirement

for a rectangular submesh can be dropped and a non-disjoint partition composed of PEs

from di�erent parts of the system used instead [375, 606]. This has the added advantage

that faulty PEs do not invalidate whole submeshes [409].

Choosing the partition size

It is well known that adding more and more PEs su�ers from diminishing returns, and might

even cause a degradation in performance [347, 600, 134, 213, 327]. Considerable work has

been done to �nd the optimal number of PEs that should be used. The unifying theme in the

obtained results is that some knowledge of the behavior of the program is required, e.g. the

degree of useful parallelism in it. For example, the average parallelism of the application can

be used for the partition size [179, 383]. This has been shown to guarantee that the obtained

speedup is at least half the speedup that would be obtained with the optimal partition size.

Also, the e�ciency is guaranteed to exceed 50%.

In general, the e�ciency drops as more PEs are added, while the speedup rises to a

maximum. A good target function is therefore to maximize the product of these two metrics.

Denoting the execution time on p PEs by T

p

, the speedup is S(p) = T

1

=T

p

and the e�ciency

is E(p) = T

1

=(p � T

p

). Thus the optimal partition size is the p that maximizes

T

2

1

p�T

2

p

. Using

the uniprocessor execution time T

1

as the unit of time, this expression is equivalent to

S(p)

p�T

p

.

With this formulation, the objective function can be interpreted as maximizing the speedup

per unit of cost, where cost is measured in PE seconds [338, 213, 235]. A similar formulation

is possible using the system power as a metric, where power is de�ned as the throughput

divided by the response time [313, 314].

The above schemes �nd the best partition size for a balance between minimizing response

time and maximizing throughput. However, from an individual application's point of view,

minimizing response time is more important that maximizing throughput. Therefore, users

may be tempted to request a higher number of PEs, even if their application cannot use them

as e�ciently. Such behavior can lead to reduced performance in a loaded system, because

jobs would have to wait longer to obtain the requested PEs.

The problem with setting the partition size according to the job's request is that there is

a hidden feedback e�ect. If the system is lightly loaded, a job can reduce its response time by

using more than the optimal number of PEs. Granted, it would not use the additional PEs
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e�ciently, but if it doesn't use them, they will just be idle. Therefore asking for more PEs

makes sense. But if the load is high, asking for too many PEs will cause the job to spend

more time in the queue waiting for the PEs to be allocated. So in this case asking for less PEs

may actually reduce the response time. The feedback mechanism works through the system

load: requests for PEs change the load, and the load a�ects the manner in which requests

are granted. It is hidden because the jobs do not have any information about system load.

This problem is solved by the adaptive partitioning schemes described in the next section.

Choosing the PEs

While 
exible partitioning is usually based on the assumption of uniform distances between

PEs, this is not always the case. Even with advanced routing mechanisms, some PEs are

closer than others. In some cases, especially systems that have a hierarchical structure, the

di�erences can be quite large.

For example, large shared memory machines are often built by connecting multiple clus-

ters of PEs. Examples include Cm

�

[227, 228], DASH [357, 358], Hector [599], and the KSR1

[216]. In such an architecture, access to memory on a remote cluster can be an order of

magnitude more expensive than access to memory in the local cluster. Therefore jobs should

be mapped within a single cluster is at all possible [79, 80].

Partitionable hardware

When the partitions exist for the duration of a job's execution, it may be bene�cial to set

them in hardware. This guarantees that the partitions are independent of each other.

A simple example of this approach is provided by the Fujitsu VPP500 supercomputer,

with its crossbar interconnection [407, 592]. Another is the Polyp multiprocessor. In this

machine, a set of PEs are connected via switches to a set of buses [387, 382]. By proper

settings of the switches, partitions with di�erent numbers of PEs and buses can be created.

This allows both the computation power and the communication capacity to be tailored to

an application's needs. In addition to being independent of each other, there is also full


exibility in allocating resources to the generated partitions.

Other examples are machines with point-to-point links which may be disconnected. For

example, a mesh can be partitioned into two independent parts by disconnecting all the links

between two adjacent columns of PEs. A torus can also be divided in this way, provided it

is possible to loop back and close the column and row rings when they are disconnected. For

example, Fig. 11 shows a 6�4 torus that is partitioned into three tori with dimensions 4�4,

2 � 3, and 2 � 1 (Of course, this example is arti�cially small, and loopback does not add

functionality if there are less than 3 PEs in a dimension). The Cray T3D, which is based

on a 3-D torus network, lacks this capability. Thus partitioning it results in a set of meshes,

rather than tori.

Some systems that provide variable partitions are not physically partitionable. Conse-

quently jobs running on di�erent partitions might interfere with each other, especially by
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PE switch in straight mode switch in loopback mode

Figure 11: Partitioning a torus requires switches that are capable of looping back to create

small rings when partitioning larger ones.

loading the communications network [413]. An example is the IBM SP2, which uses a mul-

tistage network but allows any subset of PEs to be grouped into a partition [283]. Another

example is the Intel Paragon, which uses a mesh architecture with dimensional routing. Thus

messages belonging to a concave or disjoint partition may pass through links shared with

another partition [375, 403].

Mechanics of job execution

An issue that is often ignored, but which may have a large impact, is the mechanics of job

execution. In particular, once nodes are allocated, what additional administrative operations

need to be handled? how is the communication set up? how do they access the executable

�le?

A relatively common approach is to break the problem into several components. Typically

this includes [427]

� A system-wide resource manager, which is responsible for the allocation decisions.

� Node managers on all the nodes, to handle the local scheduling of threads and to

implement the decisions of the global resource manager.

� A job manager or partition manager for each job, to represent the job to the system

and communicate the job's needs to the resource manager.
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Setting up the partition, acquiring the required resources, and loading the executable may

take a signi�cant amount of time. For example, measurements on an IBM SP2 showed that

this process can take from a few seconds to hundreds of seconds as the number of PEs grows

from 1 to 32 [1]. In the Mach system these overheads were reduced by using hierarchical

structure within each partition [401].

Tearing down a partition and terminating jobs cleanly is just as important as setting

things up. In particular, it is crucial that no stray threads be left behind when the job ter-

minates (possibly abnormally) [499]: at best, these orphaned processes pollute the system

and consume resources such as entries in system tables. At worse, they keep their allocation

of PEs and prevent the execution of other jobs. Practically all commercially available job

management systems for parallel computers have problems in this respect [295]. A notable

exception is the Nexus distributed system, in which the kernel monitors the status of pro-

cesses, and propagates failure or status messages to other nodes [579]. However, this requires

speci�c user directives that specify what to do in each situation. In the ParPar system, pro-

cess failure is automatically propagated to other processes in the form of a SIGUSR1 signal.

This allows fault-tolerant applications to catch the signal and re-organize the computation,

whereas naive applications are terminated cleanly [207].

3.2.3 Making Scheduling Decisions

When partitioning is used without preemption, it may be the case that submitted jobs have

to wait until su�cient PEs become available for them to run. The system is then faced

with the question of the order in which the queued jobs should be executed. The simplest

approach is �rst-come-�rst-serve (FCFS). However, just as in uniprocessor systems, other

orders could result in better performance.

The favorite heuristic in uniprocessors is \shortest job �rst" [322, sect. 8.3.1]. The idea

is that jobs which only require the CPU for a short time be scheduled �rst, and then jobs

that require the CPU for longer durations. The rationale is that if a short job waits for

a long job, both jobs will have a long response time. But if the short job is allowed to

execute �rst, it will have a short response time, thus reducing the overall average response

time. However, this approach has two drawbacks. First, it requires the execution time to be

known in advance, which is usually not the case (although it might be possible to estimate if

the same program is executed repeatedly [158], or through compile-time analysis [500, 40]).

Second, if short jobs continue to arrive, long jobs might be starved.

In partitioned parallel systems, jobs may also be measured by the number of PEs that

they require. This has the advantage that the PE requirements are known in advance.

Two opposite options for using this information have been investigated: the \smallest job

�rst" policy [384], and the \largest job �rst" policy [112, 363, 638]. Scheduling the smallest

job �rst is motivated mainly by the obvious analogy with scheduling the shortest job �rst.

However, it turns out to perform poorly, because jobs that require few PEs do not necessarily

terminate quickly [361, 331]. On the contrary, they may even cause large losses owing to

fragmentation.
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SCDF schedule:

PE1

PE2

PE3

PE4

optimal schedule:

PE1

PE2

PE3

PE4

SCDF optimal

utilization 38.2% 100%

avg resp time 13.33 7.13

makespan 34 13

Figure 12: A counter example showing suboptimal performance using the \smallest cumu-

lative demand �rst" scheduling scheme. The workload consists of alternating sequential and

parallel jobs with cumulative demands of 2, 3, 4, ... 14 units.

The problem with scheduling the smallest job �rst is recti�ed by a variant called \smallest

cumulative demand �rst" [384, 360, 519]. Under this policy jobs are ordered according to the

product of the number of PEs and the expected execution time, so jobs with high priority

are guaranteed to require few PEs and to terminate quickly. However, in a partitioned

environment this policy is not much better than the original smallest job �rst policy [331].

A counter example is shown in Fig. 12. It also su�ers from the same disadvantage of shortest

job �rst, namely the requirement to know the execution time in advance. In practice, this

disadvantage can be avoided by using a preemptive smallest job �rst policy with high and

low priority queues, which approximates the smallest cumulative demand �rst policy [360].

Scheduling large jobs �rst is motivated by results in bin packing, which indicate that a

simple �rst-�t algorithm achieves better packing if the packed items are sorted in decreasing

size [127, 125]. If the item sizes divide each other and also divide the bin capacity | which is

the case for jobs that require subcubes from a hypercube, for example | a perfect packing

is achieved [126]. In terms of scheduling, this means that scheduling the larger jobs �rst

may be expected to cause less fragmentation, and therefore higher resource utilization, than

FCFS. However, the fragmentation can still be quite large [363].

Despite the intuitive appeal of some of these scheduling policies, studies indicate that

they do not necessarily perform better than a straightforward FCFS strategy in a partitioned

environment [331, 330]

7

. Moreover, systems using these schemes tend to saturate under

lighter loads than FCFS. Using uniform requests for subcubes of di�erent sizes in a hypercube

as a concrete example, saturation may occur at loads as low as 40{50% of capacity [330].

One simple improvement that has been suggested is to change the selection algorithm

on-line, depending on the characteristics of the workload. Thus a decreasing order of jobs

will be used to improve utilization when large batch jobs are dominant, but small jobs will

be scheduled �rst when the workload is mostly interactive [479].

7

The more optimistic results in [384, 361] are due to a model in which threads are independent, kept in

a global queue, and PEs are allocated singly. In such a model, there is no loss to fragmentation.
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Figure 13: Runtime bounds on executing jobs allow reservations to be made for large jobs

while controlling the amount of resources lost to fragmentation.

Other promising alternatives use a distinct queue for each possible subcube size, and take

speci�c steps to reduce the fragmentation. One approach groups jobs together before they

are scheduled, rather then scheduling them on an individual basis. A simple version of this

approach, called \scan", has been suggested for hypercubes [331, 330, 328]. The idea is to

always schedule all waiting jobs of the same size. Thus when one job terminates another

can immediately be scheduled in its place, and there is no fragmentation. However, this

can only be applied e�ectively when there are multiple jobs of each size, which implies large

queueing delays. Thus the opposite approach may be better: whenever a job of a given size

is already running, queue any additional requests for subcubes of the same size instead of

running them together [410]. Then when the running job terminates, its subcube is reused.

Multiple queues for jobs with di�erent requirements can also be used to match jobs

with complementary requirements that can run side by side. For example, this is done

in PASM, where the di�erent queues represent di�erent potential partition sizes [584]. A

similar approach is used in NQS, a network queueing system designed to support submission

of batch jobs to shared parallel machines. The di�erent queues specify di�erent limits on

the number of PEs and the execution time [323]. This allows various shape-based heuristics

to be used, where the \shape" of a job is determined by the proportions of the rectangle

it requires in the processor-time space [287]. The limit on runtime allows the time when

PEs will become available to be estimated. When jobs requiring a large number of PEs are

queued, such knowledge allows PEs to be reserved for a certain time in the future. Note

that such a reservation might leave PEs idle until the time that the large job is started. This

loss of resources can be reduced in two ways. First, reservations can be forbidden if they
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lead to excessive waste [287, 147]. Second, these PEs can be used to schedule other queued

jobs, provided the runtime bounds on those jobs indicate that they will terminate by the

reservation time (Fig. 13). Such scheduling of small jobs in \holes" in the schedule is called

back�lling [368].

NQS is now used at a large number of sites, with di�erent parallel machines. It is

described in Section 7.1.1.

3.3 Adaptive Partitioning: Setting the Allocation at Load Time

Many parallel applications are written so as to be executable on di�erent numbers of PEs.

But this does not mean that the number of PEs can change during execution. Systems which

partition the PEs adaptively according to requirements and load may thus be divided into

two types. The �rst is systems which allocate a certain number of PEs to a job when it

is loaded, and guarantee that it will have that number of PEs whenever it executes. Such

systems provide a more convenient environment for application writers, because they isolate

the application from the 
uctuating load conditions in the system. These systems are called

adaptive, and jobs that �t this model are called moldable; they are reviewed in this section.

The other type is systems that propagate load 
uctuations to the applications, and require

the applications to adapt to changing resource allocations in response to changing loads.

Such systems are called dynamic, and the jobs are called malleable; they and are reviewed

in Section 3.4.

As noted, the motivation for adaptive partitioning is the added convenience for program-

mers. For example, the application may divide the work among the available PEs at the

outset, and then use barrier synchronization points implemented by busy waiting to coor-

dinate the computation. If the application is executed on a di�erent number of PEs, it

will partition the work accordingly and perform 
awlessly. But if a PE is reclaimed by the

system during execution, the others will spin forever at the next synchronization point [84].

The assumption that the number of PEs does not change may even be embedded in the

programming environment. For example, the HPF programming model assumes that the

number of PEs is not necessarily known at compilation, but is �xed throughout any given

execution [378]. A set of intrinsic functions are provided to inquire about the number of

PEs and their arrangement. These intrinsics can also be used directly in array declarations.

Similar assumptions are made in Kali [318], which also compiles a global address space pro-

gram for execution on a distributed memory system, and in many message-passing systems,

including EUI [39], p4 [94], and PARMACS [95].

While making the above-mentioned guarantee is a commendable gesture, some systems

do very little in terms of additional support. For example, the actual partitioning of the

PEs may be left to the system administrator [605], or else it may be done by the users

themselves in a �rst-come-�rst-serve manner [303, 523, 151, 287]. However, some interesting

mechanisms for automatic partitioning have also been devised.
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Setting the partition size by the system

Given that the system is capable of allocating a partition of the machine to each job, the

question remains of what size partition the job should get. The simple answer of giving each

job whatever it requests only applies if the sum of requests from all the jobs is less than the

total number of PEs. If the sum is larger than the number of PEs, jobs are required to make

do with less [235, 633, 519]. In the extreme case, each job may be reduced to only one PE.

While this obviously increases the actual run time relative to the case where each job uses as

many PEs as it wants, it also guarantees that short jobs do not have to wait for long ones.

By necessity, adaptive partitioning uses an on-line algorithm to determine the partition

size that will be allocated to a new job. As the future is not known, a di�cult choice has to

be made. One option is to always keep some PEs on the side, in anticipation of additional

arrivals [490]. If this is done, then resources are explicitly wasted by the system, limiting

the achievable utilization. The other option is to allocate all the PEs if there is su�cient

demand. This su�ers the consequence that additional arrivals will have to be queued for

arbitrarily long times, until one of the current jobs terminates. Such problems do not exist

if time slicing is used, because then allocation decisions do not have such a dramatic e�ect

on the future. However, the motivation for adaptive and dynamic partitioning is to avoid

the overheads and perturbations associated with time slicing, so this is not an acceptable

solution.

Minimizing response time is but one goal of operating systems. Another goal is to maxi-

mize throughput. A promising policy for satisfying both goals is equipartition, which strives

for equal-sized partitions for all current jobs (except that each job's request is an upper

bound on how many PEs it gets). This allows all the jobs to run simultaneously, so they

don't have to wait in the queue. The jobs' response times then re
ects their computation

requirements more directly than if they have to wait arbitrarily long for other jobs to termi-

nate. In addition, PEs are not given to jobs that do not utilize them well, so throughput is

also served.

Equipartition can be interpreted as a spatial analogue of the well known processor sharing

ideal, leading to good overall performance [361, 360, 117, 154]. In fact, equipartition itself

is an ideal, that is only approximated by dynamic partitioning. In the context of adaptive

partitioning, partition sizes cannot be changed after the initial allocation, even if new jobs

continue to arrive. The algorithm for equipartition in this framework is as follows [514, 628].

As each job arrives, there either are free PEs available or not. If there are, the job is allocated

PEs according to its request (or all of them, if less are available). If there are no free PEs,

the job is queued. When a job terminates, its PEs are divided equally among all the jobs in

the queue at that moment. If there are more jobs than freed PEs, some jobs will be left in

the queue.

A few other algorithms have been devised that are not derived directly from the equipar-

tition ideal. These algorithms explicitly try to reserve PEs for future arrivals. The �rst algo-

rithm simply limits the maximal partition size that any single job can obtain [489, 628, 490].

Thus no single job can monopolize the whole system to the detriment of others. It has been
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shown that adaptive partitioning with a maximal partition size leads to better overall e�-

ciency than variable partitioning based on the average parallelism in applications, provided

the maximum is reduced as the load increases [116].

The second algorithm keeps insurance against a sudden surge in load, by always allocating

only a certain fraction of the free PEs, and keeping the rest free. This leads to smaller

allocations as the load increases, but somewhat surprisingly, is inferior to the �rst algorithm

[489]. One reason is that this algorithm tends not to utilize all the PEs except under very

heavy loads. Under low loads, it would be better to allocate as many PEs as possible [98].

The �nal algorithm is based on a state machine. At each instant the system is in a

certain state, which identi�es the ideal partition size [489]. For a system with P PEs, the

states are fP;

P

2

;

P

3

; :::; 1g. Jobs are allocated partitions whose size is determined by the

state. The transition from one state to another is governed by the load on the system, as

measured by the queue length. If the queue length is approximately constant and equal to

the number of partitions in this state, then no transition takes place. If the queue grows

larger, a transition to a state with more numerous but smaller partitions is induced. Thus

more of the queued jobs can be serviced at once. If the queue becomes shorter, the transition

is to a state with larger partitions. This reduces the danger of leaving idle PEs while some

applications are still active. A comparison shows that this algorithm is more robust than

the others, meaning that on average it performs better for widely di�erent load conditions

and for di�erent workload characteristics.

A more sophisticated approach is to base the decision on predictions of the queueing

time, based on estimates of how long current jobs will run [164]. This allows the system

to weigh the two alternatives: either allocate a small number of PEs immediately, leading

to a longer runtime, or wait for more PEs to become available, hopefully leading to shorter

execution and a faster overall response time.

Setting the partition size in cooperation with the application

The drawback of all these algorithms is that they are oblivious of jobs' actual requirements.

An alternative is to derive the best partition size in collaboration with the application. This

can be done by combining information about system load with information about application

characteristics. Fig. 14 shows an example for a system that combines time-slicing with

partitioning. When the application is loaded, the system provides information about the

expected run fraction for di�erent partition sizes. For example, a small partition would be

shared with one other job, leading to a run fraction of 50%. For a larger partition, the run

fraction would only be 33%, and so on. The application has a model of its useful computation

rate for di�erent partition sizes. This is typically sublinear, because of added overhead when

more PEs are being used. By creating a pointwise product of these two graphs, one can �nd

the expected e�ective computation rate for di�erent partition sizes [108, 31]. The size that

provides the maximum e�ective rate is then used.

A similar idea can be applied to systems that use partitioning without time slicing. In

this case, the application supplies knowledge about its execution signature, i.e. how much
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Figure 14: Combining system load information with a model of application e�ciency using

di�erent partition sizes provides the optimal size, which will maximize the e�ective compu-

tation rate.

time it would require on di�erent partition sizes [446, 383]. The system combines this

with the load information to derive the optimal partition size, that would lead to the best

throughput. A simpler scheme uses the program shape, which is the cumulative distribution

of the parallelism pro�le (i.e., what fraction of the time does the program utilize each number

of PEs) [520, 341]. This allows the minimal, average, and maximal parallelism to be found.

In highly loaded systems, the job would get the minimal number, which are then guaranteed

to be kept busy. In an unloaded system, the job should get up to the maximal number if

there is nothing else to do with them. In general, information about the total work and the

e�ciency of the job is bene�cial [81].

The problem with all the above schemes is that they assume that precise information

about the application characteristics is available, and that the application cooperates with

the system to �nd the optimal partition size. Note, however, that this is the optimal size

from the system's point of view, i.e. it is designed to improve throughput at the possible

expense of response time for any single application. Therefore full cooperation is not always

guaranteed. An alternative is for the system to collect the information itself, based on the

performance of previous executions of the job [236].

Memory considerations

All the above algorithms, whether based on application characteristics or on system load,

share one major oversight: they ignore memory requirements. In shared memory systems,
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this can lead to overallocation of global memory. In distributed memory machines, an

application can be assigned to a set of PEs that do not have su�cient memory for its data.

This implies that virtual memory support is required (or else, programmers need to use

overlays). The problem is that the overhead for paging can negate any bene�ts of running

the programs side by side [452, 515]. The obvious remedy is to consider memory requirements

when allocating PEs. This applies both to primary memory and to secondary storage.

Another more subtle point is that the number of processors allocated obviously a�ects

the runtime of the job. Assuming virtual memory is not used, the runtime is equal to the

memory residence time. Therefore allocating less processors under load conditions leads to

longer memory residence and higher memory pressure [448]. Therefore, especially if large

jobs have good speedup characteristics, it is better to assign large jobs more processors [447].

Theoretical results

The popularity of parallel programs that accept the number of PEs as a parameter that is

set at load time has prompted some theoretical studies of this model of PE allocation. The

question is phrased thus: given m PEs and n parallelizable jobs, which are characterized

by a runtime that is a non-increasing function of the number of PEs allocated to them,

�nd a schedule that minimizes the makespan. If the total amount of work done (i.e. the

product of the number of PEs and the runtime) is constant or decreasing with the PE

allocation, the solution is trivial: all the PEs are given to one job after the other. Therefore an

additional requirement is that the work be nondecreasing (as it typically is, due to overheads

[213]), or that each job have a limit on the number of PEs that it can use. This problem

is NP-complete. Various heuristics have been developed for the di�erent cases (e.g. for

di�erent requirements on the work, and for a possible requirement that the allocated PEs

be contiguous). These heuristics lead to schedules that are within a factor of 2 or 3 from the

optimal [587, 586, 608, 585].

Note that like many other results in scheduling theory, these algorithms are for o�-line

scheduling, where all the jobs are given in advance. They do not handle on-line scheduling,

where jobs arrive in an unpredictable manner. As a result, the feedback e�ect alluded to

earlier is avoided.

3.4 Dynamic Partitioning: Allocation May Change at Runtime

While the guarantee of a non-changing number of PEs may be convenient for application

writers, it might exacerbate the problem of fragmentation and compromise fairness. Chang-

ing the partition size at run time allows the system to respond to load changes, both in

terms of new and terminated jobs and in terms of changing requirements of a running job

[581, 633, 383, 395, 101]. For example, when an application enters a sequential phase of com-

putation, its PEs can be reassigned to another application [633, 598, 630]. When it enters

a parallel phase again, enough PEs will be re-assigned to it to ensure e�cient progress. In

particular, newly arrived jobs can run immediately without being queued, unless the total
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number of jobs is larger than the number of PEs in the system [360]. This can happen in

small installations, but is not expected to be a problem with large parallel machines. The

concept of dynamic partitioning is also applicable to running parallel programs on networks

of workstations, where workstations become available at unpredictable times and are re-

claimed by their owners at unpredictable times [193, 100, 473]. Interestingly, one of the

�rst real implementations of dynamic partitioning on a parallel machine was a port of the

Piranha system | which was originally developed for networks of workstations | to the

CM-5 parallel computer [101].

An important pre-requisite for PE re-allocation to work is that there be no topological

constraints. It must be possible to create partitions from arbitrary subsets of PEs, with-

out any performance rami�cations. Thus this approach is mainly suitable for architectures

such as bus-based or crossbar systems with a uniform-access shared memory. It is obviously

inapplicable to SIMD architectures. Another consequence of the requirement for arbitrary

partitioning is that the generated partitions are typically not independent: the intercon-

nection network is shared by all the partitions, so activity in one partition may e�ect the

performance of another.

Actual implementations of dynamic partitioning typically rely on a centralized server that

maintains load information. For example, the server may be activated only when the system

load changes; it then redistributes the PEs as appropriate [633, 395]. This ensures that each

job always executes on the assigned number of PEs. However, it may cause thrashing if the

load changes frequently.

The \process control" mechanism is more lenient. It allows jobs to create virtual PEs

(kernel threads) independently of the server. The server itself is activated periodically and

checks the total number of virtual PEs in the system. Jobs that are found to have too

many virtual PEs are noti�ed of this condition, and correct it at their convenience [581].

Alternatively the jobs may correct the number of threads by themselves, based on perfor-

mance measurements [521]. Eventually the total number of virtual PEs becomes equal to

the number of physical PEs, thus preventing any overhead due to context switching and syn-

chronization delays. This scheme reduces the coordination that is required in cases where

the requirements change at a high rate, at the expense of some context switching activity

until the number of virtual PEs is adjusted.

The main drawbacks of process control are the extra context switching, and the need

to trust user applications to reduce their number of virtual PEs when they are asked to do

so. These issues are addressed by scheduler activations [20], which are a new mechanism

for thread manipulation and communication between the kernel and the user-space thread

package. It is described in Section 4.4.2.

Programming model

The fact that the partition size may change at runtime has a profound e�ect on how the

application is structured. In particular, the application must accept whatever number of PEs

the operating system allocates it, and must be ready to accept changes in this allocation
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(i.e., it must be malleable). Practically the only programming model that meets this require-

ment is the workpile model, a.k.a. \problem heap", \task queue", \agenda parallelism", \self

scheduling", \master-slave", or \farming" [412, 128, 99, 564, 496]. In this model the applica-

tion is structured as multiple independent chores, which are kept in a workpile. A number of

worker threads running on distinct PEs pick chores from the workpile in an unde�ned order,

and execute them (in some cases, a distinguished master thread is responsible for maintain-

ing the workpile). Additional workers may be added at any time, and existing workers may

be removed whenever they �nish one chore and before they start another [106, 101]. Such

changes in the number of workers may change the order in which chores are computed and the

rate in which they are completed, but this does not a�ect the outcome of the computation.

It should be noted that the workpile model of application structuring and execution is

quite popular, and has been used in various systems. The creation of independent chores

can be exposed as part of the user interface in the form of special constructs provided by the

programming language. Examples include the eval tuple in Linda [230, 9] and futures in

Multilisp [253, 324]. A similar concept is the creation of \chares", speci�ed by entry points

that allow for remote invocation, in the Chare kernel [209]. This is turn is reminiscent of many

concurrent object-oriented languages using a process model, where method invocation may

be viewed as executing a chore [118]. In WorkCrews new chores are created in a lazy fashion,

so as to reduce overhead if they end up being executed locally [597]. Alternatively, chores

can be created by a compiler [466, 465, 414]. A common extension of independent chores

is the concept of virtual PEs | the di�erence being that the di�erent code fragments can

interact with each other | with the mapping to physical PEs hidden in the runtime system

[581]. Examples include the multiprocessor implementation of concurrent C [124, 224] and

various thread packages [130, 612, 59, 192, 87, 105, 55, 529]. The Psyche operating system on

the BBN Butter
y provides a similar notion of virtual PEs at the operating system interface

[510]. Scheduling in Mach can also be interpreted in this light, with threads as virtual PEs

that are executed by whatever number of physical PEs are assigned to the processor set [65].

A variant of this approach is used in the Uniform System, also on the BBN Butter
y. In

this system the shared workpile is only used if multiple instantiations of the same chore are

required [573]. None of these systems support automatic changes in PE allocation, but they

could do so without changing their user interfaces.

On the other hand, using the workpile model presents two problems. First, the shared

data structures needed to distribute chores to workers may become a serial bottleneck.

Second, there is the question of handling the preemption of a PE that is in the middle

of a chore. The \process control" scheme dodges this issue by passing the responsibility

completely to the user level. Other systems enhance the user interface in order to allow

the user-level software to deal with such preemption. This includes upcalls that notify the

application of certain events that might e�ect its scheduling decisions, such as blocking and

unblocking in kernel calls, timer expiration, or program faults. Examples include scheduler

activations [20, 49] and the Psyche system [508, 390], and are described in more detail in

Section 4.4.2. The problem with this approach is that it violates the layered design of the

system by creating a tight coupling between the kernel and the user-level runtime system
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[562, p. 184]. This adds complexity to the implementation and reduces portability.

Finally, it should be noted that using a workpile model is not a pre-requisite for using

dynamic partitioning. Adapting to a dynamically changing number of PEs is possible in other

programming models as well, but it requires signi�cant e�ort on the side of the program

developer. For example, jobs written for distributed-memory machines can adjust to a

changing number of PEs by redistributing their data structures [422, 171, 396]. In some cases,

such redistribution is supported by the system (albeit with the intention of redistribution

for di�erent phases of the computation, not for changes in the available PEs) [23, 378]. As

this involves considerable overhead, it is imperative that the frequency of recon�gurations be

kept low in practice: otherwise the price of recon�guration might even outweigh the bene�ts

of changing the PE allocation [446, 171, 543]. Alternatively, a model where recon�gurations

are only allowed at certain points in the application can be used [630, 629, 185, 521]. These

points are chosen such that repartitioning is signi�cantly easier than at other points in the

computation, e.g. at the beginning of a new parallel loop

8

.

Setting the partition sizes

The main reason to change the partition sizes at runtime is a desire to improve fairness on

the one hand, and resource utilization on the other. Thus when a new job arrives, a fair

share of processors should be preempted from jobs already in the system, and given to the

new job. When a job terminates, its processors should be divided among the other jobs. In

essence, this is the equipartition policy (Fig. 15) [581, 361, 395, 117, 448, 154].

However, it is not always best to strive for an equal partitioning of the processors. Some

applications may have an upper limit on the number of processors they can use e�ectively.

Therefore the allocation must take program requirements into account. In addition, di�erent

classes of jobs may require di�erent qualities of service: it is perfectly OK to preempt PEs

from a batch job in favor of an interactive one, but it is undesirable to do so the other way

round [422, 30]. A possible mechanism to guarantee a certain level of service is to prescribe

a minimal partition size, and possibly di�erent sizes for di�erent job classes [421].

A similar consideration applies when the partitions are assigned to phases of jobs, rather

than to complete jobs. This allows a job to relinquish a large partition when it enters a serial

phase in its computation. However, in order to avoid penalizing such jobs, the serial phase

(i.e. the request for a single-PE partition) should be given higher priority than requests for

large partitions [620, 278].

E�ciency can also become an issue. Consider a job that is written so that the work is

divided into 8 equal pieces (e.g. 8 chores). Running such a job on a partition of 7 PEs would

not accrue any bene�ts over a partition of only 4 PEs, leading to waste of resources [396].

A possible solution is to use a folding policy rather than an equipartition policy (Fig. 15).

This policy assumes that the total number of PEs is a power of two, and that all applications

are designed to execute optimally on the full machine. When a new job arrives, the largest

8

Acquisition of PEs at the beginning of parallel loops is common practice on Cray vector multiprocessors.

This is typically done using self-scheduling [220].
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Figure 15: Conceptual comparison of equipartitioning and folding. In reality, equipartitioning

will create non-contiguous partitions so as to reduce the number of PE preemptions.

current partition is folded in half, thus freeing half of its PEs for the new job. The result

is that all jobs in the system have partition sizes that are either of two adjacent powers of

two. Such partition sizes provide the same load balancing properties and communication

locality as the full machine, so jobs can be expected to achieve high e�ciency [396]. This

approach is applicable to hypercubes, where jobs typically require a subcube in order to run,

and therefore cannot use the equipartitioning scheme. However, this would not help if the

optimal partition sizes for di�erent jobs are not multiples of each other, e.g. not all powers

of two.

An interesting option available to systems with dynamic partitioning is to evaluate the

speedup characteristics of applications as they run, and use this information to determine

the optimal partition size. This is done as follows [430, 428, 429]. When a job is submitted,

the system executes it for short periods on di�erent partition sizes. Hardware and software

monitors are used to gauge the e�ciency of the execution, by tabulating processor stalls

and synchronization delays. The expected speedup is then computed as the product of

the e�ciency by the number of processors used. The number of processors that maximizes

the speedup is chosen as the target partition size, and serves as an upper bound on the

application's partition size. A simpler alternative is to add or delete PEs one at a time,

based on the performance of a simple metric such as a barrier synchronization operation

[521]. This avoids the ine�ciencies of executing the job on an unsuitable number of PEs just

to see what happens.

One problem with dynamic partitioning is the overhead of re-partitioning, and possible

need to transfer computation state from one processor to another (in distributed memory

machines) [446, 441, 543, 289]. The common solution is to limit the rate of such reallocations

[422], or to perform them at prede�ned points in the application where the state is minimal

[630, 629, 185, 521]. In addition, it should be noted that proposed dynamic partitioning

schemes su�er from the same memory-oblivion as adaptive partitioning. As a result, jobs

may �nd that they have a (small) number of PEs, but cannot use them e�ectively because

they do not have enough memory [452, 515]. This situation is improved if minimal partition
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sizes are imposed [421].

3.5 Processors Allocated Singly

Dynamically changing partitions can also be created by the individual allocation of single

PEs. The fact that a number of PEs end up executing threads belonging to the same

application, and thus implicitly de�ning a partition allocated to that application, is an

artifact of the scheduling mechanism. It is not a goal and does not serve any purpose.

The main advantage of this approach is that there is no fragmentation: any PE can be

allocated to any job, and jobs never get more PEs than they actually need. This leads to

high utilization and performance [384, 361]. The model of computation is typically that

of multiple independent threads, that do not interact with each other. Otherwise, there is

danger of deadlock if multiple jobs request additional PEs while hanging on to what they

already have.

In fact, some versions of dynamic partitioning operate in this manner. Instead of explic-

itly allocating PEs to jobs, the jobs create threads that then execute on available PEs. If

there are too many threads in the system, the jobs voluntarily reduce the number of threads.

If there are free PEs, the jobs create new threads to utilize them. Examples of this approach

include process control [581] and ASAT (Automatic Self-Allocating Threads) [521].

A more explicit form of single PE allocation has been taken in a couple of coarse-grain

systems, which are designed for a distributed programming style more than for a parallel one.

The scheduling mechanism is simply a global queue of independent threads. The di�erence

between this and the global queue mechanisms described in Section 4.2 is that here the

threads are run to completion, without preemption. Systems the use this approach include

SpoC [420], Amoeba [418, 563], and plan 9 from AT&T Bell Labs [462].

A similar mechanism, called Automatic Self Allocating Processors (ASAP), is imple-

mented in hardware in the Convex C2 and C4 system. These machines have up to four

PEs, which are connected by a large shared memory and by a large bank of communication

registers. The communication registers are used to announce requests to fork new threads.

If any PE is idle, it will pick up the new thread and execute it. The communication registers

are also used to join threads upon termination [296, 578, sect. 3.4].

Single-PE allocation can also be used bene�cially in distributed systems with local queues

rather than a central queue. This usually goes under the name \work stealing" [597, 411,

71, 70]. As in the centralized systems, PEs volunteer to join in the computation on their

own initiative when they �nd themselves idle; the di�erence is that they have to search for

work in the local queues of other PEs. This approach is used in the Cilk and Phish systems

[70, 71] and some other systems, mainly for functional programming.
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4 Independent PEs

The second major class of multiprogrammingmechanisms is time slicing on independent PEs.

The fact that the PEs are independent implies that they handle the threads on an individual

basis. As far as each PE is concerned, there is no grouping of threads. However, such

grouping can exist at the system level. For example, the operating system may decouple the

question of processor allocation from that of scheduling, by creating a partition of PEs that

only know of threads from one speci�c application. Note also that the individual handling of

threads means that dynamic thread creation is handled as well, and does not require special

support.

The mechanisms described in this section are designed to deal with a many-to-few map-

ping of threads to PEs. This covers both the case of PEs that service threads from di�erent

applications, typical of single-level scheduling, and PEs that only know of threads from one

application, as would happen in a two-level scheme. Of course, if it so happens that the load

on the system is low, the relation may degenerate to a one-to-one mapping. However, such

a mapping is not a goal or part of the design of independently scheduled PEs. Systems that

do have such a mapping as a goal are described in Section 5.

Given the many-to-few relation of threads to PEs, the question is whether to map threads

to PEs and then use a local queue on each one, or to have all the PEs share a single global

queue. The choice also depends on the architecture, and speci�cally on the availability of

shared memory. Without shared memory, a global queue is hard to implement e�ciently.

The body of this section describes and compares these two options. Then optimizations

suitable for user-threads and two level scheduling are described.

4.1 Local Queues

Using a local run queue on each PE is natural for distributed memory machines. It is also

suitable for shared memorymachines provided there is some local memory as well. Given that

only one PE uses each queue, they su�er from no contention and need no locks [21, 389].

However, when using local queues, a separate distribution mechanism is required to map

threads to PEs.

With local queues, each PE is exactly like a uniprocessor. Indeed, this is used in the Unix

compatible OSF/1 AD system [634]. Other example systems that use this approach include

distributed memory systems like PEACE on SUPRENUM [505, 506], NX/2 on the iPSC/2

[460], SIMPLEX on the nCUBE [335],, the MOOSE experimental system [497], the original

Cosmic Cube [513], and others [146]. The Sylvan system went so far as to add a dedicated

kernel-processor to each node [91]; one of the responsibilities of this processor was to perform

local scheduling of the node's user-processor and vector unit. An interesting variant is the

Time Warp system, which is intended to support discrete event simulation [291].Time Warp

In this system local queues are used, but the priorities are determined by each process's

virtual (simulation) time: the process with the lowest simulation time is allowed to run.
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If an arriving message causes some process to rollback, such that its virtual time becomes

earlier than that of the currently running process, it will preempt the current process.

Local queues have also been used in shared memory systems, such as StarOS on CM*

[228, chap. 6], Chrysalis [352] and Psyche [508, 510] on the BBN butter
y, EMBOS on Elxsi

systems [498, 436], the Fujitsu AP1000 array processor [275], PUMA [613], and the EMMA2

system [26]. MEMSY, which has memory modules shared by pairs of PEs, also uses local

queues [270].

Some architectures support a local queue and context switching in hardware. A prime

example is the transputer, which is a building block of many parallel systems [266, 578,

chap. 5]. Each transputer is capable of implementing the programming model of the Occam

language, including multiple parallel threads. This is done by e�cient context switching

implemented in hardware [614, 394]. Operating systems for such machines make use of this

feature and support multitasking on each node (e.g. Trillium [92] and Helios [451, 261]).

Other architectures employ multithreaded processors, that essentially perform context

switching in hardware on every instruction. In fact, the �rst commercial multiprocessor, the

Denelcor HEP, was based on this design [540, 297, 321, 282]. Each HEP processor could

support 128 instruction streams, each with its own program counter and a portion of the

register �le. These streams belong to up to 16 protection domains, corresponding to jobs.

Instructions from the di�erent streams are interleaved into an eight-stage execution pipeline.

As each instruction must wait for the previous instruction from the same stream to complete,

at least 8 streams are needed to keep the pipeline full. If data from global memory is required,

the latency is hidden by using even more streams. A very similar architecture is used in the

more recent Tera system [18, 15, 16]. The MIT Alewife takes a slightly di�erent approach:

threads are switched only upon a remote access or a synchronization failure, not on every

instruction [3, 4]. In all these architectures the role of the operating system is limited to

mapping multiple threads to each PE.

A third class of systems with hardware scheduling that amounts to local queues is rep-

resented by the MIT J Machine. This is a message-driven architecture, where threads are

created and scheduled in response to incoming messages [141, 140]. In e�ect, this architecture

uses the hardware-maintained queue of arriving messages as the ready queue.

The use of local queues implies that threads are mapped to PEs. This provides a sense of

locality and context. Threads can keep data in local memory, thereby supporting program-

ming paradigms that exploit locality. For example, a very useful programming paradigm is to

partition the problem data set, and perform the same processing on the di�erent parts, with

some communication for coordination along the boundaries [512]. In SPMD programming,

this data partitioning is explicitly part of the program [215]. The programmer has to keep a

mental picture of how the data is distributed, and insert appropriate code for interprocessor

communication. In dataparallel array processing the partitioning is done by the compiler

and runtime system. The user writes code that allows parallelism, but does not specify it. A

number of programming languages have been designed with this paradigm in mind, including

Actus [453, 454, 455], Parallel Pascal [484], and PASM C [340]. Implementations exist not
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only on SIMD array processors such as the Connection Machine CM-2 [268, 11], but also on

MIMD hypercubes [257].

The main consideration involved in mapping threads to PEs is the requirement to balance

the loads. This is largely based on data from distributed systems, where is was shown

that load balancing is crucial for adequate performance [175, 526]. The typical measure of

load, which is the length of the run queue, is also based on research in distributed systems

[86, 344]

9

. There is some controversy in the literature on whether balanced placement of

new threads is enough [177], or maybe migration of active threads (also called \preemptive

load balancing") is required as well [332, 150]. This is an important issue because migration

su�ers more overhead, owing to the larger context at runtime, whereas initial balancing

fails to adapt to changing conditions when threads terminate. Initial mapping of threads is

reviewed in Section 4.1.1, and load balancing by migrating threads is reviewed in Section

4.1.2.

Regrettably, there is little real data concerning these issues in parallel systems. Relying

on data from distributed systems is justi�able as long as the interfaces and services provided

by the two types of systems are similar. This is not always the case. For example, parallel

systems might include an interface that allows an application to spawn a number of parallel

threads at once, as opposed to the forking of single processes that is typical in uniprocessor

and distributed systems. In addition, the system may guarantee that these threads will

actually execute on di�erent PEs. Spreading out the newly created threads like this includes

a measure of implicit load balancing. Some initial results show that if a parallel system

provides this service, it is not as important to provide explicit load balancing as well [204].

4.1.1 Mapping

The initial placement of threads is often referred to as mapping, with the implication that

threads are mapped to PEs and do not migrate to other PEs later. The question is how to

map threads to PEs.

One simple approach that has received some attention is to use randommapping: for each

new thread, choose some PE at random and map the thread to that PE [312, 32]. Obviously,

this scheme has a bad worst-case behavior, because it is possible that the most highly loaded

PE be chosen [175, 269]. This can be overcome by using a two-step approach: �rst choose

some PE at random, and then map the thread to the least loaded of its immediate neighbors

[248]. An alternative approach is to �rst probe a limited number of nodes at random, and

then choose the best one [405]. Even probing only two nodes reduces the expected maximum

load when mapping n threads from O(log n= log log n) to O(log log n) [34].

Mapping can also be done based on load information to begin with, skipping the initial

random phase. The problem is how to maintain global load information. While some schemes

for maintaining such information have been devised (e.g. [271]), it is generally felt that this

approach will not scale well to large systems. A possible exception is special cases where

9

More recently, with the advent of heterogeneous systems, the capacity of the di�erent PEs is also

becoming an issue [279, 636].
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Figure 16: Dissemination of load information and automatic mapping in Flagship.

dissemination of load information and mapping are both done in hardware. This approach

has been taken in the Flagship graph-reduction machine and in the Heidelberg Polyp. The

PEs in Flagship are connected by a Delta multistage network, which is used to propagate load

information [561, 610, 611]. At each network switch, the lowest load is propagated. Thus all

the PEs know the load on the least-loaded PE in the machine. When a PE generates a new

graph node for reduction, it compares its own load with the global minimum. If the local

load is higher than the minimum by a su�cient amount, the new graph node is injected into

the network. It is then forwarded automatically to the least loaded PE (Fig. 16).

In Polyp, a special bus connects all the PEs and contains global information about the

highest priority waiting task and lowest priority running task [386, 382]. If these priorities

are di�erent, an arbitration mechanism matches one of the PEs with a high priority waiting

task with one of the PEs running a low priority task. The high priority task is then scheduled

on that PE.

Other approaches are to distribute the load using self scheduling, and to use economic

models. With self scheduling the load is distributed using a global queue, and then local

queues are used to actually perform the computation. The acquisition of new work can be

done at a rate that is inversely proportional to the local load, so as to improve load balancing,

as described in Section 4.3 below. With economic models, PEs communicate with each other

to create a market of work to be done and available resources, and matching is done based

on supply and demand [210, 385, 602, 221].

It is interesting to note that all the above approaches refer to the mapping of single

threads. There has been a limited amount of work on mapping parallel jobs as a whole to

di�erent parts of the system. A design that has been suggested a number of times is to

partition the system using a buddy-system structure. This creates a hierarchy of control

points: the root controls the whole system, its two children each control half of the system,

the grandchildren control quarters, and so on. This control structure is used to maintain

data about load on di�erent parts of the system. When a request to map a new job arrives,

it is handled by the controllers at the level that has enough PEs for the job's size. This
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approach is used in DHC [197, 204, 217], in DQT [273, 272], in NETRA [119], and for

hypercubes [146, 35, 8]. Actually, the same structure has also been proposed for maintaining

and distributing the load information required to map single threads as well, in AMPS [306]

and in APERM-2 [269].

Mapping based on load conditions is appropriate if threads just do local work. But if

threads communicate with each other, the communication pattern induced by the mapping

should also be taken into account. Note that the quest to reduce communication requires

knowledge about the interactions among the threads. The PARMACS message passing

library and MPI allow such interactions to be expressed via the virtual process topology [95,

604]. HPF, Dataparallel C, and Pandore only support a more restrictive multidimensional

mesh topology [378, 257, 23]. Alternatively, the system can make an educated guess about

communication patterns; for example, it is reasonable to assume that when one thread

spawns another thread, the two will communicate [56]. However, in many cases the system

does not have enough information, and the mapping has to be done by the user. This is

typically considered to be part of program development.

Mapping as part of program development

Mapping as part of program development is quite di�erent from mapping by the operating

system. The operating systemmaps threads from one or more applications, typically without

prior knowledge about their behavior. In application development, the programmer assumes

a model where a certain �xed number of PEs are dedicated to the application, and the

question is how to map program components to these PEs [434].

The most common approach is to represent the computation as a set of tasks with in-

terdependencies (a task graph), and have each thread compute a sequence of tasks [238, 7].

The threads actually represent virtual PEs, and are expected to be mapped to physical PEs

on a one-to-one basis at runtime. Whenever a task computed by one thread depends on a

task computed by another thread, inter-thread communication is required. Taking commu-

nication into account when mapping tasks to threads introduces a number of considerations.

One is the communication overhead, which should be added to the price of executing a task

[120, 445]. If the tasks are �ne-grained, meaning that the time required to compute them is

small relative to the communication overhead, it may be necessary to reduce the parallelism

in the program by collapsing a number of tasks into one task. Such an increase in granularity

reduces the relative cost of communication [501, 120, 377, 232, 434].

Another consideration is the matching of the communication patterns to the intercon-

nection topology of the hardware. It is desirable to map interdependent tasks onto threads

that will execute on PEs that have a direct communication link between them [73, 290, 552].

This consideration was important in �rst-generation message passing machines that used a

store-and-forward mechanism for data transfer, but has lost some of its justi�cation in con-

temporary systems based on wormhole routing. However, mapping to match the topology

can still be important with other interconnection mechanisms. For example, the KSR1 uses

a uni-directional ring, and processors can perform automatic prefetching by snooping on the
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ring. However, this only works if the threads are placed in the correct order around the ring

[601].

4.1.2 Load balancing

The second major issue involved in the use of local queues is load balancing, by means of

migrating threads after they have commenced execution. The importance of load balancing

depends in the degree of imbalance, and hence on the mapping: if all new threads are placed

on the same PE, for example, load balancing becomes very important [298]. Most of the

literature on this subject relates to distributed systems, not parallel ones (see [609, 526] for

surveys). The di�erence is that in parallel systems the connectivity is much greater, which

allows more state information to be collected and more context to be moved. Also, parallel

systems sometimes make explicit statements about mapping and load distribution, whereas

in distributed systems processes are typically created locally and one at a time. Finally,

in parallel systems the threads are expected to communicate, so when they are migrated

messages have to be forwarded and all the routing framework has to be updated [507, 440].

This added complexity also reduces the appeal of using load balancing.

Important features of a load balancing algorithm are that it distribute load quickly and

that it be stable [86, 103, 547]. Quick load distribution is achieved by non-local commu-

nication to disseminate information about load conditions [371]. Stability means that the

algorithm should not over-react to every small change; it is achieved by balancing only if

the di�erence in loads is above a certain threshold [432], or by limiting the number of times

that each speci�c thread can migrate. In addition, the technicalities of process migration are

important, including how to avoid leaving any state on the original PE, and how to reduce

the period during which the process is suspended [486, 150].

The two algorithmic aspects of load balancing are choosing which thread to migrate,

and choosing where to migrate it. The chosen thread should have enough computation

left to justify the overhead of migration. Information regarding the distribution of thread

lifetimes is therefore useful, and indicates that long-lived threads have a higher probability

to continue execution longer [255]. A simple alternative is to perform enough computation

locally to cover the costs of migration, and then migrating one thread at a time [6].

Two schemes for choosing the target for migration are di�usion and the gradient model.

Di�usion is based on an analogy between work and substance: at each load-balancing step,

work passes between every pair of connected PEs according to the di�erence in their loads

[135, 72, 623]. The analogy is the di�usion of molecules across membranes, which is driven by

the di�erence in concentrations. This scheme is used in MuNet [254] and Alfalfa [237]. The

e�ectiveness of di�usion depends on the network bandwidth, and it is therefore ine�cient

for low-dimensionality meshes [556]. A special version for hypercubes, called \dimension ex-

change", iterates on the dimensions of the hypercube and balances the load among neighbors

in one dimension at a time [135, 165]. This was shown to be more e�cient than di�usion

with multiple neighbors at once [135, 615], especially if communication is limited to one port

at a time [624].
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The gradient model is more directly goal-oriented. The system maintains a \pressure

surface" representing the load. The gradient of this surface points to the nearest PE with

a local minima of load [371]. For good performance, threads should propagate a number of

hops along this gradient [528]. However, there is a danger that idle nodes will be 
ooded

with work from all sides, so a reservation protocol is recommended [419]. This scheme is

used in Redi
ow [305].

Maintaining the information required for load balancing can be expensive. In addition,

the activity of load balancing in itself is overhead that comes at the expense of useful compu-

tation. Thus it is desirable that most of the load balancing activity be done by lightly-loaded

PEs (i.e. receiver-initiated [432, 615]). One way to achieve this is by de�ning thresholds to

distinguish between lightly loaded and heavily loaded PEs [526], but nodes still need to col-

lect data to establish correct threshold values (this is avoided in load sharing schemes, where

only nodes with no work try to solicit work from other nodes [218]). However, if a few nodes

are highly overloaded, it might be bene�cial to o�oad their extra work as fast as possible,

so maybe they should take the initiative (i.e. sender-initiated balancing [176, 406, 334]). Of

course, there is a tradeo� between the frequency of balancing and the degree of imbalance

that is experienced [223].

A nice solution that includes both receiver and sender-initiated balancing is to perform the

balancing by a thread that competes with other threads. On PEs with low load this thread

will be scheduled often, so these PEs will spend much of their time trying to �nd more work.

On highly loaded PEs the load balancing thread will seldom be scheduled, allowing them to

concentrate on useful work [492]. The pairing for balancing in this scheme is random. This

reduces the cost of communication to maintain the required load information, and achieves

good results with high probability.

Other schemes that use randomization to reduce the cost of collecting load information

have also been proposed [522, 325]. One of them is used in the MOSIX system [43, 44, 42].

This started out as a distributed system that supports a single-system Unix image for users.

Each node maintains a short load vector, say with 4 entries. The �rst is the local load. At

certain intervals, it sends the �rst two entries to a randomly chosen other node. When it

happens to receive such a load message, the new data is integrated into the load vector and

the oldest data discarded. The data in the load vector is used to gauge the average load

in the system, and to select a target for process migration if the local node �nds that it is

overloaded. This scheme has been adopted for use in OSF/1 AD [634]

10

, and consequently

in systems that are based on it, such as the Intel Paragon operating system.

Communication requirements can also be reduced while using a deterministic communi-

cation pattern. One approach is to perform the communication among selected intersecting

sets of

p

N nodes (in an N -node system), thereby collectively achieving full knowledge about

unbalanced nodes [557]. Another approach is to use a hierarchical control structure, like the

10

It is part of the Unix personality layer built above the Mach kernel. Thus the entities that are balanced

are full Unix processes, not Mach threads.
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ones used for mapping based on load conditions. In addition, it is prudent to keep the

obtained information for future use, rather than starting with a clean slate each time [334].

Finally, it should be noted that load balancing by the operating system is not related to

load balancing as part of the algorithm, in order to achieve some performance goal [463, 495,

433], or load balancing within the application to compensate for data-dependent changes in

the load at runtime [616, 165, 565, 542]. These types of load balancing are only relevant in

the context of partitioned or batch systems. However, the basic policies used can be similar.

4.2 A Global Queue

A global queue is easy to implement in shared memory machines. It is not a realistic option

for distributed memory machines. In any case, in this section we deal with preemptive

systems: threads are picked from the global queue, executed for some time, and then returned

to the queue. We classify systems in which the threads are run to completion as dynamically

changing partitioning, rather than as preemptive. Examples, such as SpoC and Amoeba,

are discussed in Section 3.5.

The main advantage of using a global queue is that it provides automatic load sharing

11

.

In e�ect, the workload is distributed evenly across all the PEs. The disadvantages are

possible contention for the queue [426] and lack of memory locality. With a global queue

threads typically run on a di�erent PE each time they are scheduled, so local memory cannot

be used as e�ectively [487, 388, 389, 106]. This includes use of the local cache on each PE.

It might seem possible to improve the performance of a global queue by removing a

number of threads at once each time the queue is accessed, thus amortizing the cost of

contention and overhead [468, 426, 281]. However, this is much more relevant to second-level

scheduling by the application, after PEs have been allocated, than to scheduling from a

global queue by the operating system (see Section 4.4). The reason is that an application

knows that all the threads belong to the same application, and knows the number of PEs

devoted to executing them. An operating system does not have such knowledge, and might

accidentally schedule all the threads of a certain application to the same PE, causing it to

loose the possible bene�ts of parallelism.

4.2.1 Implementations

A global queue is a shared data structure, so access to the queue should be done with care.

The main methods used are locking and using wait-free primitives, as described below. There

has also been some work on fault tolerance, i.e. ways to guarantee that each element in the

queue be taken exactly once [626].

11

The term \load sharing" originated in distributed systems, where it describes systems that do not allow a

PE to be idle if there is work waiting at another PE [175, 333]. The term \load balancing" is only meaningful

when PEs have individual loads, as when local queues are used.
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Figure 17: Priority queue structure in Mach (adapted from [65]). The hint �eld indicates

the highest priority currently in use.

Implementation with locking

The naive implementation of a global queue uses locks to protect the shared queue, and allow

di�erent PEs to add and delete threads. For example, it has been observed that adding locks

to data structures is the main thing that needs to be done to parallelize the Unix kernel [37].

A lockable shared queue is used in the Hydra system on C.mmp [621, chap. 12], in the

Dynix system on the Sequent Balance [570], in Mach [65, 68], in IRIX on Silicon Graphics

multiprocessor workstations [370, 48], and in the DASH system which is based on IRIX

[357, 106]. It is also used in thread packages such as Presto [59, 192], and in microtasking

on multiprocessor Cray supercomputers [220].

Much progress has been made lately regarding the e�cient implementation of locks,

especially by way of exploiting local caches with hardware coherence [491, 19, 239, 246, 399].

The main idea behind these implementations is that it is possible for each PE to busy-

wait on a variable in its own cache, thereby avoiding any extra load on the communication

network. But the variable in the cache represents a variable in the shared memory, so when

a PE releases the lock, all it has to do is to touch the shared variable. The cache coherence

mechanism propagates this e�ect to the waiting PEs.

The queue itself is basically the same as in uniprocessors. This typically implies that

entries are sorted by priorities, and multi-level feedback is used rather than maintaining

strict FIFO semantics. For example, the Mach system structures the queue as an array

of 32 queues, corresponding to the 32 possible priority levels [65] (Fig. 17). Suggestions

have also been made to use a heap structure to maintain the queue. Such a structure
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allows concurrent access by a number of PEs, that each need to lock only part of the queue

[294, 481, 156, 250, 145].

Implementation with fetch-and-add

The problem with locking the queue is that the queue becomes a serial bottleneck [62, 264].

Denote the average time that the lock is held by � , and the scheduling time quantum by

T . Each PE only holds the lock for �=T of the time. But if there are more than T=�

PEs in the system, than the extra PEs will always be waiting for the lock. These PEs are

unable to do any useful work. Therefore the solution of protecting a global queue with a lock

cannot be expected to scale up to massively parallel systems with thousands of PEs. Indeed,

measurements on a 4-PE machine show that already 13.7% of the attempts to access the

global queue found it locked, and the trend indicated that considerable contention should be

expected for larger numbers of PEs [575].

The alternative is to use a bottleneck-free implementation of queues, that does not require

locking. Such an implementation, based on the fetch-and-add primitive, was a driving force in

the design of the NYU Ultracomputer [245, 242] (actually, a fetch-and-increment operation

is also enough [219]). The implementation is based on a prede�ned array of entries. A

shared variable contains the index of the next available entry. PEs that want an entry

perform a fetch-and-add on this variable, with an increment of 1. Many such operations

may be performed simultaneously. By de�nition, the �nal outcome is that the variable is

incremented by the total sum of the individual increments, so that it contains the index of

the next free entry after all the requests are granted. Each of the PEs receives a di�erent

partial sum as a return value from the fetch-and-add. Using this return value as an index

into the queue creates a unique matching of PEs to queue entries. Once a PE is uniquely

matched with an entry, there is no need to lock the entry itself (but it is still necessary to

synchronize the PE that inserts a certain entry with the one that deletes that same entry).

Code segments that implement queue insertion and deletion are shown in Fig. 18. The

�rst check that the queue is not full when trying to insert, or empty when trying to delete,

seems to be redundant considering the following fetch-and-add operation. However, it is

required in order to avoid race conditions [245]. Note that this is not a full implementation,

as it does not take care of counter over
ow.

A global queue implemented with fetch-and-add is a basic feature of Symunix, the oper-

ating system of the NYU Ultracomputer [180, 181]. The implementation of fetch-and-add is

a basic feature in the design of the NYU Ultracomputer hardware [244, 160, 14, sect. 10.3.6].

This machine provides access to the shared memory via a multistage Omega network. Fetch-

and-add requests aimed at the same memory address are combined in the network, using

special hardware. As a result, any number of concurrent fetch-and-adds take the same time

to complete as a single read or write memory access. In particular, the accesses are not

serialized, and the queue does not become a bottleneck. The combining of independent re-

quests is supposed to prevent the shared index variable from becoming a memory hot spot

[459, 353].
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shared struct f

int data;

int turn;

int in count, out count;

g q[N];

shared int count, head, tail;

insert( data )

if (count < N)

if (faa(count,1) < N)

index := faa(tail,1) mod N

myturn := 2 * faa(q[index].in count,1)

wait until q[index].turn = myturn

q[index].data := data

q[index].turn := myturn + 1

else

faa(count,-1)

fail: queue is full

else

fail: queue is full

delete( buffer )

if (count > 0)

if (faa(count,-1) > 0)

index := faa(head,1) mod N

myturn := 2 * faa(q[index].out count,1) + 1

wait until q[index].turn = myturn

buffer := q[index].data

q[index].turn := myturn + 1

else

faa(count,1)

fail: queue is empty

else

fail: queue is empty

Figure 18: Implementation of a shared queue using fetch-and-add. count, head, and

tail are global variables for the number of used cells in the queue array, the index of the

�rst one, and the index of the last one. N is the size of the array. Apart from the data,

each cell has three �elds (turn, in count, and out count, initialized to zero) to synchronize

threads that deposit data into this cell with those that extract it.
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A distributed global queue

The idea of a distributed global queue might seem to be an oxymoron, but it is not. Such

a structure has been proposed for the Heidelberg Polyp multiprocessor [386]. This machine

is based on a collection of PEs and global memory modules that are connected by multi-

ple buses. In addition to the data buses, there is a special bus that supports scheduling

operations. This bus has two sets of lines that correspond to the systems priority levels.

These lines carry the inclusive OR of the inputs from all the PEs. One set is used to signal

the priorities of the tasks that are currently running. The other set is used to signal the

priorities of new tasks that have been created. Each PE interface monitors these signals.

By comparing the priority of the current task to the global lines, each PE can know if its

task has the lowest priority in the system. Likewise, it can �nd if its waiting tasks have the

highest priority. If these priorities are di�erent, an arbitration mechanism matches one of

the PEs with a high-priority waiting task and one of the PEs with a low-priority running

task. The high-priority task is then scheduled to run on this PE.

Mach: partitions with global queues

The approach of partitioning and then scheduling using a global queue shared by all the PEs

in the partition was implemented in the Mach operating system

12

[65, 64] and some other

systems [90]. The partitioning is based on the concept of a processor set (other systems often

employ the term \processor pool" [90]). PEs are allocated to the processor set as a result

of a special request by the application that created the processor set (possibly a shell). The

policy decisions of when to grant such requests are handled by a special server which is not

part of the kernel. Owing to this separation between policy and mechanism, it is easy to

change the policy when desired. The server may also decide to grant only part of a request,

or to reclaim previously allocated PEs.

A global priority queue is associated with each processor set (this is the same queue as

depicted in Fig. 17). Threads that are assigned by the application to the processor set are

placed in this queue, and executed by the PEs allocated to the processor set. If no PEs are

allocated, the threads are e�ectively suspended from execution.

Mach was developed in an academic environment. The envisioned use of processor sets

was to allow users to monopolize PEs without any interference from other users, as might be

required in order to generate speedup curves. Such static partitioning which is independent

of the actual use to run threads has some drawbacks. It reduces the availability of PEs to

other users, might impair fairness, and might cause ine�ciency if users do not actually utilize

all the PEs they get all the time they have them. On the other hand it might also have some

indirect performance bene�ts. For example, the processor sets can be designed to re
ect the

machine topology, rather than being allocated arbitrarily, thus improving locality [635]. In

12

The Mach papers call this \gang scheduling". We reserve \gang scheduling" for schemes like those

described in section 5, where a one-to-one mapping exists between threads and PEs. The Mach scheme is

closer to \family scheduling" in our terminology.
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addition, this scheme reduces the number of PEs sharing a queue (relative to a single global

queue), thereby reducing contention for the queue [431].

4.2.2 Making scheduling decisions

The order in which threads are scheduled from the global queue is determined by their relative

priorities. Most implementations use the same algorithms that were used in uniprocessor

systems. For example, the Mach scheduler implements a priority queue that is modeled

after the Unix scheduler. Thread priorities are based on their recent CPU usage plus a base

priority that re
ects system load [65].

The scheduler in the Symunix system on the NYU Ultracomputer is also based on the

Unix scheduler, with priorities calculated according to a base priority and CPU usage. The

base priority is used to increase the priority of threads from nested spawns

13

relative to the

priority of their parent. This ensures that nested spawns are executed in a depth-�rst order

[181]. This order is deemed appropriate because it prevents the system from being 
ooded

with threads in cases of large deeply-nested spawns. Giving nested threads a lower priority

would result in breadth-�rst execution, which improves fairness among sibling threads [57].

It should be noted that in parallel systems, the notion of a priority queue is somewhat

di�erent from that in uniprocessors, because P threads execute at once (where P is the

number of processors). It is natural to require that the P executing threads be those with

the highest priorities. However, this can be hard to implement e�ciently, because it requires

all the PEs to repeatedly check the queue to see if any thread has a higher priority than

the one they are running. In addition, when a high-priority thread does appear, it might

cause a cascade of context switches if the PEs happen to access the queue in the order of

the priorities of their current threads.

Another consideration in the scheduling of threads from a global queue is matching

threads with the most appropriate PE for them to run on. In general-purpose systems

where PEs are functionally equivalent, this boils down to the question of data that may

reside in the PE's cache. The scheduling policy that tries to schedule threads on the same

PE on which they ran most recently, under the assumption that this particular PE might

still have some relevant data in its cache, is called a�nity scheduling [598, 157, 38, 544, 55].

A�nity scheduling becomes more important on machines where the cost of remote access

is higher [106]. However, the performance improvement is typically small, as in most cases

not much is left in the cache after a number of other applications have been scheduled

[249, 576, 598]. It has therefore been suggested that a�nity be temporally delimited: it

would only be established if a thread runs on a PE for a minimal amount of time, and it

would expire after a certain delay when the thread is de-scheduled [48].

A simple implementation of a�nity scheduling uses local modi�cations to threads' prior-

ities [576, 106]. Each thread has a global priority that depends on its accumulated runtime,

like processes in a Unix system. However, when a given PE scans the queue and looks for

13

The spawn system call is a generalization of fork which creates multiple processes at once.
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issue local queues global queue

suitability distributed memory shared memory

load distribution requires explicit mapping and

load balancing

automatic load sharing

locality maintained partial at best, if a�nity

scheduling is used

overhead low, no contention requires locks, and may su�er

from contention

Table 3: Comparison of local and global queues.

the thread with the highest priority, it boosts the priorities of those threads that used this

PE the last time they ran. The boost can depend on the time since the thread last ran. The

last thread to run on the PE is given a larger priority boost. This increases the e�ective

scheduling quantum, by increasing the probability that a thread be rescheduled immediately

on the same PE. It does not allow the thread to monopolize the PE, because the priority is

still reduced as the thread accumulates more and more runtime.

All the above scheduling schemes operate on individual threads, and do not consider the

fact that these threads belong to competing jobs. As a result, jobs tend to receive service

that is proportional to the number of threads that they spawn. An alternative approach

is to give jobs equal degrees of service [361]. This means that threads belonging to a job

with lots of threads should have a lower priority than threads belonging to jobs with few

threads, or that they should be scheduled to run for shorter time quanta. It is also possible

to prioritize jobs, rather than giving them equal service. This can be done by keeping the

threads in separate per-job queues. The PEs serve these queues in a round robin manner,

and set the time quantum for each scheduled thread according to the priority of the job to

which this thread belongs [464].

4.3 Combination of Local and Global Queues

The main features of local and global queues are summarized in Table 3. As can be seen,

each has its advantages and disadvantages. The choice between the two can be avoided

by using both, and trying to bene�t from the good characteristics of each. For example,

this is done in the MAXI system on the Makbilan research multiprocessor [194]. In this

system, a global queue is used for work distribution, and then local queues are used for the

actual execution

14

. The mapping of new threads is done by a system get work thread that

competes with local threads, so lightly loaded PEs get more new threads than PEs that

14

In principle, these queues contain threads from separate applications. In practice, the MAXI implemen-

tation was only capable of running a single application at a time, because memory management was not

built into the system.
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already have a high load [492]. Once mapped by get work, threads do not migrate. Similar

schemes are used in the KSR1 (see Section 7.2.5) and other systems [507, 414]. A variant

is used on the Cedar multiprocessor, where the unit of allocation is not a single thread but

rather a task with eight threads, that executes on a cluster of eight PEs [188, 187]. In all

these systems, mapping is done at regular intervals, and does not adjust to the load.

In MAXI, performance is further improved by the reuse of thread contexts. If a thread

terminates before its time quantum is up, its context is reused for the next thread that is

created from the global queue. New thread contexts are created only if all the existing threads

are preempted but do not terminate. This is based on the observation that preemption

implies either of two conditions: the threads are long, so the overhead of creating new

contexts is small relative to the useful computation, or the threads are interdependent, and

might be waiting for other threads that have not been commenced yet [527]. A similar

optimization exists in many other systems, where threads are run to completion and then

their context is reused for the next one. Examples include Scheduler Activations [20, 49],

Continuations [166, 152], and the Presto thread package [59, 192].

Another system that uses both local queues and a global queue is the variant of the Mach

system developed for the IBM RP3 [85]. The motivation in this case was the observation

that when a partition of PEs is allocated to an application, the application might want to

exercise some control over the ways in which threads share the use of PEs. If the operating

system only provides a global queue or local queues, certain patterns are impossible.

The RP3 Mach scheduling is based on the concept of thread families. Each family has a

global queue of threads, and PEs allocated to the family execute threads from this queue.

Except for terminology, this is very similar to the processor set mechanism built into the

original CMU Mach. One di�erence is that the RP3 Mach also had the option to map

certain threads to speci�c PEs. At each context switch, a PE would choose the next thread

from its local queue or the next thread from the global queue, depending on which had a

higher priority. This achieved the automatic load sharing of a global queue, coupled with the

advantages of local queues such as the option of using local storage or dedicating processing

power to important threads by binding them to PEs.

Finally, a hierarchical system of queues has also been suggested in order to reduce the

contention for the global queue, while maintaining a degree of load distribution [143, 142]. In

this system all new threads are placed in a global queue, and each PE has a local queue. In

addition, there exists a hierarchy of queues in between. When a PE's local queue is empty,

it tries to get more work from its parent. If the parent queue is also empty, the request is

propagated upwards. Transfers of work between queues at higher levels involve increasing

numbers of threads, because they are expected to be serviced by more PEs.

4.4 Optimizations for Two-Level Scheduling

Scheduling by independent PEs, especially from a global queue, is very common in the second

level of two-level scheduling schemes. In this context the scheduling is decoupled from PE

allocation, so a number of special optimizations can be applied. Two classes of optimizations
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are chunking from the global queue and changes to the thread model so as to provide a better

synergy between the kernel and the runtime system.

4.4.1 Chunking from a Global Queue

Scheduling from a global queue can be used by an operating system or by the second level of

a two-level system, i.e. the application's runtime system. Indeed, the term \self-scheduling"

is often applied to both kinds of systems. In an operating system, it is PEs that schedule

themselves from the global queue. In a runtime system, it is worker threads that help

themselves to chores from the shared workpile.

However, the two types of system are actually quite di�erent. Perhaps the main di�er-

ence is the di�erence in the nature of the entities that are being scheduled. In application

self-scheduling, these are typically iterations of nested loops [564, 468, 469, 220]. They are

scheduled in FIFO order, with no preemption. Actually \scheduled" might be an overstate-

ment: the whole context stays the same from one iteration to the next, and the only thing

that is extracted from the global workpile is the index of the next iteration. In operating

systems scheduling from a global queue, the scheduled entities are threads with independent

contexts. Threads that exhaust their time quantum are preempted and returned to the

queue, and rescheduled only when their priority rises above that of competing threads.

Additional di�erences exist if the operating system does not use partitioning, i.e. if the

same global queue is used for threads from competing applications. If this is the case,

the scheduling | that is, the selection of a thread from the queue | includes an element

of processor allocation. Self scheduling in applications is only done after PEs have been

allocated to run the worker threads. This di�erence is meaningful because once a speci�c

number of PEs have been allocated to an application, certain optimizations are possible.

The main optimization is chunking. Chunking means that each time a worker accesses

the workpile, it takes a number of chores rather than just one. This optimization can result

in signi�cant reduction in the contention for the shared workpile, and in overhead for the

allocation [337]. For example, if each of P workers takes 1=P of the chores, each will only

access the workpile once. However, this could compromise the load sharing if the chores are

not identical, if the workers do not all start at the same time

15

, or if the processors have

di�erent speeds [280]. It is therefore advisable to adjust the chunk size as the computation

proceeds. Initially, large chunks can be taken. As the computation proceeds and the tolerance

for uneven loads decreases, the chunks become successively smaller [337].

A number of schemes that do so have been suggested (see Fig. 19). The formula suggested

by guided self scheduling is to take 1=P of the chores remaining in the queue each time [468].

It was proven that if the chores are identical, workers using this scheme will �nish all the

chores at the same time to within one chore, even if they do not start together. However, if

15

It is open to debate how much this happens in practice. A recent study of loops from the Perfect

benchmark found that static partitioning was perfectly adequate [367]. Another study of multiprocessor

Crays found di�erences in PE allocation times to be a signi�cant problem [186]. A third study found that

the distribution of task completion times was quite wide, due to memory contention e�ects [170].
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Figure 19: The chunk sizes created by di�erent self-scheduling schemes, for 1000 chores and

P = 4 (data partly from [281]).

the time to compute each chore may di�er from the others, the �rst large chunks may take

more time than expected, leading to load imbalance.

Taper tries to solve this problem by using runtime statistics of the mean and standard

deviation of chore execution times to set the chunk size [379]. Essentially, the chunk size is

less than that in guided self scheduling by an amount that is proportional to the variance.

In addition, a minimal chunk size is set to reduce excessive overhead towards the end of the

loop.

A similar scheme, called factoring, also creates smaller and more uniform chunks than

guided self scheduling [281]. Chunks come in groups of P , and the size of chunks in each
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group is a constant factor of the size of chunks in the previous group. The optimal factor

can be calculated based on P and the variance in chore computation times. If the variance

is zero, only one group is created, and each worker does 1=P of the chores. If the variance

is very large, factoring degenerates to self scheduling of a single chore at a time. If the

variance is not known, a good heuristic for the �rst chunk size is 1=2P , and each subsequent

chunk size is half the previous one. The intuition behind the factor of

1

2

is that if chore

computation times are normally distributed, than executing them on dedicated PEs would

result in about 50% utilization. Thus at any given time it is best to keep 50% of the work for

later, and allocate it to those PEs that �nish their share early. However, this is sometimes

overly cautious [374]. This observation, together with an initial phase of static scheduling so

as to reduce runtime overheads, are the basis of a variant called safe self-scheduling [374].

The chunk sizes in guided self scheduling and in factoring decrease exponentially. In

trapezoid self scheduling they decrease linearly, leading to simpler implementation [589].

While the sizes of the �rst and last chunk may be set to various values, a conservative use

of starting with 1=2P and going down to 1 was shown to be a good compromise.

An interesting variant on all the chunking schemes is cooperative scheduling. In this

scheme, a PE that runs out of work does not only take a chunk of chores for itself; it also

maps additional chores to other PEs [426]. This reduces contention for the global queue, but

requires locking of the local queues because PEs may access each other's queues.

Finally, it has been noted that chunking by itself may not be enough. If a parallel

loop is nested within a sequential loop, additional performance gains are possible if the

same chunk is mapped to the same PE each time [389, 555]. This is a special case of

a�nity scheduling, where the a�nity is between successive executions of the loop. Likewise,

performance improvements are possible if iterations are re-ordered in the interest of locality

[366].

It is debatable whether allocating a number of threads at a time can be applied to

scheduling from a global queue by an operating system, because there is no reason to expect

the di�erent threads to be homogeneous. However, it is possible to apply this optimization

in the special case when a large number of threads are spawned at once, and they are all

clones of each other. This is done by the Uniform System on the BBN Butter
y [573], by

Chameleon [17], by the Chores system [178], and by the MAXI system on the Makbilan

[527].

4.4.2 Variations on the Thread Model

A totally di�erent type of optimization for two-level scheduling involves changes to the thread

model. This is based on the observation that both user-level threads and kernel threads

have inherent performance drawbacks that cannot be overcome within the constraints of the

conventional model.

The problems with user-level threads stem from the fact that the underlying kernel does

not know about them and their interactions. The kernel only knows about the kernel threads

on which the user threads are multiplexed. Thus if a user thread performs some blocking
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operation, the whole kernel thread is blocked with it. If a user thread holds a lock and the

kernel thread running it is preempted, the e�ective lock holding time will grow to include

all the time until it is re-scheduled. These problems would be solved if kernel services were

used directly, because then the kernel would know about the dependencies. But using kernel

services is more expensive, as it requires a trap to privileged code for each operation.

In a nutshell, the problem is one of information and coordination (or lack thereof) [395].

The proposed solutions supply the required information in various ways. For example, it has

been suggested that threads be able to request to be temporarily immune to preemption,

to prevent cases where the preempted thread holds a lock [181, 265, 632, 320]. This is

implemented by setting a special 
ag in user space just before acquiring a lock. Having

the 
ag in user space avoids the overhead of a kernel call. The kernel checks this 
ag

before preempting a thread, and if it is set, gives the thread some more time. However, no

guarantees are made, and the kernel reserves the right to preempt threads that overuse this

facility. Another example is hando� scheduling, where a thread that must wait for another

thread that is not running explicitly hands its PE to the awaited thread [65, 249]. An

alternative formulation of the same idea is priority inheritance, where a thread holding a

lock inherits the priority of threads waiting for the lock [265, 603, 349].

Other proposals call for much larger changes. Psyche, for example, includes provisions

for �rst-class user threads, where \�rst-class" implies that they are recognized by the kernel

[390, 508]. One of these provisions is a shared memory segment for communication between

the kernel and user-level runtime system, similar to that described above. Another is upcalls

that notify the application's runtime library of certain events that might e�ect its scheduling

decisions. These noti�cations include events like a thread blocking or unblocking while

performing a kernel call, a timer expiration, imminent preemption, external invocations

that may require a new thread to be created to deal with them, and hardware faults that

indicate an exception condition in the current thread. Finally, Psyche provides a scheduler

interface convention that allows threads of di�erent types to co-exist and interact [509]. For

example, two parallel programs using di�erent thread packages can have a producer-consumer

relationship, where consumer threads block if the bu�er is empty and are subsequently

resumed by threads in the producer program.

\Scheduler activations" are another new mechanism for thread management and manip-

ulation [20, 49]. The scheduler in question is part of the user-level thread package. The

activations are upcalls from the kernel to the scheduler. The kernel maintains a constant

number of activations, one on each PE. When a PE is added to an application, a scheduler

activation is created on that PE, and the kernel upcalls into the user space at a known entry

point. The user level scheduler then selects a thread for execution (Fig. 20 left). When a

thread blocks or is preempted, the kernel creates an alternative activation on the same PE.

This activation selects another thread to run instead of the blocked one. When a thread be-

comes unblocked, a new activation is created. Typically this comes at the expense of another

activation that was running on some PE. The new activation therefore contains information

about two threads that are ready to run: the one that became unblocked, and the one that

was preempted in order to run the activation. The user-level scheduler can then choose
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Figure 20: Handling added and removed PEs with scheduler activations.

which is more important, or maybe choose a third thread altogether. Similarly, when a PE

is taken away from an application, an activation is created on another PE, again notifying

the user-level scheduler that there are two ready threads but only one PE, and a choice has

to be made (right of �gure).

A di�erent approach altogether is to forgo all information exchange, and strive to ap-

proximate the optimal e�cient behavior. For example, in the �System, separate threads are

designated to perform blocking I/O operations on behalf of those running user code [87].

With cooperative threads, there is an option to create or schedule a new kernel thread when-

ever an existing one blocks [286, 218]. This prevents PEs from going idle if a kernel thread

blocks when performing a blocking operation on behalf of a user thread. MAXI envelopes

take this a step further, and also create a new kernel thread if the current user thread exceeds

a time quantum

16

[527]. This guarantees correct (albeit possibly ine�cient) behavior even if

user threads busy-wait for each other, rather than using blocking operations provided by the

runtime system. The excess kernel threads are deleted whenever there are no user threads

for them to execute.

5 Gang Scheduling

In multiprogrammed parallel systems, threads come in groups belonging to di�erent appli-

cations. Threads within a group cooperate with each other, while competing with threads

in other groups. It is open to debate whether the operating system should acknowledge this

distinction and do something about it. The scheduling mechanisms described in this section

re
ect the belief that it is important to schedule cooperating threads together | a belief

that is held by a large number of vendors, and also by many researchers [356, 48, 53, 550,

97, 198, 273, 217, 274]. We start with a de�nition of gang scheduling and an exposition

of the reasons for using it. Then we investigate the implementation of coordinated context

16

The terminology used in MAXI for kernel and user threads is \envelopes" and \activities", respectively.
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switching across multiple PEs. Finally, we describe systems that combine gang scheduling

with partitioning in various ways.

5.1 De�nition and Motivation

The term \gang scheduling" has been used with a variety of meanings in the literature. In

general, they have the common theme of giving a job multiple PEs at once. But in order

to distinguish gang scheduling from other schemes, such as variable partitioning and family

scheduling, a more precise de�nition is needed. We therefore de�ne gang scheduling formally

to be a scheduling scheme that combines these three features:

1. Threads are grouped into gangs.

2. The threads in each gang execute simultaneously on distinct PEs, using a one-to-one

mapping.

3. Time slicing is used, with all the threads in a gang being preempted and rescheduled

at the same time.

In many cases, all the threads in the job are considered to be a single gang. Thus the number

of threads in the job conveys the PE requirements of the job.

The simple version of gang scheduling, where threads are mapped to PEs and do not

move, is currently the most popular one. However, more 
exible versions have also been

proposed [449]. One of these is migratable preemption, whereby threads are preempted on

one set of PEs and resume on another (typically disjoint) set. This may be used to reduce

fragmentation. A more drastic version is malleable preemption, in which the job is resumed

on a set of PEs with a di�erent size from the original set, thus allowing the job to grow or

shrink in accordance with system load. Migratable gang scheduling is trivially implemented

in systems with swapping, but malleable gang scheduling is not currently used.

Gang scheduling leads to several desirable properties. First, gang scheduling supports

the abstraction of a dedicated machine for each job, and does not impose any restrictions

on the programming model (as opposed to dynamic partitioning). This has many faces.

For example, gang scheduling promotes e�cient �ne-grain interactions among the threads

in a gang, based on the fact that they are executing simultaneously. Thus it is possible

to use busy waiting for synchronization, without fear of waiting for a thread that is not

running

17

[438, 198, 499]. In addition, asynchronous message passing can be used without

the risk of bu�er over
ow, and hardware communication devices can be accessed directly in

user mode without need for protection mechanisms. Moreover, a one-to-one mapping also

17

An interesting special case occurs in systems that run a full Unix on each node. In this case the operating

system might interfere with a thread even if there are no competing threads on the same PE. Speci�cally,

asynchronous interrupt handling on di�erent PEs increases the worst-case communication latency of the

application. Synchronizing these interruptions | in e�ect, gang scheduling among the application and the

operating system | leads to improved and predictable performance [417].
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allows threads to be associated with data structures in local memory [106]. Indeed, studies

that compared gang scheduling with other scheduling schemes have concluded that gang

scheduling is a relatively good policy [376, 511, 361, 249, 133, 106].

It should be noted, however, that other schemes | most notably variable partitioning

| provide the same support. The advantage of gang scheduling (and the second desirable

property) is that it provides interactive response times for short jobs, by virtue of using

preemption [203]. Just as in uniprocessor systems, periodic preemption prevents long jobs

frommonopolizing system resources, and guarantees that every job in the system will execute

within a relatively short time. Admittedly, preemption su�ers from overhead and might

reduce cache performance | but, on the other hand, it might actually improve utilization

by providing the system with more 
exibility in resource allocation [203] (these and other

arguments are discussed in Section 6). Therefore gang scheduling is an appealing policy,

as re
ected by the fact that it is provided on a number of commercial platforms, such as

the Connection Machine CM-5 [356], Meiko CS-2, Intel Paragon [288], Cray T3E [346], and

Silicon Graphics multiprocessor workstations [48].

Another reason for using gang scheduling is that it allows sharing in architectures that

cannot be partitioned. For example, it is impossible to provide 
exible partitioning of a

SIMD machine, because each partition requires an instruction decoding unit and facilities

to broadcast the instructions to all the PEs. This problem is solved by time slicing these

devices among the di�erent jobs. This approach was used on the CM-2 to improve user

access to the machine [299].

While our de�nition of gang scheduling requires that time-slicing be used, this is not

necessarily the only sharing scheme. Space-slicing can be used as well. When a number of

gangs are to be scheduled to run side by side, the question is how to match them so as to

make the best use of the available PEs [201]. One possibility is to use a set of prede�ned

partitions; such systems are described in Section 5.3. Alternatively, it is possible to have

time-slicing across the machine, and do the partitioning on the 
y for each context switch.

This increases the 
exibility of how the machine is shared; for example, it allows applications

that require all the PEs to co-exist with applications that require small sets of PEs. Systems

based on this approach are described in Section 5.4.

What is a gang?

The grouping of threads into gangs deserves further elaboration. In most cases, all the

threads in the job are considered to be a single gang. For example, this approach is suitable

for the SPMD style of programming. It means that the threads of each job are spread across

di�erent PEs, and either all of them are running or no threads from the job are running.

However, gangs comprising just part of the threads of a given job can also be used.

This allows the number of threads in the job to exceed the number of PEs in the system.

The criterion for grouping is simple: threads that interact at �ne granularity should be
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scheduled together, and therefore they should be grouped into a gang

18

. This can be done

based on runtime observation of interactions among threads [196, 541]. Alternatively, it has

been suggested that syntactic program structures can be used to de�ne gangs. Relevant

structures are parfor or parbegin in languages like ParC [57], PAR in Occam [285], and the

spawn system call in Symunix [182]. Thus, when a set of threads are spawned together by a

parallel construct, they are assumed to constitute a gang [438, 197].

Coscheduling and family scheduling

Two other terms that are often mentioned are coscheduling and family scheduling. Coschedul-

ing

19

was originally de�ned by Ousterhout to describe systems where the operating system

attempts to schedule a set of threads simultaneously on distinct PEs, as in gang scheduling,

but if it cannot then it resorts to scheduling only a subset of the threads simultaneously

[438]. The fraction of the gang that typically gets scheduled together is used to measure the

coscheduling e�cacy.

The distinction between gang scheduling and coscheduling is subtle but signi�cant. The

main di�erence is that gang scheduling allows guarantees about the performance to be made.

This is so because applications execute in an environment that is essentially the same as a

dedicated machine, except for some additional overheads. Coscheduling, on the other hand,

has unknown performance implications. If the application's threads are largely independent,

they can make progress even if the whole gang is not scheduled. In this case, coscheduling

can be highly bene�cial. But if the threads synchronize with each other at �ne granularity,

there is little virtue to scheduling just some of them [354, 133]. Therefore it is not clear

that attempting to schedule partial gangs when a full gang cannot be scheduled is worth the

e�ort

20

. Just scheduling arbitrary threads on otherwise idle PEs can probably provide the

same gains. Indeed, this is exactly what most systems do. Such scheduling of single threads

is called alternative scheduling [438].

Family scheduling is a variant of gang scheduling where the number of threads is allowed

to be larger than the number of PEs. Thus, the operating system is involved in two levels

of time slicing: �rst, there is the coordinated scheduling of the job as a whole across a set of

PEs, and then there is the internal scheduling of the job's threads on these PEs [85]. This can

be done using a global queue or using local queues. The di�erence from two-level scheduling

schemes is that the whole job may be preempted (two-level scheduling typically employs

non-preemptive partitioning at the job level), and both levels are done by the operating

system rather than leaving the second one for the application runtime system.

18

Ousterhout used the term \process working set" [438], based on the analogy with the working set of

memory pages that must be simultaneously resident in primary memory for e�cient computing.

19

Historically, coscheduling preceded gang scheduling. It is fair to say that all the work on gang scheduling

is an outgrowth of Ousterhout's original work on coscheduling.

20

This may also depend on what part is scheduled each time. An interesting idea is that rate equivalent

scheduling may be bene�cial, i.e. that all threads get the same average service rate, even if they are not

scheduled simultaneously.
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Relationship with swapping

As large scale parallel applications often require large amounts of memory, it is sometimes

not possible to have multiple jobs memory resident. In such cases, switching among jobs

implies swapping them to secondary storage [203]. Indeed, some systems use the terms

\gang scheduling" and \swapping" as synonyms. Such simultaneous swapping of all the

job's threads and address spaces indeed quali�es as gang scheduling, because either all the

threads execute or none do. However, the higher overheads of swapping imply that this

cannot be done in an interactive time scale.

An interesting observation relating to gang-scheduling-via-swapping is that it is related

to checkpointing [365]. As such, it is possible to restart the job on a di�erent set of PEs

than the one used originally. Therefore swapping leads to \migratable preemption" [449],

and can help in the reduction of fragmentation [346, 516].

While simultaneous swapping is a type of gang scheduling, it need not be the only one.

It is possible to have both �ne-grain gang scheduling among the memory-resident jobs, and

coarse grain gang scheduling by means of swapping. A variant of this approach is used

on the Tera Multi-Threaded Architecture, where threads are loaded into separate hardware

contexts that are switched on each cycle [16] (see Section 7.2.3).

5.2 Implementing Multi-Context-Switching

The implementation of gang scheduling hinges on the multi-context-switch operation, i.e. the

coordinated context switching across a set of PEs. This has two aspects: the coordination

required to cause all PEs to context switch at the same time, and saving the distributed

program state.

The synchronization of the context-switch operation is typically handled by a central

controller. The controller need not be prede�ned: a 
oating controller can be used, where

any PE that notices a certain condition (e.g. all threads are blocked) induces the next multi-

context-switch [198]. A variant of this is used in IRIX on SGI multiprocessor workstations:

the PE that selects the �rst member of a gang from the global queue interrupts other PEs

that are running low-priority processes so that they will schedule the other gang members

[48].

The controller coordinates the context switching by causing an operating system trap

on all the relevant processors. The requirement on this trap is that the variability in the

exact time that it occurs on the di�erent PEs be small relative to the scheduling time

quantum. One possibility is to use special hardware, as in the K2 architecture [550]. Another

is to use a software broadcast interrupt [198]. A third option is to rely on synchronized

clocks, that all cause interrupts on their respective PEs at the same time [217]. Once the

processors are interrupted, they perform their local context switch. A number of Unix-based

implementations do this using signals [241, 274] or changing the priority [270, 346].

An interesting alternative suggested for networks of workstations is to let the coordination

of context switches take care of itself. This is based on an application model where relatively
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long phases of computation are interleaved with phases of intense communication. The cru-

cial observation is that the �rst processes entering the communication phase will necessarily

block, waiting for the others to catch up [172]. When the last process enters the communica-

tion phase, all the rest will have relatively high priorities due to the multi-feedback queueing

mechanism typically used on workstations. Therefore they will tend to run immediately

when unblocked, allowing them to complete the communication phase e�ciently.

Handling communication

Saving the program state on a single PE typically involves no more than saving the CPU

register values. In a parallel machine, this has to be done on all the PEs. However, the

program might have additional state that is neither in memory nor in the registers, but in

transit from one place to another. In general, it is necessary to save such communication state

together with the computation state [365]. The following discussion uses message-passing

terminology, because such architectures are more susceptible to this problem. However, it

should be interpreted to include messages generated automatically to access remote memory,

especially in machines that allow multiple outstanding accesses, as with relaxed consistency

models [63, 234, 2].

The problem with messages that are in transit when a context switch occurs is what to

do with them when they �nally arrive at their destination PE. One approach is to simply

drop such messages, and re-send them the next time that the application is scheduled to run;

it is used in the SHARE scheduler for the SP2 [217]. This requires the sender to bu�er the

message until an acknowledgement is received, because it might have to re-send it later. The

message passing software must use sequence numbers, acknowledgements, and timeouts to

ensure that all messages are indeed delivered in the end. It should be noted, however, that

most systems have such mechanisms anyway to deal with transmission errors. Moreover, this

approach has the advantage of not requiring any hardware support, so it can be implemented

on any machine.

Another approach is to tag messages with a job ID. When an arriving message does not

belong to the currently running job, it is handled anyway. This approach is used on the

Meiko CS-2 [47] and the Intel Paragon [461]. Note that it requires access to the descheduled

job's address space, and that the network adapter (or communication coprocessor) must

be smart enough to generate and check the job IDs. Otherwise, user-level communication

cannot be used. Security issues are resolved by using kernel-maintained page tables which

are accessible by the device handling the messages.

A variant of this approach is to maintain multiple virtual circuits between PEs, and use

a separate one for each job. In this case, the messages are left in the network until the job is

rescheduled and receives them. However, this places a large burden on the network, and is

not an e�cient use of the limited bu�ering capabilities that are usually available. Therefore

instead of full-
edged virtual circuits, each message is simply tagged with a job ID, and

kept in a special queue if this ID does not match the ID of the currently running job on

the receiving PE. If this queue over
ows, the system is interrupted to o�oad these messages
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and store them elsewhere. This is not anticipated to be a problem, since the window for

sending messages from one PE before a context switch and receiving them at another PE

after the context switch is relatively short, so there should not be too many such messages.

This approach is taken in the *T-next generation machine from MIT.

The third approach is to drain the network as part of the context switch operation

[274]. While this increases the overhead for context switching, it provides each job with

exclusive access to a clean network. This eliminates any need for privileged support, and

opens the door to e�cient user-level communication. Security is provided by mapping the

communication devices into user space, and using existing hardware protection mechanisms.

This approach is used in the the K2 [550], the Connection Machine CM-5 [356] (the CM-5

implementation is described in Section 7.2.4), and the RWC-1 [272].

5.3 Gang Scheduling within Prede�ned Partitions

The simple approach is to �rst partition the machine into sets of disjoint PEs, and then

perform gang scheduling within each partition independently of the others. Actually, parti-

tioning is not strictly necessary, as it is possible to simply schedule all the PEs as one unit.

This approach disregards program needs, and might lead to waste if the system has many

more PEs than are needed. Therefore it may not be suitable for large systems.

Chagori on the K2 prototype and Concentrix on the Alliant FX/8 are examples of systems

that schedule all the PEs as a unit. In Chagori, the motivation for simultaneous scheduling

is the desire to provide applications with e�cient synchronization [550], as embodied in the

synchronous nearest-neighbor user channels provided in hardware by the K2 architecture

[25]. This is a relatively small machine (16 PEs organized as a 4� 4 torus), so the loss due

to possible fragmentation is not expected to be high. The coordination of the multi-context-

switching required to implement gang scheduling is done by special hardware called the Torus

Synchronization Unit. This combines a hardware interrupt to start the multi-context-switch

with an acknowledgement specifying that the user channels are no longer active transferring

user messages. These channels can then be used by the scheduling algorithm.

The Alliant FX/8 is even smaller than the K2, with only eight PEs (called \Computation

Elements")[567]. The envisioned use is to improve the performance of Fortran loops, and

speci�cally doacross loops. Such loops have dependencies among the iterations, so they

can only be parallelized to a limited degree [137, 467]. Even so, e�cient synchronization is

required in order to enforce the dependencies. These features motivate the use of a small

number of PEs that execute consecutive iterations in a skewed manner (Fig. 21) [567].

Simultaneous scheduling on the Alliant PEs is also done in the Cedar research multipro-

cessor, which is constructed from a number of Alliant FX/8 systems connected to a shared

memory via an Omega network [222, 339, 319]. Each Alliant machine is called a cluster, and

such clusters are the unit of PE allocation. The scheduling is done at two levels: allocation

of work to clusters, and scheduling on each cluster. The allocation is done by Xylem, the

Cedar operating system, from a global queue of tasks, where each task speci�es the state of

a whole cluster (i.e. 8 Alliant PEs). A server process executes periodically on each cluster,
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Figure 21: Skewed execution of iterations from a doacross loop. The interdependencies

between iterations imply �ne-grain synchronization and a limit on the degree of parallelism

(adapted from [567]).

and if it �nds a new task on the global queue, it copies the task to the local cluster [188, 187].

The Alliant scheduler executes all the tasks mapped to the cluster by context switching all

eight PEs from one task to another. The �nal e�ect is of gang scheduling within partitions

de�ned by the clusters. Of course, if a job spans multiple clusters, it is not gang scheduled

across all of them, which can lead to performance degradation [423].

A mechanism for gang scheduling combined with partitioning of the machine has been

implemented in the Connection Machine CM-5 [356]. The coordinated scheduling of threads

is needed in that machine so as to utilize the hardware support for various collective op-

erations, as embodied in the machine's control network. For example, the control network

can be used to perform barrier synchronization, various reduction operations, and broad-

cast. Such operations are especially useful in the context of the synchronous MIMD model

of computation, which is a loose approximation of the SIMD style used in the earlier CM-1

and CM-2 models.

The implementation of gang scheduling on the Connection Machine CM-5 is noteworthy

because the architecture employs a bu�ered multistage network for interprocessor commu-

69



nication. When a partition of PEs switches from one set of threads to another, the partition

of the network connecting them has to be 
ushed. This is done by putting the network in

\all fall down" mode

21

[356]. Messages are then routed to the nearest node, rather than

to their real destination; there they are saved together with the application state. When

the application is later scheduled again, these messages are re-injected into the network to

complete their transit.

The problem of saving network state did not exist in the earlier CM-2 model, which was

a massively parallel SIMD machine. Gang scheduling on the CM-2 was orchestrated by a

timesharing daemon that ran on the front-end host [299]. The timesharing daemon could set

a 
ag telling the current process to put itself to sleep. Each job checked this 
ag before each

CM operation was broadcast to the nodes. This mechanism was used so as not to interrupt

a CM operation in the middle. Thus it was guaranteed that at the instant of switching from

one job to another, there was no activity on the networks. The nodes themselves did not

have to do anything | they just went on executing instructions, oblivious to the fact that

the instructions now come from a di�erent stream.

5.4 Gang Scheduling with Dynamic Repartitioning

Using �xed partitions runs the risk of signi�cant resource loss due to fragmentation. If

all gangs are not of the same size, it is therefore desirable to change the partitioning at

each multi-context-switch. This implies that context switching must be coordinated across

groups of PEs, and not only within groups. The problem with this approach is the di�culty

of doing the partitioning on the 
y. The solution is to look for a suitable partitioning only

when the load changes, not at each context switch. When a new application arrives or an old

one terminates, applications are matched together so as to utilize as many PEs as possible.

Then at each context switch the next set of matching applications is scheduled.

Synchronous switching

The most common approach to the implementation of dynamic repartitioning is to perform

the context switching synchronously across the whole machine. This is done regardless of

how the partitioning is supposed to change during the context switching operation. PEs in

all the di�erent groups always switch simultaneously, so moving a PE from one group to

another during a switch is no problem.

The three coscheduling algorithms developed by Ousterhout fall into this category [438].

The simplest is the matrix algorithm, which was implemented in the Medusa operating

system on CM

�

[439], in the Meiko CS-2 operating system, in the gang-scheduler used for

the BBN Butter
y at Lawrence Livermore National Lab [241, 240], in the experimental gang

scheduling runtime library of MAXI, the Makbilan operating system [198], In the SHARE

scheduler for the IBM SP2 [217], and in the DQT scheme designed for the RWC1 machine

21

This terminology is motivated by the common graphical rendering of a CM-5, where the PEs are drawn

in a linear sequence at the bottom, and the network is structured as a fat tree above them | see Fig. 29.
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Figure 22: Example of a scheduling round using the matrix algorithm and DHC. Gray shading

indicates fragmentation.

[273, 272]. The idea of this algorithm is to view scheduling space as a matrix, where columns

represent PEs and rows represent scheduling slots. Gangs of interacting threads are mapped

to rows of the matrix. If space allows, a number of gangs can be mapped to the same row.

This can be identi�ed by keeping rows linked to each other according to their capacity for

additional threads. When a gang terminates, rows may be uni�ed if they use non-overlapping

sets of PEs. This can be recognized by performing the logical AND of bitmaps that represent

the PEs that have threads mapped to them in each row.

The scheduling proceeds by simultaneous switching of all the PEs from the thread in one

row to the thread in the next row. PEs that do not have a thread assigned in the next row

may execute any other thread that happens to be mapped to them (this is why the algorithm

was originally classi�ed as \coscheduling" rather than \gang scheduling"). However, they

remember the row that they were supposed to use, and fall into step again with the other

PEs at the next synchronized context switch. An example of a scheduling round, in which

each slot is scheduled once, is given in Fig. 22.

The other two algorithms developed by Ousterhout, which were not implemented, are

based on a sliding window metaphor [438]. Threads are arranged in one long sequence, with

the understanding that a thread in location i is mapped to PE number i mod P (where P is

the number of PEs in the system). In the \continuous" algorithm, threads belonging to the

same gang must be placed within a span of P places in this sequence. In the \undivided"

algorithm, threads from the same gang must occupy adjacent places. Scheduling is performed

by sliding a window of width P across the sequence, and scheduling those threads that are

currently in the window. At the end of each scheduling time quantum, the window is

advanced until the leftmost thread in the window is the leftmost thread of a gang that had

not been gang-scheduled yet (it is possible that the thread itself had been scheduled in the

previous window position, but its whole gang was not). When all gangs have been scheduled,

a new sweep is started. These algorithms | and especially the undivided algorithm | have

a slightly larger coscheduling e�ectiveness than the matrix algorithm [438]. In other words,
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Figure 23: Distributed Hierarchical Control arranges PEs in a buddy system. Small gangs

are mapped to holes left by large ones, and execute at the same time with them.

they have a greater tendency to schedule larger fractions of gangs simultaneously. However,

it is not clear that this leads to real bene�ts, as explained in Section 5.1.

Subsets switch independently

It is necessary to synchronize the context switching in di�erent groups of PEs if PEs need

to move from one group to the other as part of the context switch. But this is required only

if one of the groups must grow. There is no need to synchronize if the groups only split

into smaller groups. This observation is used in the design of the \Distributed Hierarchical

Control" (DHC) scheme [197, 204].

The Distributed Hierarchical Control scheme partitions the PEs using a buddy system

arrangement, that is by successively dividing them into halves. A separate (logical) controller

is associated with each partition (Fig. 23). The scheduling is carried out in cycles. Each

cycle starts with all the PEs in one group, which is used by the top controller to execute

whatever very large gangs are currently in the system (speci�cally, gangs with so many

threads that they need more than half the PEs). After all such gangs have been scheduled

for the duration of their respective time slices, the PEs are split into two groups. Each of

these groups has a separate controller, which proceeds to schedule the gangs mapped to its

group. These controllers do not need to synchronize with each other, and context switches

on the two groups of PEs are independent. The splitting continues as smaller gangs are

scheduled by lower levels of controllers. At the end of the cycle, all the groups are reunited

again to form one large group, and the next cycle starts from the top controller. An example

of such a cycle is given in Fig. 22.

The importance of removing extra synchronization is that it decouples groups of PEs

with di�erent loads. This allows the time slices to be set di�erently on di�erent groups of

PEs, so as to optimize the execution of di�erent gangs. It also improves the scalability of the
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system, by removing any components that require full knowledge about the system state.

With the Distributed Hierarchical Control scheme, each controller only needs knowledge

about the largest gangs mapped to its group of PEs.

Three complementary mechanisms are used to deal with the issue of fragmentation. The

�rst is applied when a new gang is spawned, and involves choosing the least loaded group

of PEs that is large enough for this gang. The second mechanism is applied if the new gang

is smaller than the full group (which is always a power of two). In this case, the gang has

to be split into two, with part being mapped on one half of the PEs in the group and the

rest on the other half. Such splitting is always done so that one half is completely utilized,

which increases the chance of leaving a large unused group in the other half. These two

mechanisms combined ensure that small gangs tend to �nd a place in holes left by large

ones, providing better packing than alternatives such as �rst-�t or best-�t [201]. Fig. 23

provides an example: when a six-thread gang is mapped onto a group of eight PEs, four

threads are mapped onto one half and only two onto the other. This leaves two adjacent

PEs unloaded, which makes them a prime target for mapping any new two-thread gang.

The third mechanism is applied during scheduling. When large gangs are scheduled by

the top controller, small gangs that are mapped onto leftover PEs are also scheduled. Such

opportunities are indicated by the light gray shading in Fig. 22. In the above example,

the two-thread gang will be scheduled together with the six-thread gang, during the time

slot allocated to the six-thread gang. This means that the alternative scheduling is also

coordinated. In addition, it allows the controllers to discriminate in favor of large gangs,

and give them larger quantums. This allows large gangs, which make better use of the

machine, to receive good service. It doesn't hurt small gangs, because they often manage to

execute in holes left by the large gangs [204]. The time quantums in Fig. 22 are computed

based on the number of threads in each gang.

Gang scheduling systems based on the ideas of DHC were implemented for the IBM

SP2 [217] and the RWC-1 [273, 272]. Gang scheduling on the Intel Paragon uses a similar

hierarchical structure based on the nesting of partitions. However, the partition sizes are


exible and not limited to powers of two. The Paragon scheduling scheme is described in

Section 7.2.1.

Lazy gang scheduling

Taking the idea of independent switching to the extreme leads to the notion of lazy gang

scheduling. This does away with prede�ned quanta and round-robin scheduling altogether.

Instead, each job has a maximal wait time associated with it, based on its class: interactive

and debug jobs have short wait times, while batch jobs may wait a very long time. Each time

a job's wait time is exceeded, its priority rises, and the lowest priority jobs in the system are

preempted to make space for it. The scheduled job then runs for a certain \do-not-disturb"

time, which is proportional to its memory footprint. After this period, it itself becomes a

candidate for preemption if another high-priority job is waiting. This style of gang scheduling
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is used on the Cray T3D at LLNL [203], and described in more detail in Section 7.2.2. A

variant based on feedback has also been proposed [516].

Performance guarantees

Due to the use of time slicing, gang scheduling may serve any number of jobs (as long as

system tables do not over
ow). This is conveninent to users, who can always gain access to

the machine. However, it makes future performance unpredictable, because it depends on

future load conditions. In some cases, a guaranteed minimal rate of computation is desired.

This can be achieved by making reservations for a certain fraction of each scheduling cycle.

This idea in incorporated in the SHARE scheduler, which is based on the DHC structure

[217, 545]. Jobs are classi�ed according to their degree of parallelism (rounded up to the

nearest power of 2). The system allocates a certain fraction of the time to each class, that is,

to each level in the underlying control tree, irrespective of the number of jobs currently in that

class. Thus it is possible to support di�erent administrative policies, e.g. give preferential

treatment to large jobs.

5.5 Theoretical Results

O�-line algorithms for multiprocessor scheduling, and the complexity of this problem, have

been the subject of active research for many years [293, 238, 591, 590]. However, the model

employedwas usually that the interdependent tasks of only a single job are considered. There

has been very little theoretical work on scheduling multiple parallel jobs, that each require

multiple PEs simultaneously.

Scheduling parallel jobs can be modeled as 2-D bin packing, where one dimension repre-

sents PEs and the other represents time [127]. In the scheduling formulation, the input is a

set of jobs, each characterized by the number of PEs it requires and by its runtime. A set of

P PEs is given, and the problem is to �nd a schedule with the minimum possible makespan.

Nonpreemptive scheduling in the general case is NP-complete, as it includes the case of

scheduling tasks that each require a single PE [167, 173]. However, preemptive scheduling (as

is the case for gang scheduling) admits to polynomial-time algorithms [69, 638, 111, 524, 167].

For example, one algorithm is based on the observation that P is necessarily �nite, and

therefore there is only a �nite number of ways in which the PEs can be divided among

di�erent jobs executing simultaneously [69] (this is even simpler for hypercubes, where the

partitions are subcubes [111, 524]). The whole set of jobs can be scheduled by using di�erent

partitioning schemes for various durations, such that the total cumulative time of each

partition size satis�es the requirements of jobs with that degree of parallelism. This leads

to a linear programming formulation, where the objective function is to minimize the sum

of the times that the di�erent partitioning schemes are used.

The performance implications of gang scheduling have been the subject of less work.

However, it has been observed that if a job's threads are scheduled in an uncoordinated

manner, they will typically be spread out. As a result the job's response time (measured
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until the termination of the last thread) will be long. If all the threads are scheduled at once,

on the other hand, there will be no need to wait for threads that trail behind the others,

and response time will be shortened [425].

6 Implications of the Sharing Scheme

A number of studies have compared the e�ectiveness of di�erent scheduling schemes, typically

using their impact on the performance of speci�c applications as a metric [376, 384, 361,

249, 133, 198, 421, 106]. This section summarizes these results and adds many additional

considerations, such as the support for di�erent programming models and the in
uence on

user satisfaction. These considerations are divided into four areas: the interaction between

scheduling and the application, the impact on system performance, the support for individual

users in the context of a multiuser system, and implementation issues. Some of this repeats

comments that were made previously, but here they are grouped by functionality rather than

by scheduling scheme.

6.1 Interaction with Applications

Multiprocessor scheduling can have a great e�ect on performance, muchmore than in unipro-

cessors. This is so both in terms of the response time of the individual applications, and in

terms of system throughput. A good match between the scheduling policy and the appli-

cation can be instrumental in increasing the e�ectiveness of the application's use of system

resources. The way in which competing applications are handled a�ects the amount of

resources that are lost to fragmentation and overhead.

E�ect on synchronization

Synchronization delays depend on the scheduling policy, because the main issue in synchro-

nization is the temporal alignment of di�erent threads. A mismatch between the scheduling

and synchronization mechanisms might result in signi�cant performance penalties [249, 198,

499].

The greatest impact occurs if the threads interact at a �ne granularity, i.e. interactions are

numerous and come in rapid succession. In this case it is best for the threads to be mapped

to PEs using a one-to-one mapping. This allows the synchronization to be handled by busy

waiting, saving the overhead of context switching [438, 198]. Note that this can be combined

with preemptions, leading to gang scheduling, and is not limited to pure partitioning of the

machine.

Systems that do not provide one-to-one mapping have to compensate by limiting the

amount of time that one thread may wait for another thread that is not running at all. This

can be done by simply blocking the waiting thread, and switching the PE to another ready

thread. However, context switching may be costly, and it might be that the awaited thread
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is running after all. The solution is to use two-phase blocking: �rst, busy wait for some time,

to avoid the context switch overhead if the synchronization can indeed be completed quickly.

Only if this fails, perform a context switch [438]. This policy is known to be competitive,

meaning that it is guaranteed to limit the overhead to twice the overhead that would be

experienced by an optimal o�-line policy [301]. The competitive factor can be reduced if the

distribution of waiting times is known [369].

Some systems go even farther and add interfaces to allow synchronization considerations

to a�ect the scheduling decisions. The main idea is to enhance the service given to threads

that have other threads waiting for them. Three mechanisms have been proposed in the

literature: hando� scheduling, priority inheritance, and an interface that allows a thread to

request to be temporarily immune to preemption. These were described in Section 4.4.2. A

more subtle point is the use of preemptive time slicing in general: this is useful for limiting

the time that threads have to wait before they can handle a synchronization event that

arrived when another thread (from a competing job) was running [345].

The whole issue of interactions between the scheduling policy and the synchronization

mechanisms is irrelevant for architectures where interactions su�er from high latency relative

to the context switch overhead | and therefore cannot be considered �ne-grained. This can

happen in either of two ways. One is when interactions are extremely expensive, as in

early message-passing systems. The other is when scheduling is very inexpensive, as in the

Denelcor HEP [297, 321]. This machine could support up to 128 contexts in hardware on each

PE, and performed a context switch on every instruction. Thus it actually implemented a

processor sharing policy, which is equivalent to having all the threads mapped to dedicated

(albeit slower) processors. However, if not all jobs �t into the hardware contexts, it is

imperative that either all threads of a job be accommodated or none at all. This can be

considered a special case of gang scheduling. It is noteworthy that while processor sharing

has a positive e�ect on synchronization, it does not necessarily improve overall response

time. This is because it slows down everything, including short threads that would have

completed within a single quantum [577].

Finally, synchronization is often accompanied by data transfer. Thus the scheduling

policies may also have an e�ect on bu�ering requirements. Consider a producer-consumer

relationship as a concrete example. If both threads run simultaneously, a small bu�er may

be su�cient to store produced items waiting for consumption. But if only the producer

is running, a large bu�er is required to store the backlog of items accumulated until the

consumer is scheduled. Bu�er over
ow in a message-passing system could even lead to

deadlock, unless speci�c precautions are taken [343, 356].

Support for memory locality

Programming for locality is widely recognized as an important paradigm. Speci�cally, local-

ity of reference reduces interprocessor communication in multicomputers [487] and improves

cache performance in multiprocessors [267, 348]. But programming for locality can only
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work if data stored in a local memory is still in the local memory when it is needed. The

operating system should take care not to undermine this paradigm.

The operating system can cause problems in two ways. One is by changing the mapping

of threads to PEs. Load balancing or load sharing schemes that migrate threads from

one PE to another, leaving data behind, compromise the locality of reference [487, 388, 389].

Hence locality considerations indicate that threads should be mapped to PEs and not moved.

The other way the operating system can cause problems is by causing important data to

be 
ushed as a side e�ect of context switching. This e�ect becomes more noticeable the

smaller the memory, and is therefore especially relevant for caches. A number of studies

have demonstrated the adverse e�ect of context switching on cache performance [408, 249,

598]. A�nity scheduling, where threads are scheduled back onto previously used PEs so

as to bene�t from data that may still reside in their caches, tries to counter this e�ect

[598, 157, 38, 544, 576, 106]. It has even been proposed that a�nity hints be included in the

programming language [107].

Note that the adverse e�ects caused by the operating system are related in both cases

to the preemption of running threads. Thus memory-usage considerations lead to a prefer-

ence for non-preemptive scheduling, leaving partitioning as the only means for sharing the

machine. However, partitioning by itself does not guarantee e�cient use of local memory. If

the application does a second level of internal scheduling, it might undermine the potential

for exploiting the locality.

The problem of locality does not exist in UMA

22

shared-memory machines, because then

all memory is equally distant from all PEs. However, practically no machines support a pure

UMA architecture. Just having a cache attached to each PE is enough to create the e�ect of

a NUMA architecture. Black has suggested the following dichotomy to determine whether

an architecture should be classi�ed as UMA or NUMA from a scheduling point of view [64]:

if performance is served by always scheduling a thread where its data resides, even at the

expense of leaving another PE idle, the architecture is NUMA. If, on the other hand, it is

better to keep PEs active, even at the expense of remote access to data, the architecture is

UMA.

E�ect on communication locality

Communication is an important aspect of parallel applications. In many systems, commu-

nication costs depend on distance. For example, in early hypercubes it was common to

estimate communication overhead based on the number of hops the message had to traverse.

Thus allocating PEs from distant parts of the machine to the same job can lead to degraded

performance relative to the same job running on a localized set of PEs. However, this de-

pendency has been decreasing in new architectures, due to wormhole routing and the use of

lower-dimensionality networks [512, 139, 138].

Even if communication per se does not depend on distance, using distant PEs can still

22

UMA stands for Uniform Memory Access, as opposed to NUMA, which is Non-Uniform Memory Access.
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Figure 24: Due to the prede�ned routing scheme, concave partitions on the Paragon may

cause interference.

degrade performance due to increased contention: messages that traverse a larger distance

need to pass through more links, so the overall load on the network increases. This is

especially troublesome if it induces a lack of independence, that is if messages belonging to

one job cause a degradation in the network performance of another. For example, this has

been known to happen on the Intel Paragon, when one job is allocated a set of PEs that form

a concave or disjoint group, and another job runs in the middle, e�ectively surrounded by

PEs belonging to the �rst job [375, 413, 403]. Tra�c belonging to the �rst job then passes

through the links in the partition belonging to the second job (Fig. 24).

Locality can also be a�ected by a mismatch between the application's programming

model and the actual architecture, as when embeddings are used [380]. It is irrelevant for

\topology-less" architectures like multistage networks (i.e. where the topology is not exposed

to the programmer), or UMA machines.

6.2 Impact on System Performance

While the interaction between the scheduling scheme and the application has great impact on

the application's performance, it does not tell the whole story. The way in which competing

applications are handled is just as important. It a�ects the amount of resources that are lost

to fragmentation, system overheads, and throughput.

Impact on e�ciency

An application that executes on a certain number of PEs for a certain time typically does not

utilize them fully. This is partially due to synchronization overhead and latency for remote

access, as described above, but there are also other factors.

Scheduling schemes based on static partitioning (and gang scheduling) encourages the
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use of as many PEs as possible, in an attempt to achieve higher speedups. However, adding

PEs typically su�ers from diminishing returns, so this may come at the expense of e�ciency

[179, 600, 134, 213, 133, 327]. In a highly loaded system, it might actually even degrade

response time [517]. Adaptive and dynamic partitioning, on the other hand, only gives a job

more PEs if there is nothing better to do with them [327, 628, 517, 249, 421, 396]. When

multiple jobs compete for resources, each is limited to a relatively small number of PEs, thus

boosting its e�ciency. A similar principle has been applied in compile-time parallelization

and scheduling, where multiple code blocks are executed simultaneously, each with limited

parallelism, rather than trying to parallelize each block to use all the PEs [546].

The other side of the coin is that limiting the number of PEs allocated to an application

eliminates the possibility of super-unitary speedup, as sometimes happens if many PEs are

used simultaneously and the necessary data �ts into their combined caches, but not into a

smaller number of caches [260, 554]. Even worse, in many systems limiting the number of

PEs also limits the amount of primary memory available for the job. If this becomes too

small for the job's dataset, paging has to be used. The overhead for the paging typically

outweighs the bene�ts of increased e�ciency [452, 515]. Such e�ects can be reduced by

establishing a minimal partition size [421].

E�ect on utilization and throughput

One motivation for multiprogramming on uniprocessors is the desire for interactive response

times. Another is to increase the utilization of expensive computers. This is achieved by

overlapping the computation of one job with the I/O of another, using time slicing [322, 456].

The question of whether the same e�ect applies also to parallel systems is somewhat

contentious. It has been argued that parallel machines are (or at least should be) used for

extremely computation-intensive applications, and that good programmers expend signi�-

cant e�ort to utilize the PEs e�ciently. Therefore there is little idle time to use for other

applications. Speci�cally, I/O can be overlapped with computation within the application

by using asynchronous I/O operations [132]. Moreover, switching from one application to

another has its overheads, and corrupts cache state. Therefore it might end up costing more

than the gains it provides.

One counter argument is that many applications do not have uniform resource require-

ments throughout their execution. This is expressed by changes in the degree of parallelism.

E�ective resource use then dictates that PEs that cannot be used by one application be

given to another. For example, a sequential phase of one application can be overlapped with

a parallel phase of another [558, 197, 594, 464].

Another counter argument is that not all jobs are computation intensive. Some require

signi�cant amounts of I/O. In the past, such applications were rare, because parallel machines

did not have the I/O facilities to support them. But as parallel I/O mechanisms are developed

and gain recognition, more and more I/O intensive jobs will appear [153, 202]. The system

will then bene�t from the possibility of overlapping the I/O of one job with computation of
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another, just as in uniprocessors. This can be based on collective I/O operations

23

and gang

scheduling. As in uniprocessors, jobs that perform I/O should be given higher priority when

they complete the I/O operation [354].

In addition, I/O is not the only thing that threads might wait for. In many cases,

considerable idle time can be attributed to waiting for communication or synchronization. If

the interaction among threads is coarse-grained, then such waiting time can be overlapped

with computation of another thread, possibly belonging to another job [198, 518].

Also, it should be noted that utilization is strongly (inversely) correlated to loss of re-

sources to fragmentation. Time slicing may reduce fragmentation, as shown next.

Loss of resources to fragmentation

One of the drawbacks of partitioning is that it may su�er from internal and external frag-

mentation. Fragmentation depends on the distribution of partition sizes that are requested

and granted, so the degree of harm depends on workload characteristics and how the sys-

tem matches the workload. Internal fragmentation occurs if the partition size is larger than

the requested size, or if the degree of parallelism in the program changes during execution.

External fragmentation occurs when unallocated PEs are left idle because they cannot form

a partition that is suitable for any queued job. If all the applications use the full machine

size (or a full prede�ned partition) all the time, as is possible with dataparallel codes that

only de�ne the size when the program is loaded, then there is no fragmentation. Otherwise

fragmentation can be a big problem leading to signi�cant losses [364, 363, 204, 375, 402].

A number of solutions have been proposed for the fragmentation problem. One solution is

to impose a programmingmodel in which applications can use whatever number of processors

is available, such as the workpile model. The system can then partition the machine without

any fragmentation, and even change the partitioning dynamically to respond to changing

loads [581, 633, 133]. Changing the partition size compensates for both internal and external

fragmentation. However, this approach may not be suitable for other programming models.

Another solution is to use migration to reduce the fragmentation [114, 110, 346, 449],

much as compaction is used to reduce the fragmentation in memory allocation. This is

applicable when there are restrictions on how PEs are allocated, as in the Cray T3E which

requires a contiguous set of nodes [346], or subcube allocation in hypercubes. The problem

with this approach is that migration requires a potentially large context to be copied, which

loads communication resources [571]. Also, this does not solve internal fragmentation. The

only way to reduce internal fragmentation is to remove the restrictions on PE allocation

[375, 606].

A third solution is to reduce the e�ect of fragmentation by combining partitioning with

time-slicing. This works because scheduling is essentially an on-line activity, typically with

no knowledge of the future. When Partitioning is used without time-slicing, decisions can

23

In collective I/O, all the PEs perform the I/O at the same time and synchronize as part of the operation.

This synchronization point is a good candidate for performing a multi-context-switch.
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exibility a�orded by time slicing can increase system uti-

lization.

have a large impact on the future. Consider the following simple case as an example: a 128-

node system is currently running a 64-node job, and there are a 32-node job and a 128-node

job in the queue. The question is, should the 32-node job be scheduled to run concurrently

with the 64-node job? Two outcomes are possible. If the 32-node job is scheduled and it

terminates before the 64-node job, resource utilization is improved from 50% possibly up to

75%. But if the 64-node job terminates soon after the 32-node job is scheduled, and the

32-node job runs for a long time, the utilization drops from 50% to 25%. And, in order not to

starve the 128-node job, it might be necessary to just let the 64-node job run to completion,

and settle for 50% utilization.

This bleak outlook changes if gang scheduling is used (Fig. 25) [203, 504]. The 32-node

job can run in the same time-slot with the 64-node job, while the 128-node job gets a separate

time-slot. As long as all three jobs are active, the utilization is 87.5%. Even if the 64-node

job terminates, leaving the 32-node job to run alone in its time-slot, the utilization is 62.5%.

Naturally, a few percentage points should be shaved o� these �gures to account for context-

switching overhead. Nevertheless, this is a unique case where time-slicing, despite its added

overhead, can lead to better resource utilization than batch scheduling.

When using time-slicing, fragmentation can be reduced even further by giving less service

to problematic cases [204]. Using the above example, when the 32-node job runs alone it

will receive shorter time slices than the 128-node job. This seems to come at the expense

of fairness if you just look at the service that applications receive; it is quite fair, however,

if you consider what it costs the system to provide this level of service. It also has the side

bene�t of keeping the fragmented con�guration in the system for a longer period of real time,
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thereby increasing the chance that new arrivals will be able to utilize the left-over PEs.

Operating system overhead

Bad scheduling decisions may add overhead by undermining synchronization, reducing lo-

cality, and other adverse e�ects. But there is also direct overhead for the scheduling itself.

One study conducted on a multiprogrammed multiprocessor found that 24% of the total

CPU cycles were lost to operating system overhead, and 2/3 of this (16%) was attributed to

multiprogramming [162, 161]. This was further classi�ed as base overhead for the context

switching itself, which was about 5% irrespective of the workload, and workload-dependent

overhead such as additional paging that would not be necessary if the programs executed on

a dedicated machine. Naturally, these results depend strongly on system parameters such

as the scheduling time quantum. It is always possible to reduce the relative overhead by

increasing the time quantum, and the price of slower responsiveness.

The multiprogramming overhead would be avoided if time-slicing was not used, and

indeed one of the main arguments for partitioning is that it reduces the overhead for context

switching [581]. This is supported to some degree by another study, using a dedicated single-

user machine. This study found that 5{21% of the time went to operating system overhead,

but only about 2% was attributed to context switching [424].

Context switching operations are not the only source of overhead. Another important

issue is contention for locks and shared data structures. In the context of scheduling, con-

tention for a global queue of ready threads can lead to a severe degradation in performance

[426, 431]. Another e�ect of operating system overhead is that it may perturb the execution

of an application due to its asynchronous nature. This can be eliminated by coordinating

the perturbations on the di�erent PEs, essentially performing a multi-context-switch from

the application to the operating system and vice versa [417].

Support for general purpose parallelism

Finally, on a slightly more philosophical level, scheduling is implicitly implicated in the

context of support for general purpose parallel computation. A major obstacle in this area is

the need to tailor applications to architectures, so as to achieve optimal performance [552].

The alternative is to hide the de�ciencies of the architecture, or the mismatch between

architecture and application.

The main problem facing parallel applications is the latency of interprocessor commu-

nications. Valiant has suggested that this can be hidden by parallel slack: if the logical

parallelism in the application is higher than the physical parallelism (i.e., the number of

PEs), then when one thread blocks waiting for an interaction to complete another is sched-

uled in its place. This allows for general-purpose machines that are not speci�cally designed

for a certain type of computation [593, 393]. Actually this concept had been implemented

already long before, in the multithreaded architecture of the Denelcor HEP [539, 297, 321].
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While that machine is no longer available today, its legacy continues in the Tera machine

[18, 96, 15, 16].

As far as scheduling is concerned, this idea is related to independent time-slicing on each

PE, using a local queue. The di�erence is that the scheduling is done in hardware, rather

than by the operating system.

6.3 Individual Users in a Multiuser System

A major goal of multiprogrammed systems is to support multiple users at once, giving

each the illusion of having a dedicated machine (even if it is smaller and slower) [322, 212].

Without proper care, it is easy to compromise this illusion.

Support for the dedicated machine model

The �ction of a dedicated machine for each user is important because this is the only model

in which a user can program. It fosters predictable program behavior and allows for per-

formance tuning of applications [168]. It is also needed in order to exploit various the-

oretical results about algorithm design and scheduling. For example, a lot of work has

been done to develop heuristics for the scheduling of interdependent tasks on a set of PEs

[238, 120, 377, 232], but these heuristics are based on the assumption that the PEs are there

for the taking and nobody interferes with their use. Likewise, parallel algorithms developed

in the PRAM and other models are based on this assumption [302]. Algorithms are simply

not designed with the possibility of PEs suddenly switching to run competing applications

in mind. The only exception is work done in the context of an extreme model of fault toler-

ance, that considers the environment in general to be an adversary. This work shows how to

emulate a PRAM correctly despite anything that the environment (including the operating

system) may do [33].

Pure partitioning with one-to-one mapping provides the most direct support for the

dedicated machine model. However, the number of simultaneous jobs sharing the machine

is limited by the number of PEs (or the maximal number of partitions that can be created,

if the minimal partition size has more than a single PE). In small installations, this can be

a signi�cant limitation. Processor sharing by virtue of hardware contexts, as on HEP, also

provides an e�ect of dedicated hardware. In this case limitations are due to the limited total

number of contexts. However, these are typically high enough to be of no concern. Gang

scheduling also supports the illusion of a dedicated machine e�ectively, and does not have a

hard limit (except, of course, for the size of the system tables).

The question remains of how crucial it is to implement the dedicated machine model by

actually dedicating a set of PEs, at the same time, for the exclusive use of an application.

The answer depends on the characteristics of the application. Providing all the PEs at

once reduces the overhead associated with synchronization, especially if busy waiting is

used and interactions are �ne-grained [198]. When two-phase blocking is used rather than

pure busy waiting, there is a danger of increased context switching for synchronization if
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the threads do not run simultaneously. If interactions are asynchronous and use bu�ers to

communicate data, the lack of dedicated PEs may lead to bu�er over
ow. Finally, when

PEs are dedicated to the application, so is their memory, which provides strong support for

local data referencing. Without dedicated PEs and one-to-one mapping, we might have to

pay more for data movement.

In many cases the application re
ects the model of computation. If the threads are

largely independent and have a small context, the application will not notice that it does

not have a dedicated machine. If the threads participate in considerable interactions, and

require signi�cant local storage, support for the dedicated machine model is highly desirable.

As a concrete example, consider the case of dataparallel applications. In this programming

style, large data structures are partitioned across the PEs. Barrier synchronization points

typically delimit phases of the computation, sometimes accompanied by data exchanges.

These features indicate that good support for the dedicated machine abstraction is required

in this case.

Finally, good support for the dedicated machine model improves the robustness of the

scheduling scheme. For example, gang scheduling has been shown to be consistently slightly

less e�cient than a real dedicated machine. Dynamic partitioning, on the other hand,

is sometimes much more e�cient, but sometimes much less e�cient, because of complex

interactions between the way the threads and data happen to be mapped. Thus overall gang

scheduling is more robust [106].

User separation and protection

With pure partitioning users have less chance to a�ect each other. If the network is also

partitioned, tra�c generated by one application does not load that part of the network used

by another. Such partitioning is possible in cube multistage networks like those used in

PASM and TRAC [531, 533, 372], in the fat tree network used in the Connection Machine

CM-5 [356], in crossbars like that of the Fujitsu VPP500 [407, 592], and in hypercubes or

meshes where applications run on subcubes or submeshes. Moreover, some systems allow

users working in di�erent partitions to use di�erent operating systems. This is a useful feature

for system development: new and experimental versions can be tested in one partition, while

users continue to use a stable older version in others [52, 151, 350]. It may even be possible

to reboot a partition without any e�ect on jobs running in other partitions [129].

Conversely, in non-partitioned machines, one job may degrade the performance of an-

other. Probably the most infamous example is found in machines like the NYU Ultra-

computer and the IBM RP3. These machines provide time-slicing, and PEs are scheduled

independently using a shared global queue, so threads belonging to distinct jobs may execute

simultaneously. The architecture calls for a shared memory that is accessed via a multistage

network. If one of the applications has a memory hot-spot, the whole network may su�er

from tree saturation [459]. This may block memory accesses from threads in other appli-

cations. The severity of this problem and possible solutions are the subject of considerable

controversy [14, sect. 10.3.8].
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Sharing does not only e�ect performance; if proper care is not taken, sharing may com-

promise user data integrity. In shared memorymachines, memory assigned to one application

must be protected from access by another application. This is done using normal hardware

protection mechanisms that were developed for uniprocessors. In essence, when a PE runs a

thread from a certain application, it loads a memory map in which only memory accessible

by this thread is represented. Attempts to access unrepresented memory result in a memory

fault. The problem with this scheme is that the maps must be kept consistent on all the

PEs. This is known as the TLB

24

consistency problem [67, 488, 566]. The problem does

not exist if maps never change, but this can only be done when applications �t into physical

memory and never move. In most cases, this places unacceptable limitations on the memory

allocation.

In message passing systems, protection means that threads in one application should

not be able to send messages directly to PEs running threads from another application. If

space-slicing is used, this means that certain PEs should be out of bounds. If time-slicing

is used, this means that messages should be addressed to speci�c threads, not to PEs.

Naturally, handling messages addressed to threads other than the running thread causes

performance perturbations. In addition, the fact that an identi�cation tag must be added to

each message implies that message passing is done via kernel calls, unless special hardware

support is provided. This increases the cost of message passing. The e�ect of applications

on each other is reduced if whole sets of PEs are allocated to a job together with a partition

of the network, rather than scheduling PEs individually. The network is then 
ushed as part

of each context switch. A mechanisms for such 
ushing exists in the Connection Machine

CM-5 [356].

User satisfaction

The introduction of time slicing to uniprocessor systems not only allowed the system to

be shared, but also provided interactive response times. This was quickly recognized as a

revolutionary improvement in computer use, leading to increased user productivity [471, 51].

The same can be said of time-sliced parallel systems as well. Conversely, in a pure space-

slicing system, users may be denied access to a partition of the required size for arbitrarily

long times [360].

User satisfaction with system access is usually quanti�ed by the mean response time of

submitted jobs. This measure is reduced by always executing the job(s) that have least

computing to do, that is scheduling the shortest job �rst (SJF) [322, 456]. But SJF requires

service demand to be known in advance, which is typically not the case, and runs the risk of

starving long jobs. Luckily, it is possible to make important choices based on very limited

knowledge. Rather than requiring the service demand of each job to be known, it is enough

to know the coe�cient of variation of the distribution of service demands. If this coe�cient

is less than 1, it means that jobs have similar demands. In this case it is best to execute
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TLB stands for Translation Lookaside Bu�er. This is the common name for a special cache used for

frequently accessed mapping information.
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them in FIFO order, because at each instant the currently running job may be expected to

have less additional demand than a newly arrived job (in other words, the new job is not

likely to be shorter). On the other hand, if the coe�cient of variation is larger than 1, the

distribution of service demands is wide. In this case preemption should be used, because

there is a good chance that new jobs will be shorter than those currently in the system

[485, 450]. As measurements of actual workloads have repeatedly shown that job service

demands have a large coe�cient of variation [195, 201, 617, 276, 606], the conclusion is that

time slicing will lead to reduced response times.

As massively parallel supercomputers become more common, multiuser support becomes

more important [78, 151]. Likewise, user frustration with poor access or bad response be-

comes an issue [251]. Pure space-slicing systems might contribute to user frustration in two

ways, especially if the partitioning is not 
exible enough. One is if the number of partitions

is severely limited. For example, a full-size Connection Machine CM-2 could only be parti-

tioned among four users, because it only had four sequencers [582]. There was no way for

multiple users to obtain access to small partitions of the machine for program development

and testing.

Another cause for frustration is if an allocation to one user prevents allocation to another,

especially when the total number of available PEs is actually su�cient. For example, the

allocation of a 4-node subcube in a hypercube can prevent the allocation of a 512-node

subcube in which it is contained, even if the total number of idle nodes in the system

exceeds 512. This problem may manifest itself in the form of interrupted sessions: if PEs

are allocated as part of program execution, it may be possible to run a program once, �nd

a bug, but not be able to run it again because the PEs had been allocated to someone else

in the meanwhile [303]. The solution of allocating PEs for the duration of a login session

is undesirable because these PEs are never used when the user stops to think or to take a

break.

In practice the most common manifestation of these problems is that users are faced with

uncertainty regarding when they will be able to run their programs. Reducing the uncertainly

is just as important as reducing the response time itself. Methods to do so include placing

limits on running jobs, as is done in NQS, and trying to estimate the queueing time of new

jobs [368, 225, 164].

Some partitioned systems provide batch scheduling as the only support to ease these

di�culties. Others do not provide even this limited support, and implicitly expect users to

coordinate the use of the machine verbally among themselves [151, 303]. This is not always

easy, as di�erent users often have con
icting goals: some want to use the whole machine

for long production runs, while others want small partitions for program development and

testing [605, 400]. Electronic signup sheets can be used to reserve a partition. The system can

then check who should be allowed to run, and use this information to enable the authorized

users to kill unauthorized jobs that interfere with their work [287]. But users might abuse

signup sheets by signing up for whole days, weeks in advance. Placing a limit on the number

of PEs that users can monopolize, and on the time they can do so, is a possible compromise

[64]. However, the limit may be too tight for users who really need the full machine for long
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production runs, and might not be tight enough for users who spend large parts of the day

waiting for a relatively small number of PEs. The only solution that allows users to feel as

if they are sharing the machine at the same time is to use time-slicing. Note that this does

not necessarily have to come at the expense of partitioning. Rather, gang scheduling may

be used to get the best of both worlds. For example, gang scheduling was implemented on

the CM-2 to improve its ability to support multiple users at once [299].

Preemption can also be useful in reducing user frustration due to unexpected program

behavior. For example, consider a program that uses busy waiting to synchronize a number

of threads. If enough PEs are available and all the threads run simultaneously, the program

executes faultlessly. But if less PEs are available, the running threads have to wait in order

to synchronize with threads that are not running. If the system is non-preemptive, this

scenario results in deadlock. Thus preemption reduces the dependence of program behavior

on the number of PEs [549, 57, 563]. While preemption is possibly costly in performance, it

should be realized that not all users are perfect. The reduction in user frustration might be

worth the cost.

Fairness and accounting

In partitioned systems the notions of fairness and accounting are simple. Each application

gets a partition of the machine, and is billed according to the size of the partition and

the time it was held. Fairness may be introduced by requiring that concurrently executing

applications have equal numbers of PEs in their partitions. Conversely, it is possible to allow

applications to acquire larger partitions, and bill them accordingly.

In time-slicing systems, the issues of fairness and accounting boil down to the question

of what time slices to give to competing threads and applications. A quest for fairness can

be interpreted as implying that time slices should be equal at the job level [361]. Thus if

one job has more threads than another, each of its threads will run for less time. But this

notion of fairness undermines the whole concept of multiprocessing [241]: in e�ect, when

users try to exploit the parallelism in their programs, the system tries to degrade the service

they receive.

An alternative interpretation is that the time a job waits for service be proportional

to the total amount of service it requires [82, 333, 384, 204]. In other words, when the

competition for system resources causes jobs to run slower than on a dedicated machine,

all the jobs should be slowed down by the same factor. Using this interpretation, fairness

means that equivalent jobs should get the same amount of service, not all jobs. As the service

requirement is generally not known in advance, it is taken to be the number of threads. The

problem with this approach is that it gives higher priority to jobs with many threads. Users

may abuse this policy by increasing the degree of parallelism in their programs, even if the

additional PEs are not used as e�ectively

25

.

25

It is often said that users might also create spurious threads that do not perform any useful computation.

However, this would not lead to any bene�ts. If the scheduler is fair at the thread level, the spurious threads

will just compete with all the other threads in the system, including the threads that actually do the
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The problem of user countermeasures is solved by accounting. It seems better to leave so-

phisticated considerations out when allocating processing power. Rather, accounting should

be used to penalize applications that make excessive requests. In other words, both the cost

of running a parallel application and the service it receives should be proportional to the

number of threads in the application.

A more general solution is to use accounting as a feedback mechanism that in
uences

scheduling. As parallel supercomputers are generally quite expensive, it is often the case that

multiple groups of users cooperate in the acquisition of a single machine. Accounting is then

used to ensure that users from the di�erent groups receive service that is proportional to their

investment. But in order to be e�ective, the scheduler must take the accounting information

into account when deciding on the allocation of resources to new jobs [263, 304, 191].

The naive solution in parallel systems is to partition according to investment: a group

that put up 25% of the budget gets a dedicated 25%-partition of the machine. But this means

that the full power of the machine is never utilized, and that resources not used by one group

cannot be easily transferred to another. In e�ect, the di�erent user groups could have bought

separate, smaller machines. Therefore it is better to use time-slicing, and set scheduling

quanta according to the allocation to di�erent user groups. This approach has been used

on uniprocessors in the Unix fair share scheduler [263, 304, 191]

26

, and related policies are

incorporated in the Cray T3E scheduling software [346] and in the Tera MTA scheduler

[16]. It can also be used to impose job-level fairness, by regarding each job as representing

a separate user group which deserves an equal share of the machine. Alternatively, an

economic model model can be used to control the allocation. In such a model, each group

has an \income rate" proportional to its investment in the machine, and the priority of the

group's jobs is proportional to its accummulated \funds". Thus jobs belonging to a group

that owns a larger portion of the machine will have a higher priority and run sooner [551].

It should be noted that fragmentation may cause a discrepancy between the service

provided to the user and what it costs the operating system to provide this service. For

example, a job using a small number of PEs can prevent another large job from running,

and leave PEs idle owing to fragmentation. From the system's point of view the cost is a

combination of the PEs allocated to the running job and the idle PEs, but the job only

bene�ts from the ones it uses. When gang scheduling is used, determining the time slices

based on system cost rather than on user bene�t can improve resource utilization [204].

However, only the provided service should be used for accounting.

6.4 Implementation Issues

Choosing a scheduling scheme based on expected functionality and performance is one thing.

Actually implementing it is another thing. For example, implementations might be con-

computation in the same job. This will degrade the service to all jobs, including the one that created the

spurious threads.

26

There has also been work on how to set the priorities in the conventional Unix scheduler, which uses

decay usage scheduling, to achieve the desired division of resources [259, 189].
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strained by architectural features or by lack of hardware support.

Interaction with memory management

Memory management is an important service provided by uniprocessor operating systems.

The essence of this service is to strike a balance between the memory requirements of di�erent

processes. The solution is to keep each process's working set of pages in the main memory

[155]. Most of the time, the process only needs these pages. When a process tries to access

a page that is not in main memory, a page fault traps to the operating system, and the page

is brought in.

Memorymanagement in multiprocessors has an additional dimension, just like scheduling.

The question is not only if a page is in memory or swapped out, but also in which memory

module it is placed. Signi�cant work has been done in the context of NUMA architectures

on the automatic migration of pages from one memory to another, so as to improve locality

of reference [74, 66, 502, 351]. Of course, this issue is not relevant for distributed memory

machines, where the page must be collocated with the thread that accesses it, or for UMA

shared-memory machines, where all memory is equally accessible.

Regrettably, the interaction of memory management with scheduling in parallel systems

has received only scant attention [452, 88, 396, 106, 515, 448, 447, 397, 550]. This interaction

has great importance. Systems that use non-preemptive partitioning typically do not provide

any virtual memory or paging, because they cannot a�ord the overhead of idling a PE

while waiting for a page fault to be serviced [452, 515, 256]. All the memory is dedicated

to a single application at a time, and the application is explicitly required to �t into the

available memory. In systems that provide dynamic partitioning, this can be as small as the

memory associated with a single PE. If memory is shared, the systemmust know the memory

requirements of di�erent jobs in advance so as not to overcommit memory [323]. Note that

as load increases, jobs may be allocated smaller and smaller partitions, in an attempt to

service more jobs at once. But this increases the residence time of the jobs, and therefore

increases the memory pressure as well [448].

While memory availability is indeed growing at an amazing rate, so are processor speeds

and user requirements. Therefore requiring jobs to �t into available memory forces users to

take memory availability into account when designing programs, and might limit the compu-

tations that can be performed [536]

27

. Providing virtual memory is increasingly recognized

as a necessity [532].

Systems that use preemption, on the other hand, cannot a�ord not to support memory

management as well. When PEs are shared among a number of jobs, so is the memory. The

more jobs there are, the harder it is to satisfy their memory requirements at once. However,

it should be noted that space slicing also reduces the memory available to each job, and

actually time slicing allows more 
exibility in the allocation, because memory allocation is

decoupled from PE allocation (Fig. 26).
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Interestingly, memory availability has also been proposed as the metric for scaling the problem size when

analyzing speedup bounds [618, 559].
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Figure 26: With space slicing, processor allocation dictates memory allocation due to the

\vertical" partitioning (top). With gang scheduling, memory is partitioned \horizontally",

so memory allocation is decoupled from processor allocation (bottom).

Memory management in time slicing systems is based on the distinction between short-

term scheduling and long-term scheduling: long term scheduling is involved in deciding which

jobs will have some memory allocated to them, and which will be swapped out altogether.

Short term scheduling is involved in the decision as to which threads will run at a given

instant, out of the threads belonging to the memory-resident jobs. Swapping is preferrable

to demand paging, because the paging activity on the di�erent PEs may be uncorrelated,

and thus cause synchronization problems [607, 88]. While swapping is a basic feature in most

uniprocessor systems (e.g. Unix [36, sect. 6.1 and 9.1]), very little work has been done in

this respect in the context of parallel systems [16, 550, 88, 396]. One notable idea, however,

is that the residence time of jobs be proportional to their memory footprint [16, 203, 516].

This places an upper bound on the relative overhead of moving the job's state from memory

to disk and back.

To summarize, in both cases the problem with memory management is how to avoid

stalling PEs when waiting for memory faults to be serviced. An interesting alternative

approach to this question is to perform double bu�ering in memory [583]. This assumes

that each job can �t into half of the available memory. Successive jobs use the two halfs

alternatively. As each job runs using one half of the memory, the other half is used �rst to

o�oad the results of the previous job, and then to preload the code and input for the next

job. This saves the startup costs for new jobs by overlapping them with computation of

other jobs.

Finally, it has also been suggested that the problem is too complex for a general solution,

so it should be left to the users. Speci�cally, given that physical memory is scarce, the

application itself should be responsible for its optimal management. The mechanisms to do

so are control over what pages of virtual memory will be cached or replaced, and facilities
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to acquire additional frames of physical memory for bounded durations [256].

Interaction with the architecture and hardware support

Architectural features can have a decisive impact on how the machine is shared among

multiple users. For example, a dedicated machine (or partition) is obviously needed for

SIMD architectures because of the single instruction decoding unit that controls all the PEs

[531]. It is simply not possible to share a SIMD machine by using independent time-slicing

on di�erent PEs. Current implementations either use only space-slicing, as in the PASM

prototype [535, 534], or gang scheduling, as on the Connection Machine CM-2 [582, 299].

As another example, a shared memory is required for the implementation of a shared global

queue of ready threads.

A more subtle e�ect of the architecture exists in various instances of hardware support for

special operations, or lack thereof. We already mentioned the issue of hardware support for

virtual memory. Time slicing puts more strain on memory, because it is shared by a number

of applications. If there is not enough memory to go around, virtual memory and paging

are needed. The problem is that not all parallel systems support paging or have enough

local disks for swap space; the lack of support might preclude the use of time-slicing. Paging

also implies asynchronous delays, which undermines the bene�ts of one-to-one mapping and

gang scheduling [607]. When a page fault occurs in a gang-scheduling system, it is necessary

to deschedule a whole set of threads, not just a single one [550]. However, this only makes

sense if the multi-context-switch overhead is smaller than the page-fault service time [88].

On the other hand, some architectural features make sharing easy. A case in point is

architectures with multiple hardware contexts and switching on every instruction cycle, like

HEP [297, 321], Tera [18, 16], and Alewife [3]. These architectures provide real processor

sharing in hardware: in e�ect, the whole machine is time-shared by all jobs. The operating

system just has to map threads to PEs.

The multi-context-switching operation that is needed to implement gang scheduling is

an example of an operation that is unique to parallel systems, and may require substantial

hardware support. The main problem is that the context switching operation has to be

synchronized across a set of PEs. In particular, it is highly desirable that the time during

which they are not running the designated set of threads in parallel be very short relative

to the scheduling time quantum. But due to clock drifts and communication latencies, it

is not realistic to expect standard interprocessor communication mechanisms to meet this

requirement. This is why most systems that implement gang scheduling use a broadcast

interrupt to initiate a multi-context-switch [356, 198, 550].

In some architectures, getting all the PEs to do a context switch at the same time is

not enough. The reason is that the state of a user's computation is not con�ned to the

PEs: some of it may be in transit in the network. This should also be saved during a multi-

context-switch. Again, special hardware support is required. For example, the design of the

Connection Machine CM-5 includes a special feature to 
ush the network upon a context
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switch [356]. Of course, it is also necessary to restart these communication operations when

the application is scheduled again [365].

When considering the di�culty in implementing a multi-context switch, it is interesting

to note that it is a subset of the work required to implement checkpointing and rollback [365].

This is an important observation, because checkpointing and rollback often play a crucial

role in fault tolerance schemes. In essence, checkpointing records a snapshot of the program

state, and rollback restarts execution from a previous snapshot. Multi-context-switching is

actually somewhat simpler: it freezes the execution state without creating a copy of it, and

then restarts it later. Thus implementing checkpointing and recovery implies an ability to

implement multi-context-switching, with the added bene�t of possible relocation.

Ease of Implementation

Another consideration distinguishing between di�erent scheduling schemes is the ease of

their implementation. The easiest to implement is partitioning: once the PEs are allocated

the operating system need do nothing more. Indeed, a number of commercial systems have

followed this approach. A close second is the use of local queues, or perhaps a shared global

queue; this approach borrows heavily from experience with uniprocessor systems.

Hybrid approaches like gang scheduling are harder to implement, as shown above. Table

1 bares testimony to this fact: while not a statistically valid sample, it shows that there

are many more systems that use either time-slicing or space-slicing, but not both. However,

it it encouraging that some important commercial systems such as Mach, the Connection

Machine CM-5, the Meiko CS-2, and the Intel Paragon also support a hybrid approach.

7 Case Studies and Example Systems

While it is possible to make many contradicting statements about the superiority of one

scheduling scheme over another, many of them do not apply to real-life situations. Real

systems often have to cater to many masters. Some want peak performance for long,

computationally-intensive jobs. Others want fast interactive response times. A third group

insists it needs exclusive use of the machine so as to run benchmarks with no interference

whatsoever. Finally, administrators tend to place the greatest emphasis on resource uti-

lization. Therefore real systems sometimes end up supplying di�erent levels of service to

di�erent jobs, and using di�erent mechanisms at once. This section presents some case

studies of such systems. Some are management systems developed at national labs and su-

percomputing centers, and others are components of commercial o�erings from vendors of

speci�c parallel machines.

We start with the simplest form of systems, those used to queue batch jobs for later

execution. Then we turn to systems that serve jobs of multiple types at the same time.
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Figure 27: The place of NQS in a system.

7.1 Batch Queueing Systems

A basic distinction is between batch and interactive (or \direct") jobs. Batch jobs may

explicitly be delayed by the system, and executed whenever it is convenient. This allows the

system to optimize the running job mix, by choosing jobs judiciously from the queue.

A number of batch queueing systems have been designed [211]. One of the �rst was

NQS, whose interface has become a de-facto industry standard, while the implementation

may be di�erent on each machine. Recently other systems have also been proposed, mainly

to allow added 
exibility for individual installations. Systems designed mainly for networks

of workstations, such as DQS and LSF, are mentioned below in Section 7.3.

7.1.1 The Network Queueing System (NQS)

The Network Queueing System (NQS) was developed at NASA Ames research Center to

help support e�cient use of their Cray 2 and Cray Y-MP multiprocessor supercomputers

[323]. It has since been adopted by many installations, as well as by the vendors of various

parallel machines.

NQS is essentially a batch scheduling facility. E�cient batch scheduling depends on

getting a good job mix, so that the requirements of di�erent jobs complement each other

and promote e�cient utilization of all available resources. On the Cray multiprocessors,

NQS attempts to optimize the use of two resources: memory and CPU time. Submitted jobs

must state limits on their CPU and memory usage. Jobs are classi�ed according to these

limits, and each class has a separate queue. The scheduler then picks jobs from the di�erent

queues to create the desired mix. Jobs that exceed their time limit are killed.

As supercomputers typically have proprietary operating systems, it is impossible to con-

trol the scheduling on the target machine directly. Therefore NQS is implemented as a set

of scripts that control the load that is placed on the machine. In other words, users submit
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time number of nodes

limit 16 32 64 128

20 minutes q16s q32s q64s q128s

1 hour q16m q32m q64m q128m

3 hours q16l q32l q64l q128l

Table 4: Example of NQS queues used on the 128-node iPSC/860 system at NASA Ames

[195].

jobs to NQS, which bu�ers the requests in its queues; NQS then submits selected jobs to the

machine so as to create the desired job mix. For Cray multiprocessors, the goal is to have

slightly less than two batch jobs per processor on average, such that their combined memory

requirements do not result in swapping. Two are needed to allow the processor to overlap

computation with possible I/O operations. By keeping the load at less than two on average

some resources are left free for interactive users that bypass the NQS system (Fig. 27).

NQS was originally designed for throughput-oriented computation with sequential jobs.

It has since been extended to support parallel programs as well, on distributed memory

architectures. In fact, versions of NQS are provided by most vendors of parallel supercom-

puters. The common approach is to simply add a speci�cation of PE requirements. Again,

multiple classes are created, each with di�erent limits on the number of PEs used and on

the runtime. An example is given in Table 4, where there are 4 possible partition sizes and

3 time limits, leading to a total of 12 queues. The batch scheduler then uses the limits to

identify jobs that can run side by side using space slicing. In addition, certain queues can be

enabled or disabled at di�erent times, so as to provide better support for di�erent workloads.

For example, only queues q16s, q16m, q32s, and q32m from Table 4 are enabled during prime

time, e�ectively limiting jobs to 32 PEs and 1 hour. Any larger jobs that are submitted are

queued until the other queues become active at night.

Implementations of NQS often provide support for other aspects of job classi�cation as

well. For example, separate queues can be created for high and low priority jobs, and for

di�erent levels of additional resources, such as on-line disk space and memory. This leads to a

combinatorical explosion of queues, and makes it harder for users to choose the appropriate

one (see e.g. Table 5). Moreover, e�cient scheduling depends on exact classi�cation of

jobs, which translates to more burden on users. Nevertheless, NQS has been successful in

boosting the utilization of many parallel machines, and is a de-facto standard in Unix-based

supercomputing environments. It is the basis for the POSIX 1003.15 standard.

7.1.2 The Portable Batch System (PBS)

Recently, however, the limitations of NQS are becoming apparent. The major limitation is

the lack of control available to system administrators for tuning and special services | all

they can do is to con�gure di�erent queues with di�erent priorities and resource limits. This

has prompted work on more general scheduling infrastructures, where elaborate scheduling
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time number of nodes

limit 1 4 8 16 32 64 128 256

15 min q4t

1 hour q4s q8s q16s q32s q64s

qf8s qf16s qf32s

4 hours q32m q64m q128m q256m

qf32m qf64m qf128m qf256m

12 hours q1l q32l q64l q128l

qf32l qf64l qf128l qf256l

qstandby

qfstandby

Table 5: Example of NQS queues used on the 416-node Paragon at San-Diego Supercom-

puting Center [606]. Queues with `f' indicate use of nodes with 32 MB of memory, while

the others use nodes with only 16 MB. The standby queues have lower priority, and are also

charged at a lower rate.

policies can be expressed. An example is the Portable Batch System (PBS), also developed

at NASA Ames [262].

PBS structures job control functions using four types of processes. The job server is the

focus of the system: it maintains the jobs in various queues, and interfaces to the hosts. Each

host has a machine orienter miniserver (MOM) process that handles the actual execution

and monitoring of jobs on that host. Each host also has a resource monitor process to gather

resource usage information. The scheduling policy is handled by a fourth external process

that has access to all the systems knowledge regarding resources, running jobs, and queued

jobs. This process makes the decisions, and instructs the job server (and through it, the

MOMs) to carry them out.

As an example, a policy that can be implemented with this infrastructure and cannot

be implemented in NQS was devised for the SP2 machine at NASA Ames [262]. Special

features in this policy include

1. Time is divided into multiple shifts, which are di�erent during weekdays and weekends.

This allows bu�er zones at the beginning and end of prime time (NQS only supports

prime and non-prime time).

2. Job limits change dynamically based on load conditions. Thus during prime time 32-

node jobs can run for up to 4 hours if at least 32 additional nodes are free. Jobs using

the last 32 nodes are limited to 10 minutes.

3. Jobs are not started if they might not complete before the end of their shift.
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7.2 Catering for Many Masters

The scheduling mechanisms described in Sections 3 through 5 are typically based on a certain

preconception of how jobs behave and what services they need. For example, a central queue

is designed to serve jobs composed of largely independent threads, dynamic partitioning

assumes malleable jobs, and so on. But in a real system the workload is usually very diverse.

Applications may be programmed in di�erent styles and have di�erent characteristics, and

jobs may have di�erent priorities. A real scheduler has to take these di�erences into account.

Most large scale distributed memory machines deal with this problem by creating several

partitions, each with di�erent attributes. Such systems are described in Section 7.2.1. A

more innovative approach is to gang schedule the di�erent jobs using di�erent scheduling

characteristics. Such a system was developed at Lawrence Livermore National Lab, and is

now available for Cray T3D machines; it is described in Section 7.2.2.

7.2.1 Partitions with Di�erent Attributes

At the highest level, most systems employ two types of partitions: a login partition and a

compute partition. The login partition serves as an internal host: when users log onto the

machine, their shell process runs on one of the PEs in the login partition. These PEs can

also be used for small serial jobs, such as editing and compilation. Only large parallel jobs

are executed on the compute partition.

In some cases, additional distinctions are made. The compute partition may be sub-

divided into a number of smaller partitions, that have di�erent characteristics. In many

cases, this is used to support di�erent types of jobs. For example, one subpartition may be

dedicated to small and short jobs, so as to insure reasonable response time, while another is

used for large batch jobs, in the interest of utilization. In addition, other partition types can

be de�ned. In many cases, and I/O partition is used. This includes I/O nodes, that serve as

an internal parallel �le server [202], and gateway nodes, that interface to external networks

and high-speed channels such as HiPPI. In very large machines, a partition of spare nodes

responsible for availability and fault tolerance can be used [391].

While the central concepts used in all machines are very similar, the details vary. The

following subsections describe some speci�c examples.

The IBM SP2

The IBM SP2 is a distributed-memorymulticomputer based on a multistage network [5, 553].

The nodes are RS/6000 workstations. A number of models are available, based on tradi-

tional multi-chip module implementations or on PowerPC microprocessors. Furthermore,

the packaging may be in \thin" nodes, \wide" nodes, or \high" nodes. Wide nodes occupy

the full width of the rack, and contain more space for memory and peripherals; they are

meant to be used as servers or as compute nodes for extremely demanding applications.

Thin nodes occupy half the space and can contain less memory and peripherals. High nodes
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are 8-processor SMP nodes based on the PowerPC chip. All nodes run the AIX operating

system (IBM's version of Unix).

The nodes of an SP2 system can be con�gured by the system administrator into a number

of partitions for di�erent uses. These include the interactive login partition, server partitions

(e.g. I/O nodes for a parallel �le system [131]), a batch serial partition, and one or more

parallel partitions for running parallel jobs.

Scheduling of batch parallel jobs is handled by LoadLeveler, which is based on Condor

[373]. This system was originaly designed to run background serial processes using idle

cycles in a network of workstations. It uses daemons on the system nodes to collect load

information and to control the placement and execution of processes. This infrastructure is

also useful for a parallel environment.

In order to schedule parallel jobs, LoadLeveler has been augmented with an external

scheduler module, which is based on the EASY scheduler developed at Argonne National

Lab for their 128-node IBM SP1 system [368, 538]. EASY (Extensible Argonne Scheduling

sYstem) uses a back�lling algorithm to move small jobs ahead in the queue, provided they

do not delay the �rst job in the queue (see Section 3.2.3). However, this algorithm is not

mandatory, and installations can tailor the scheduling policy to their liking. This is based

on the fact that the scheduler is an external module, and can easily be replaced or modi�ed.

The interface between LoadLeveler and the external scheduler allows the scheduler to obtain

information about the current status of all nodes in the system, and about the job queue. The

scheduler uses this information to decide what job to run, and on which nodes. LoadLeveler

then performs the actual loading and execution of the job.

The Intel Paragon

The Intel Paragon is a distributed-memory multicomputer with a 2D mesh topology. Each

node has two Intel i860 processors: one for computation, and the other acting as a com-

munication co-processor

28

. Con�gurations with up to a few thousand nodes have been in-

stalled. This represents a second-generation machine, after the �rst-generation hypercubes

(the iPSC, iPSC/2, and iPSC/860), and based on considerable experience with the Touch-

stone Delta prototype [400]. Processors used by applications run the OSF/1 Mach-based

microkernel with a Unix server [634], while the message-passing coprocessor runs code that

implements the NX/2 message passing protocols [461]. User applications running on the

compute processor are linked with NX/2 libraries that invoke the other processor.

The Paragon provides a generous and 
exible partitioning scheme. A hierarchical struc-

ture of partitions is maintained, rather like a hierarchical �le system [288]. The analogy is

extended to protection mechanisms: partitions have owners, and support read, write, and

execute permissions for the owner, the owner's group, and other users. Read permission

allows one to list subpartitions and jobs running in the partition, write permission allows

28

A 3-processor MP node was introduced later, with the option to use all three for computing rather than

dedicating one to messaging. The Intel/Sandia TeraFLOP machine, which is based on the Paragon, uses

nodes with four Pentium Pro processors [391].
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the creation of subpartitions, and execute permission allows the execution of jobs in the

partition. The root partition, called `.' (dot), contains all the nodes in the system. By con-

vention, there are always at least two subpartitions: .service is used to login, edit, compile,

and launch jobs. The system automatically maps each new process to the least loaded node

in this partition. .compute is used to execute parallel jobs. In addition, I/O nodes are often

grouped into an I/O partition.

In addition to protection modes, partitions also have speci�c scheduling characteristics.

There are three options:

� Standard| normal Unix time slicing is used to share the node among all the processes

that are mapped to it. This is used in the service partition.

� Gang scheduling | this allows coarse-grain time sharing with coordinated scheduling

of the whole application. The time quantum used is also a property of the partition,

and can be as large as 24 hours (the default is 10 minutes). It is called the rollin

quantum, invoking the image of rolling applications into and out of main memory.

Gang scheduling is done recursively following the partition structure. For each parti-

tion, the entities in it (jobs and subpartitions) are examined. Those that do not overlap

any other entity are scheduled for a rollin quantum. For entities that do overlap, those

which are tied for the highest priority are scheduled one after the other, each for one

rollin quantum. The priority of subpartitions is based on the priority of the subpar-

tition itself and the priority of the jobs in it. Context switching is initiated by the

allocator (the resource manager), using Unix signals. A job can have more than one

process on each node, and if so, they all run using the Unix timesharing. Therefore

the system actually supports family scheduling in our terminology.

� Space slicing | the partition is tiled and no overlap is allowed (except that jobs may

overlap unactive subpartitions, that is subpartitions that do not have any active jobs

in them). Jobs are then executed to completion.

If a job executes in a partition that uses time slicing, it is possible that a message will arrive

at a node that is currently running an unrelated process. Such messages are nevertheless

handled by the message passing processor, and received into the address space of the correct

(non-executing) process [461].

Batch scheduling is done by NQS. Special provisions are taken to accomodate di�erent

node types, e.g. with di�erent amounts of memory [606]. To do so, the nodes in the system

are divided into homogeneous node sets. Node sets are in turn grouped into node groups.

NQS queues can be linked to these node groups, and this linkage can change as a function

of time of day and day of week. An example is given in Fig. 28.

Each NQS queue is assigned a base priority. The priority of queued jobs depends on the

base priority and the queueing time. Whenever there are free nodes in the batch partition,

NQS tries to pack the highest priority job onto the mesh. If a large job is queued for a long

time, its priority may rise high enough so that nodes will be left idle (rather than running a
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Node sets:

S1 32 MB nodes

S2 small partition of 16 MB nodes

S3 large partition of 16 MB nodes

NQS queues and node groups:

time node

queue limit group usage

q1 short p+np: S1 short jobs requiring large memory

q2 long np: S1 long jobs / large memory: only at night

q3 short p: S2,S3 short small jobs avoid large mem during day

np: S1,S2,S3 run anywhere at night

q4 long p: S2 long jobs with small mem and few processors

np: S2,S3 run preferentially on S2

q5 long p: S3 long jobs with small mem and many processors

np: S1,S2,S3 run preferentially on S3

Figure 28: Example of using node sets and node groups to map jobs on heterogeneous nodes

(courtasy of Reagan Moore). p: prime time. np: non-prime time.

smaller queued job) to ensure that it is eventually scheduled to run. The packing is based

on a modi�ed 2D buddy system algorithm, which allows buddies that are not powers of 2

[606]. Moreover, jobs can be packed across buddies of di�erent sizes, and a best e�ort is

made at using contiguous buddies. A subpartition is created from the allocated nodes, and

it is dedicated to the job. The job is then executed to completion, subject to the time limit

of the NQS queue.

The Meiko CS-2

The Meiko Computing Surface CS-2 is a distributed-memory multicomputer, based on

SPARC nodes with optional Fujitsu vector units. Standard SUN (or third party) S-Bus

peripherals are supported. The nodes are connected by a multistage network, which also

supports broadcast and combining operations across ranges of contiguous nodes. Message

passing is performed in user-space, with DMA from the network adapter.

A CS-2 can be partitioned by the system administrator into disjoint partitions. These

partitions provide authorization domains, by being limited to certain user groups. Parti-

tioning is completely 
exible, in the sense that partitions can have any size and include any

contiguous subset of the system's nodes. The partitions can be changed without re-booting

nodes.

Each node of the CS-2 runs the Solaris operating system, which is a full Unix complete

with virtual memory and local scheduling. However, the number and nature of the processes

on each node depends on the type of the partition to which it belongs. Each partition runs
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a parallel system program | the partition manager | which is responsible for starting

user jobs in the partition, and killing them in case of error (e.g. a segmentation violation

in one process will also cause the rest of the parallel job, executing on other nodes, to be

terminated). The partition manager is actually composed of a collection of daemons, one on

each node.

The system software supports four possible types of partitions. The login partition is

used for user logins, program development, and so on. Parallel jobs are run on one of the

other three types. In the batch partition, jobs receive a subset of the nodes for their exclusive

use, and scheduling is manages by NQS. In the time sharing and gang scheduling partitions,

jobs share the nodes with each other. The di�erence is that in a gang Scheduling partition

the context switching is coordinated across the nodes, while in a time sharing partition it is

not.

7.2.2 The Lawrence Livermore Gang Scheduler

Lawrence Livermore National Lab initiated a large application-driven study of parallel com-

puting in 1989, using a 126-node BBN TC2000 Butter
y machine. In 1993, this machine was

replaced by a 256-node Cray T3D. A local gang scheduler was developed in order to better

support concurrent activity by users that wanted to use the machine in di�erent modes,

for program development, production runs, and benchmarking [241]. Due to the di�erent

characteristics of the two machines, the original version for the BBN was modi�ed when

ported to the Cray.

The BBN gang scheduler works by acquiring all the free processors from the system when

it is booted, and then managing their use by multiple users. Submitted jobs interact with the

gang scheduler (via sockets) just before calling the user main entry point. Jobs are classi�ed

into four classes [241]. The default class is \interactive". These jobs are gang-scheduled with

a time quantum of 10 seconds. The time quantum can be adjusted in the range of 5 to 20

seconds, in the interest of providing a fair share of the resources to di�erent users. Thus

users that run multiple jobs concurrently will get a shorter quantum for each job.

The second class is \production", or batch. Production jobs are only run when there

are no interactive jobs in the system, or when they can run alongside an interactive job

and utilize processors that would otherwise be idle. If multiple production jobs are present,

time-slicing is used to execute all of them, but the time quantum is set to 10 minutes to

prevent thrashing due to page faults resulting from a context switch. Interactive jobs are

automatically demoted to production status if they execute for more than 50 time slices (i.e.

500 seconds).

The third program class is \benchmark". These are jobs that are executed for the purpose

of accurate timing measurements, such as those required to generate speedup curves. Jobs

in this class are guaranteed exclusive use of the machine, up to a certain time limit. During

the day, benchmark jobs preempt the currently running job and get the machine for up to 60

seconds. During the night, the time limit is 2 hours. Programs running in other modes can

also request to run a short part in benchmark mode so as to perform timing measurements.
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Wait Do-not-disturb Processor

Job Class Priority Time Time Multiplier Limit

Interactive 4 0 Sec 10 Sec 256

Debug 4 300 Sec 1 Year 96

Production 3 1 Hour 10 Sec 256

Benchmark 2 1 Year 1 Year 64

Standby 1 1 Year 3 Sec 256

Table 6: Daytime scheduling parameters for di�erent job classes on the LLNL Cray T3D.

The fourth and �nal class is \standby". These are jobs that run for free when there is

nothing else to run on the machine. This class was not actually used, because accounting

was not an issue in the context of the study. All three other modes were used extensively,

by a large community of real users.

The multi-context-switching operations are implemented by signals that are sent from

the gang scheduler to all the processes in each job. One signal is used to instruct processes

to go to sleep when their time quantum is up, and another to instruct them to wake up when

they are to be rescheduled. The local nX scheduler therefore always has only one process to

run

29

| the one chosen by the gang scheduler.

Fine-grain gang scheduling as used on the BBN was not e�cient enough on the Cray

T3D, so \gang-swapping" was used instead [203]. This was based on the job-swapping

service provided by the Cray operating system, which was not available on the Butter
y. As

swapping is itself a costly operation (swapping out and in again on the whole machine takes

about 8 minutes), its overhead has to be amortized by su�cient useful computation. This

is done by using feedback scheduling and time quanta that depend on the partition size.

The LLNL Cray gang scheduler keeps all the non-running jobs in a priority queue.

Scheduling decisions are directed by a set of parameters (see Table 6)

30

. The priorities

are used to decide which job to service next. If this job has been in the queue for more than

its wait time, an attempt to free PEs for it by preempting other jobs is made. However,

such jobs are preempted only if their current quantum is already longer than their partition

size times the do-not-disturb time multiplier. The 1 year wait time value indicates the job

will only run if the PEs are idle; the 1 year time multiplier indicates the job will not be

preempted, but the number of nodes used by non-preemptable jobs is limited. Thus jobs

are preempted selectively only when the PEs are needed to service another job with higher

priority, rather than using periodic preemption. In practice, it turned out that only about

7% of the jobs were ever preempted.

29

Programs using Zipcode [537] could have more processes than one process on each PE, and then all the

processes belonging to the same job would be enabled. This leads to family scheduling rather than gang

scheduling.

30

Debug is a new, �fth class of jobs.
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7.2.3 The Tera MTA

The Tera Multi-Threaded Architecture (MTA) is a unique machine that departs from the

common wisdom of utilizing o�-the-shelf components in order to bene�t from the mass

market of PC and workstations. Instead, Tera employs custom processors with 128 hardware

contexts, allowing threads (called \instruction streams") to be switched on every instruction

[18, 15]. This is used to tolerate the access latency to shared memory. The basic design is

derived from the earlier HEP machine [540, 297, 321, 282]. The following descripion is based

on Alverson at al. [16].

The 128 streams may belong to up to 16 protection domains, corresponding to jobs. The

set of streams belonging to a single protection domain is called a team. A job may have

multiple teams on di�erent processors, and this can change dynamically: new teams are

created by a system call, and they retire if they have nothing to do. In addition, teams can

acquire and release streams as needed. This is done by special hardware instructions and

does not require operating system intervention.

Scheduling is done at several levels. First, the memory scheduler determines which jobs

to load into memory; the others are swapped out. From the set of memory resident jobs, the

processor scheduler determines which jobs to load into processor protection domains. Once

loaded, stream scheduling is handled by the hardware at each instruction cycle.

Tera also makes a distinction between large (batch) jobs and small (interactive) jobs.

Memory is statically partitioned into two parts, dedicated to these two types of jobs, with a

separate memory scheduler handling the swapping in each one. The residence time of a job

in memory, before it is eligible for being swapped out again, is proportional to its memory

requirement, so as to amortize the swapping overhead. This is rounded up to a power of

two times some minimal interval, in the interest of easier packing. The time a job remains

swapped out is set according to its relative priority, when compared against competing jobs.

Jobs are swapped one at a time, to make optimal use of the I/O bandwidth available for

swapping, and reduce unutilized memory due to jobs that are only partially swapped in and

therefore cannot run.

There are also two types of processor schedulers. One is a local processor scheduler

on each processor, that handles single-team jobs. Such jobs are scheduled according to

conventional Unix feedback mechanisms. The other is a system-wide scheduler for multi-

team jobs, which gang schedules the teams on di�erent processors (called the PB scheduler).

7.2.4 The Connection Machine CM-5

The Connection Machine CM-5 from Thinking Machines Corp. is a distributed-memory

multicomputer based on SPARC nodes with optional additional vector units [572, 442]. The

nodes are connected by two networks: a data network with a 4-ary fat-tree topology, which

is implemented as a multistage network (Fig. 29), and a control network, con�gured as a

binary tree that matches the data network's fat tree [356]. The data network is used for
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mode

PEs

fat-tree network
normal

router chip

data paths

data paths

in all-fall-down

Figure 29: The CM-5 fat-tree data network is implemented as a multistage network [356].

To 
ush it, router chips are put in \all-fall-down" mode.

data transfer, while the control network can be used for special operations such as barrier

synchronization, broadcast, and reduction. While no longer under production, the machine

is interesting for its extensive support for gang scheduling.

Resource sharing on the CM-5 is done by two means: partitioning and gang scheduling.

Partitions are set up by the system administrator, and can be limited to a certain class of

jobs or a certain group of users. Each partition consists of one control processor and a set of

processing nodes. The processing nodes must be contiguous, and must match a subtree in

the tree structure of the networks, with a minimal size of 32 nodes. The relevant subtrees

in the data and control networks are dedicated to the applications running in the partition.

The partition boundaries are recorded in each node's network adapters when the partition is

created. These boundaries are checked automatically when messages are sent, enabling user-

mode access to the networks with no operating system overheads for protection. Partitions

are completely independent of each other, and activity in one does not have any e�ect on the

others. It is also possible to power down nodes in one partition without any consequences

for programs running in other partitions.

Partitions can be enabled for general interactive access or for access through NQS batch

queues. In interactive partitions, users log on to the control processor, and then run parallel

applications on the partition's nodes. It is also possible to access other partitions by normal

Unix commands, e.g. rsh to another partition's control processor. Parallel applications are

represented by a single Unix process on the control processor. Thus time slicing on the

control processor translates to gang scheduling on the processor nodes. The multi-context-

switching needed to implement the gang scheduling is initiated by the partition's control

processor, which sends a broadcast interrupt to all the nodes via the control network. This

noti�es all the processing nodes of the impending switch, and puts the dedicated network

partition in \all-fall-down" mode. In this mode, a one-to-one mapping exists between the
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input ports and output ports of the router chips, so there is no contention

31

(Fig. 29). All

messages that are in transit are then routed to arbitrary nodes, and stored there as part

of the application state [356]. When the application is re-scheduled, the stored messages

are injected into the network again to complete their transit. This ensures that jobs do not

interfere with each other even if they are sharing the same partition.

Batch-mode partitions only allow the execution of one job at a time, with no time slicing.

Thus all the partition's resources | and especially all its memory| are dedicated to that job.

Batch execution is managed by NQS, with separate queues for jobs with di�erent resource

requirements and possibly also for di�erent user groups [323]. Queues can be associated with

a speci�c partition, or else they can execute jobs on the most suitable partition based on the

partition size and the job's requirements.

User feedback indicates that a minimal partition size of 32 nodes is too big. For example,

small installations with only 32 nodes cannot partition the machine at all. Installations

with 64 nodes can only create two equal partitions. This is signi�cant considering that

small installations are more common than large ones, and that a partition of 4 or 8 nodes

is adequate for program development. The reaction to gang scheduling is mixed. On the

one hand, users complain about lack of complete control over the machine, which prevents

precise performance measurements. On the other hand, they take interactive access to the

machine for granted, without realizing that this would not be the case if the machine did

not provide gang scheduling.

The distributed job manager (DJM)

The distributed job manager (DJM) was developed at the Minnesota Supercomputing Center

based on software from the University of California at Berkeley [404]. It has since been

incorporated in the CM-5 system software from Thinking Machines. DJM's functionality is

a superset of NQS, by supporting both interactive and batch jobs. Actually DJM does not

make this distinction, except for the fact that jobs can be attached to a terminal or detached.

When users submit jobs they must specify resource requirements, as they do with NQS. It

is also possible to dictate that a job run on a dedicated partition, i.e. with no time slicing.

Jobs can be submitted from the user's workstation, so it is no longer necessary to log onto

a control processor. DJM then �nds the best partition based on the number of jobs and on

memory availability. If there is not enough memory, the job is queued.

If a job exceeds its limits, it is not killed immediately. Rather, the system maintains

scores for both queued jobs and running jobs. The score for queued jobs increases with the

time it spends in the queue, while the score for a running job decreases when it exceeds its

limits. A running job is killed when a queued job has a higher score; the queued job is then

run in its place.

Systems with DJM do not preclude users from logging on to the control processors and

launching jobs directly. Such jobs are called \foreign" in DJM terminology. DJM monitors

31

The mapping is actually a permutation that can be set by the operating system.
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all the activity on the system, so it knows about foreign jobs. These jobs are allowed to

execute for a limited amount of time, so as to enable users to run short jobs without going

through the DJM queueing mechanism. However, if foreign jobs execute for too long, they

are killed by DJM.

7.2.5 The Kendall Square Research KSR1

The KSR1 provides a single address space model of computation [216]. Unlike traditional

shared-memory architectures, where data has a unique memory address and possibly some

cached replicas, the KSR1 uses an ALLCACHE design with caches but no memory to back

them. Data is moved from one cache to another according to usage, so that it will always

be close to where it is needed. The implementation is based on a hierarchy of caches with

directories that keep track of the location of data and its sharing patterns. The KSR1 is

scalable up to 1088 nodes (called \cells"), and uses custom-designed processors. Like the

CM-5, this machine is no longer being produced.

The allocation of processing power to a job can be done in either of two ways. One is

a direct request to allocate a number of cells. This can be combined with a directive to

execute a certain program on those cells, and then the cells are released when the program

terminates. If a program is not speci�ed, the cells are allocated to the user's login session,

and can be used to execute multiple programs one after the other.

The other approach is to use prede�ned processor sets, called \pset" [89]. Psets represent

a partitioning of the machine as de�ned by the system administrator. In principle, a pset can

include any set of nodes, but better performance is obtained if psets match the hierarchical

cache structure. Users can then request that a job be executed on a speci�c pset. Three

types of psets can be created. The �rst is an interactive pset. This is intended to provide

interactive response times, and is used for program development, editing, and the like. The

second is a dedicated pset, which is intended to provide the maximal speedup for a single

job. The third is a pset with two jobs that both �t into the local caches. This is intended

to provide good throughput.

The programmer view of parallelism is based on nested loops. The default is a static

partitioning of the iteration space into separate threads, but self-scheduling is also possible.

In any case, the number of threads on a pset can be larger than the number of cells. The

scheduling is done at two levels. First, there is a pset queue, which is used for load balancing.

This is accessed at a coarse granularity, e.g. every couple of seconds. The second level is a

local queue on each cell, used for �ne-grain switching among the threads mapped to it.

Feedback from user installations indicates that the pset approach is preferred over inde-

pendent allocation for each job.

7.3 Networks of Workstations

It is often observed that the idle cycles of workstations and personal computers in many large

institutions amount to huge computing capabilities. One study has found an average of 91%
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of the resources are thus wasted [329], and another that 60{70% are wasted even at peak usage

hours [29]. A number of systems have been designed to utilize this untapped power in order

to execute compute intensive parallel applications, including Condor [373, 473, 190, 472],

which is the base technology for the IBM LoadLeveler, Piranha [231, 100], the distributed

queueing system (DQS) from the University of Florida [169], the Utopia system [636], which

was commercialized under the name Load Sharing Facility (LSF), the Stealth scheduler [329],

Amber [193], and Hector [493].

The main challenge in these systems is to improve utilization without noticeable in-

terference with the work of the workstation owner. This leads to two requirements: the

identi�cation of idle workstations, and the ability to give them up immediately when the

owner returns

32

. Meeting these requirements is the main feature that distinguished the above

systems from other systems that allow users to obliviously spawn o� processes to multiple

hosts, such as PVM

33

[560, 229]. In technical terms, these requirements translate into mon-

itoring facilities and some way to cope with the changing availability of workstations. The

two main schemes that are used are process migration and using malleable jobs. Process

migration has the advantage of being transparent to users, at the price of a more complex

implementation. Using malleability is simpler, but the user is typically required to write

code that will handle the de-alloction of reclaimed workstations [100, 473].

Naturally, the priority given to the workstations' owners implies interference with the

performance of the parallel programs being run in the background [315, 359]. The perfor-

mance degradation becomes worse when more workstations are used and when the parallel

application is more �ne-grained, because then there is an increased probability that one of

the processes will be delayed, and that this delay will propagate to all the other processes.

A partial solution is to run only one parallel job at a time, so as to avoid interference among

the parallel jobs [31, 184, 183]. In addition, it is advisable to limit the degree of parallelism

of the parallel jobs to about half the cluster size [29].

A secondary issue that is usually ignored in the added load that the parallel jobs impose on

the communication network itself. It has been suggested that communication requirements

of applications be considered when scheduling them, and those that have large requirements

be delayed if the network is already loaded [311].

Finally, it should be noted that an alternative model is also possible: that the worksta-

tions constitute a processor pool, with no constraints imposed by ownership [562, p. 193].

This model is similar to a shared parallel machine, and simpli�es the issues of resource

allocation. It is used in the Amoeba system [418, 563].

32

These requirements can be relaxed to a certain degree by giving the owner higher priority for all the

resources (CPU, memory pages, bu�er cache frames), rather than exclusive use of the workstation. This

leads to the salvation of more resources [329, 31].

33

Recently, there has been work on adding load considerations to PVM too [102, 472, 440].
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8 Conclusions

Summary

As more users become interested in the use of parallel processing, there is increasing pressure

to multiprogram parallel machines. This can be done in two dimensions: temporal, as in

conventional time slicing, and spatial, by partitioning the machine and giving each user a

distinct partition. These two modes can also be combined, e.g. by gang scheduling within

partitions. A large variety of approaches has been implemented in di�erent systems. Those

that were reviewed in this paper are summarized in Table 7.

A key observation is that mechanisms for partitioning are largely orthogonal to mech-

anisms for time slicing. It is therefore possible to use either type by itself, or combine

mechanisms of both types. The most popular combinations are the following:

Partitioning: only space slicing is used. This approach is typically used in distributed

memory machines, which dominate the domain of large-scale machines. It is well

suited for batch processing, and can also be used for interactive work provided jobs

are short and enough PEs are generally available.

Global queue: all the PEs serve the same queue, which holds all the threads in the system.

This approach is common in small-scale UMA shared memory systems, such as those

with bus-connected processors.

Gang scheduling: gangs of threads (typically all the threads in an application) are sched-

uled simultaneously on distinct PEs. Time-slicing is used to share the PEs' resources,

using synchronized multi-context-switching. This can be done across the whole ma-

chine, or it can be combined with partitioning and done within the con�nes of a single

partition.

Two-level scheduling: a combination of partitioning to allocate PEs to each job, and time

slicing to run the job's threads on those PEs. The thread management is typically done

in user space.

The state of the art

Views of the state of the art in scheduling on multiprogrammed parallel machines depend

on who you ask. Especially troubling is the wide division between published academic work

and practice in the �eld.

Most research results from academia point to a strong belief in two-level scheduling with

dynamic partitioning. This scheme is repeatedly shown to provide better response times and

throughput than competing schemes, due to four main features:

� There is no loss of resources to fragmentation.
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system description section reference

Alewife form MIT local queues using hardware contexts and

switching

4.1 [3, 4]

Alfalfa load balancing by di�usion 4.1.2 [237]

Amoeba PEs allocated singly 3.5 [418,

563]

AMPS hierarchical structure for balanced mapping 4.1.1 [306]

APERM-2 hierarchical structure for balanced mapping 4.1.1 [269]

Chagori on K2 from

Zurich

gang scheduling across whole machine 5.3 [550]

CHoPP from Columbia variable partitioning by virtual hierarchy 3.3 [558]

Chrysalis (BBN

Butter
y)

independent PEs with local queues within

partitions

4.1 [352]

CM-2 from Thinking

Machines

partitioning into quadrants, possible gang

scheduling

3.2.1,

5.3

[582,

299]

CM-5 from Thinking

Machines

gang scheduling within partitions created

by buddy system

5.3,

7.2.4

[355]

Concentrix (Alliant

FX/8)

gang scheduling across whole machine 5.3 [567]

Convex C2, C4 hardware self scheduling 3.5 [578,

sect. 3.4]

Cosmic Cube local queues 4.1 [513]

Cray microtasking self scheduling from a global queue 4.2 [220]

Cray T3D partitions of power-of-two PEs 3.2 [307]

Cray T3E partitioninig, gang scheduling, and fair

share

5 [346]

Crystal partitioning by users 3.3 [151]

DASH global queue with locking 4.2 [357]

DHC design from

Jerusalem

gang scheduling with 
exible grouping

based on buddy system

5.4,

4.1.1

[197,

199]

DQT for RWC-1 gang scheduling with 
exible grouping

based on buddy system

5.4,

4.1.1

[273]

Dynix (Sequent Balance) global queue with locking 4.2 [570]

EMBOS (Elxsi) local queues 4.1 [498,

436]

EMMA2 local queues 4.1 [26]

Flagship local queues with hardware mapping

con�ned to partitions

4.1.1,

3.2.1

[561,

611]

Table 7: Summary of the surveyed systems.
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system description section reference

Fujitsu AP1000 single job at a time, local queues with

message-driven tasks

4.1 [275]

Fujitsu VPP500 
exible partitioning 3.2.2 [407,

592]

Goodyear MPP dedicated [50, 470]

Heidelberg Polyp distributed global queue with hardware

scheduling and 
exible partitioning

4.2,

4.1.1

[386]

Helios (transputers) local queues with hardware scheduling

within partitions

4.1 [451,

261]

HEP from Denelcor local queues using hardware contexts and

switching

4.1 [539,

297, 321]

Hydra on C.mmp at

CMU

global queue with locking 4.2 [621,

chap. 12]

IBM GF11 dedicated [54, 342]

IBM SP1, SP2 variable partitioning 3.2.2,

7.2.1

[283]

Illiac IV partitioning into quadrants 3.2.1 [45]

IRIX on SGI

multiprocessors

global queue and gang scheduling 4.2,

5.2

J-machine from MIT hardware supported message queues act as

local queues

4.1 [141,

140]

KSR1 system 
exible partitioning with interactive or

dedicated use

7.2.5 [89]

LLNL gang scheduler on

BBN/Cray

gang scheduling using matrix algorithm, for

interactive, batch, and benchmark jobs

5.4,

7.2.2

[241,

203]

Mach from CMU family scheduling: global queue with

locking, within 
exible partitions

4.2 [65, 64]

Mach on IBM RP3 family scheduling: global queue within


exible partitions; also local queues

4.3 [85]

MAXI on Makbilan

from Jerusalem

global queue to distribute work, then local

queues; experimental gang scheduling using

matrix algorithm

4.3,

5.4

[194,

527, 198]

Medusa on CM

�

at

CMU

gang scheduling using matrix algorithm 5.4 [438]

Meiko CS-2 
exible partitioning by administrator;

batch, independent time slicing, or gang

scheduling in partitions

7.2.1

MICROS on

MICRONET at SUNY

variable partitioning by virtual hierarchy 3.3 [595,

596]

Table 7: continued.
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system description section reference

MOOSE on hypercubes

at Caltech

local queues 4.1 [497]

MOSIX from Jerusalem load balancing by random pairing 4.1.2 [44, 42]

MuNet load balancing by di�usion 4.1.2 [254]

nCUBE partitioning with buddy system, local

queues

3.2.1 [258]

NETRA hierarchical structure for balanced mapping 4.1.1 [119]

NQS batch queueing on partitioned systems 7.1.1,

3.2.3

[323]

NX/2 (iPSC/2) partitioning into subcubes, local queues 3.2.1,

4.1

[460]

Orion (on M

3

) family scheduling with pools of processors 4.2 [90]

OSF/1 AD local Unix-like scheduling plus load

balancing

4.1,

4.1.2

[634]

Paragon from Intel hierarchical partitioning with optional gang

scheduling or space slicing

7.2.1 [288]

PASM from Purdue partitioned multistage network 3.2.1 [584]

PEACE on

SUPRENUM

local queues 4.1 [505,

506]

Plan 9 form AT&T PEs allocated singly 3.5 [462]

Process Control from

Stanford

dynamic partitioning which may change at

runtime to re
ect load

3.4 [581]

Psyche on BBN

Butter
y from Rochester

local queues, support for two-level

scheduling

4.1,

4.4.2

[510]

PUMA local queues 4.1 [613]

Redi
ow load balancing by gradient method 4.1.2 [305]

Scheduler activations

from Washington

support for two-level scheduling 4.4.2 [20]

SHARE for SP2 gang scheduling with 
exible grouping

based on buddy system

5.2,

5.4

[217]

SIMPLEX (nCUBE) local queues 4.1 [335]

SpoC PEs allocated singly 3.5 [420]

StarOS on Cm

�

at CMU local queues 4.1 [228,

chap. 6]

Symunix on NYU

Ultracomputer

global queue based on fetch-and-add 4.2 [180,

181]

Sylvan kernel coprocessor for local scheduling 4.1 [91]

Tera MTA local queues using hardware contexts and

switching

4.1,

7.2.3

[18, 96]

Table 7: continued.
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system description section reference

TRAC from Texas

Austin

partitioned multistage network 3.2.1 [83, 372,

chap. 7]

Trillium (FPS T-series

transputers)

local queues with hardware scheduling 4.1 [92]

Two-level scheduler from

Washington

dynamic partitioning which may change at

runtime to re
ect load

3.4 [633]

Victor from IBM

Research

variable partitioning by users 3.3 [523]

VORX on HPC variable partitioning by users 3.3 [303]

Warp systolic array dedicated [24]

Xylem on Cedar at

Illinois

gang scheduling on PE clusters 5.3 [187,

188]

Table 7: �nished.

� There is no overhead for context switching, except that for redistributing the PEs when

the load changes. The second level of scheduling within the application is assumed to

require less overhead.

� There is no waste of CPU cycles on busy waiting for synchronization, as threads can

be blocked inexpensively.

� The degree of parallelism provided to each job is automatically decreased under load

conditions, leading to better e�ciency. This is often hidden from application program-

mers by a user-level thread library.

However, dynamic partitioning has its limitations. A major drawback is that as load in-

creases, partitions become smaller and may not contain enough memory for the application's

dataset. Therefore the integration of dynamic partitioning with memorymanagement has to

be addressed. Another limitation is the restriction to programming environments that use

the workpile programming model, and have a runtime system that is closely integrated with

the system scheduler. Other programming models, such as the popular SPMD model, are

not supported. Even with a suitable environment, implementation considerations indicate

that two-level scheduling is mainly suitable for UMA shared-memory machines.

Indeed, two-level scheduling with dynamic partitioning is not practiced outside of the aca-

demic institutions that promote it. The large-scale parallel computing market is currently

dominated by distributed-memory machines, most of which support a message-passing pro-

gramming model. Programmers invest signi�cant e�ort in structuring their applications so

as to achieve high performance in this environment. The common wisdom is that perfor-

mance is improved by programming for locality, and reducing communication requirements.

In practice this implies distributing the dataset among the PEs, and grouping messages so
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as to amortize startup costs. This style of programming is explicitly based on the notion

that the programmer owns the machine, and controls the use of resources. Language and

compiler design also follow this principle. In particular, little work is being done on how to

adjust to changes in available resources, so as to accommodate competing jobs.

When partitioning is used as the only means to share a machine, each partition does

indeed behave much like a dedicated machine. Current programming practices are thus

supported, even if this comes at the expense of some fragmentation. The problem is that

as the number of users who want access to parallel machines grows, system administrators

dictate the use of smaller partitions, and at peak hours even these are not always obtain-

able. The users lose twice: they cannot obtain enough resources to run really big production

codes, and they also cannot get the continuous interactive access needed for program de-

velopment and testing. This state of a�airs is increasingly leading to the conclusion that

system administrators need better scheduling tools for resource management.

Obviously, there is no simple solution to the con
ict between users desire for a dedicated

system and system administrators need to manage limited resources. A promising compro-

mise is to use gang scheduling. By time slicing whole jobs, gang scheduling provides the

illusion of a dedicated (albeit slower) machine, just like time slicing on uniprocessors. This

can be used in a number of ways. In large installations, the parallel machine is typically

partitioned into two or more partitions. Most of the machine is then used in batch mode, to

execute long production runs. At the same time, a small part of the machine is gang sched-

uled and provides an interactive environment for program development and the execution

of short jobs. The mechanisms used for gang scheduling can also be used to checkpoint and

restart batch jobs, allowing time-slicing of the batch partitions between jobs that take weeks

or months and jobs that merely take a few hours. In small installations, gang scheduling

can be used to switch between the interactive workload and the batch workload. Thus batch

jobs are automatically run on the whole machine at o� hours, but interactive jobs can always

reclaim it. While gang scheduling incurs some overhead, it can actually increase the overall

utilization over partitioning, because of reduced fragmentation. Most vendors of parallel

machines either provide gang scheduling capabilities already, or have expressed an interest

in doing so.

Research directions

Parallel operating systems have been widely neglected as a �eld of research, and imple-

mentations have often been based on adaptations of uniprocessor or distributed systems.

There is room for signi�cant improvements. Regarding the speci�c area of scheduling in

multiprogrammed systems, an obvious goal is to reconcile the di�erences between academia

and practice. To do so, it is instructive to ferret out the roots of the gap between the two.

It seems that the problem lies in the milieu in which the work is done, and the resulting

requirements.

Academic work is done in an environment that is forgiving on one hand while being

severe on the other. It allows various idealistic assumptions to be made, even if they do
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not match contemporary real-world constraints, as long as they are explicitly documented.

But it requires results to be demonstrated unequivocally within the setting created by these

assumptions, using well de�ned and quanti�able metrics. This sometimes leads to an e�ect

of looking for a lost coin under the street light, where known techniques are applied to

analyzable systems, with certain disregard to additional requirements that would make the

system too hard to handle. The results are then postulated to hold in general, whereas in

reality the additional requirements undermine the whole basis for the analysis.

Rather than giving speci�c examples of work that might su�er from such circumstances,

let us attempt to identify those aspects of scheduling in multiprogrammed parallel systems

that would most bene�t from additional research. One such issue is that of requirements.

Making intelligent scheduling decisions depends on the availability of information regarding

the workload. So far systems simply had to make do without such information, or else

users had to supply it in the form of bounds on resource use. There are interesting research

opportunities in the area of automatic classi�cation of parallel jobs, and assessment of their

resource requirements [236, 164]. This should probably involve some cooperation between

the compiler and the runtime system. In addition, there is a dire need for information about

statistical properties of parallel workloads in general, e.g. the distribution of partition sizes

that are requested in a general-purpose multiprogrammed system. Such parameters can be

found by analyzing traces from existing systems [195, 201, 617, 276, 606, 200]. Of course, care

should be taken not to interpret the results too broadly, as the workload on a given system

necessarily re
ects the properties of the system, and cannot automatically be assumed to

apply to other systems that provide other services.

A long term research goal is to arrive at a holistic view of parallel operating systems, that

integrates all the system services. Scheduling should not be addressed as an independent

issue; rather, the interactions between scheduling, parallel I/O, and memory management

should be acknowledged. For example, collective I/O operations can be integrated with gang

scheduling to allow overlap between the computation of one job and the I/O of another.

Memory availability can be used to di�erentiate between short-term scheduling and long-

term scheduling, where whole jobs are swapped out to make space for others. These ideas

are standard in uniprocessor systems, but are just beginning to migrate to parallel ones

[16]. System integration also includes the cooperation between operating system, runtime

system, and compiler. It is made di�cult by the requirement to maintain compatibility with

previous systems, some of which were designed under di�erent assumptions. Also, there

is the question of standardization in the interest of portability and interoperability among

system components from di�erent vendors [206].

Finally, the human aspect of scheduling has been completely absent so far. User satisfac-

tion is extremely important, because how the provided service is perceived may have more

impact on what machines are bought and used than more objective measures of performance.

Moreover, user attitudes should be used to guide scheduling policies. For example, it has

been shown that allocating equal resources to di�erent jobs results in overall low mean re-

sponse times, that are relatively insensitive to various workload parameters. However, this

assumes that all jobs are equally important. In a real system, users typically have opinions
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about what levels of service are (un)acceptable. These opinions are often correlated with re-

source requirements: interactive jobs with low requirements call for prompt service, whereas

extremely large jobs can tolerate some delays.

Concluding remarks

Multiprogramming in parallel systems is far from being a closed deal. While there is growing

recognition of the need for multiprogramming, there are still those who claim that parallel

supercomputers are too expensive to be used to support users directly, and they should

be dedicated to the execution of supercomputer class jobs. As for the implementation of

multiprogramming, much progress has been made in recent years, but there is still much to

be done. An important observation is that it is hard to add multiprogramming to a system

that was not designed with such use in mind. Multiprogramming support must be built into

the system design from the start, because it has considerable e�ect on many di�erent system

attributes. In some cases, multiprogramming can bene�t greatly from specialized hardware

support. As more systems are designed with explicit regard to multiprogramming, we can

expect performance to improve and objections to dwindle.
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A Terminology

The following list explains the terminology as it is used in this paper.

Adaptive Partitioning | a partitioning scheme that sets the partition size allocated to

new jobs according to the load at the time of their arrival.

A�nity Scheduling | re-scheduling a thread on the same PE it used before, based on

the assumption that some of its data might still be in the cache on that PE. Relevant

for systems that do not map threads to PEs.

Blocking | when a thread relinquishes its PE because it must wait for some synchroniza-

tion event (e.g. the arrival of a message).

Chore | the unit of parallel work in an application, especially in the case where work is

represented by an unordered workpile. Chores are typically executed to completion,

without preemption. See also task and thread.
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Coscheduling | A variant of gang scheduling that does not guarantee that all the threads

will always run simultaneously. This is based on the assumption that running a fraction

of the threads is better than nothing.

Dispatching | selecting the next thread to run from those that are ready and memory-

resident. Relevant to time slicing systems.

Dynamic Partitioning | a partitioning scheme that changes the partition size allocated

to jobs at runtime, to re
ect changes in job requirements and system load.

Evolving Job | one that has di�erent requirements (re number of PEs) in di�erent phases

of the computation.

Family Scheduling | A scheduling scheme that combines these features:

1. Threads are grouped into families, typically all the threads in the job.

2. Time slicing is used, with each family receiving a set of PEs for its exclusive use

each time.

3. Each family has more threads than the number of PEs it gets to run on, so

whenever it is scheduled there is an additional level of internal time slicing among

the threads of the family.

Fixed Partitioning | the use of prede�ned partitions oblivious to job requirements and

system load.

Flexible Partitioning | when any subset of PEs can be grouped into a partition. For

example, in hypercubes the partitions must form subcubes, so the partitioning is not


exible.

Fragmentation | the situation where some PEs are left idle because of the partitioning

mechanism. Internal fragmentation occurs when a partition contains more PEs

than the application requires (e.g. the next power of two). External fragmentation

occurs when a whole partition is left idle because the next queued job requires a larger

partition.

Gang Scheduling | a scheduling scheme that combines these three features:

1. Threads are grouped into gangs.

2. All the threads in a gang are always scheduled to execute simultaneously on

distinct PEs, using a one-to-one mapping.

3. Time slicing is used, with all the threads in a gang being preempted and resched-

uled at the same time.

Group Scheduling | a collective name for schemes that guarantee that a group of threads

run simultaneously. Includes static partitioning and gang scheduling.
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Global Queue | a ready queue shared by more than one PE. Implies that threads are not

mapped to PEs.

Hando� | when one thread yields the PE in favor of a speci�ed other thread.

Job | the sum of executing entities that comprise a single application, as known to the

operating system. This typically means a set of threads running on di�erent PEs.

Load Balancing | the activity of migrating threads from one PE to another so that the

loads on the di�erent PEs will be equal. The term is also used to describe the goal

of certain mapping schemes, even if migration is not used later to adjust to changing

conditions. In either case, this is only relevant for systems that map threads to PEs.

Load Sharing | a property of parallel systems whereby no PE will be idle if there are any

ready threads in the system. This might apply to systems that keep ready threads in

a global queue and do not map them to PEs, or to systems that map threads to PEs

and migrate one thread at a time from loaded PEs to idle ones, rather than attempting

to balance the loads.

Local Queue | a ready queue containing threads mapped to a speci�c PE.

Malleable Job | one that can adjust to changes in the allocation of PEs at runtime.

Mapping | the association of threads with PEs. Mapping at runtime should not be

confused with \the mapping problem", which is part of program development, and

involves the decision of which PE will run which task in the program. This is only

relevant if the PEs are dedicated, their number is known in advance, and the program

is represented as a task graph.

Migration | relocating threads from one PE to another in the interest of load balancing

or reducing fragmentation, in systems where threads are mapped to PEs.

Moldable Job | one that allows the number of PEs used to be set when it is launched,

but then the number must stay �xed.

Multiprocessing | the use of multiple PEs for the same job. Synonymous to parallel

processing.

Multiprogramming | the concurrent execution of multiple jobs on the machine. In

parallel systems, this can be achieved by time slicing, space slicing, or a combination

of both.

Multitasking | time slicing on a single PE. The threads mapped to this PE can belong

to the same job or to di�erent jobs.
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Multi-Context-Switch | the operation of switching from the execution of one job to

another, in a gang scheduling system.

Partitioning | a synonym for space slicing. See also �xed partitioning, variable

partitioning, adaptive partitioning, and dynamic partitioning.

PE (Processing Element) | generic name for a node in a parallel machine. This is the

unit for allocating processing power. In multicomputers, a PE typically includes a

CPU and local memory. In a multiprocessor, it might be just a CPU, typically with a

cache.

Preemption | the de-scheduling of a thread (or job) in order to give its PE(s) to another.

This is done without the tread's concent, as opposed to blocking.

Priority Queue | a queue such that new items can be inserted anywhere in it, according

to their priority relative to items already in the queue. Often implemented as a set of

queues for the di�erent priorities.

Process | an autonomous execution unit. In uniprocessors, a process is a job in execution.

This includes a thread of control and its resources, or context. In some parallel systems,

especially those based on Unix, \process" may be used as a synonym for thread, in the

sense that multiple processes are written such that they communicate and cooperate.

However, this is unknown to the operating system.

Processor Allocation | allocating PEs for the exclusive use of a certain job.

Ready Queue | a queue of threads that are ready to run.

Rigid Job | one that requires a prede�ned number of PEs in order to run.

Runtime System | part of a programming system that is linked with applications, and

supports the abstractions of the programming system at runtime.

Single-Level Scheduling | scheduling schemes that combine the allocation of processing

power with the decision of which thread will use it.

Space Sharing | a synonym for Space slicing. We prefer \space slicing", because \space

sharing" sounds as if the same space is being shared, whereas actually the machine is

being partitioned into disjoint spatial pieces.

Space Slicing | sharing of a parallel machine by partitioning it and allocating di�erent

PEs to di�erent jobs.

Static Partitioning | a collective name for partitioning schemes where partitions do not

change at runtime: �xed, variable, and adaptive partitioning.
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Task | the unit of parallelism in an application, especially when the application is rep-

resented as a graph of tasks with interdependencies. Tasks are typically executed to

completion, without preemption. See also thread and chore. In the context of the

Mach system, task refers to an abstraction used for resource allocation, e.g. an address

space.

Task Graph | the representation of a parallel program as a directed graph, where nodes

are basic blocks of code (tasks), and arcs represent data and control dependencies

among them.

Thread | the unit of parallelism in an application, especially in applications based on

control parallelism. In this context, \thread" is short for \thread of control" or \light-

weight process". The state associated with a thread includes its program counter, CPU

registers, and call stack. Depending on the system, threads may execute to completion

or else they may be preempted. See also task and chore.

Time Sharing | a synonym for time slicing.

Time Slicing | sharing of a PE or a set of PEs by context switching among a number of

jobs.

Two-Level Scheduling | a collective name for schemes that decouple the allocation of

PEs from the decision of what parts of the program will be executed on each one.

The �rst level, processor allocation, is done by the operating system at a low rate

determined by the job submission rate. The second level, that of scheduling program

parts on these PEs, is done by the language runtime system or the application itself.

Variable Partitioning | a 
exible partitioning scheme that sets the partition size allo-

cated to new jobs according to their requests.

Workpile | an unordered collection of independent chores to be computed. The lack of a

speci�ed order distinguishes a workpile from a queue, which is ordered.

Yielding | when a thread voluntarily relinquishes the PE it is running on.

B The Thread Model

The term \thread model" encompasses the characteristics of threads as perceived by the

programmer. This includes the interfaces used to manipulate threads, and thus to express

parallelism. It also includes the performance implications of using threads in di�erent ways.

The scheduling mechanism used in a system is often related to the thread model, as it

can have a great impact on performance. This appendix examines the various aspects of

the thread model and their relationship to scheduling. The relevant aspects of the thread

model are the abstraction provided by threads, including dynamic thread creation, thread
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weight, the distinction between user threads and system threads, and synchronization among

threads.

Thread abstraction

Di�erent parallel programming systems present very di�erent abstractions to the program-

mer. One of the major distinctions separates those that use control parallelism from those

that use data parallelism. With control parallelism, the programmer speci�es the exact se-

quence of instructions performed by each thread, sometimes including constructs that spawn

new threads in the process [444]. With data parallelism there is a single logical thread of

control, and the parallelism is implied by the fact that the data structures are distributed

across multiple PEs [268]. It is then the compiler's job to create the actual sequences of

instructions (threads) that will execute on each PE.

A third approach takes the view that the abstract computation is the driving force,

not the control structure or the data distribution. For example, the computation can be

represented by a directed graph, where nodes are basic computations (usually called \tasks"

in this context) and arcs denote dependencies. For example, such a graph may be built when

unfolding the interdependent iterations of a doacross loop. Alternatively, the computation

can be viewed as an uncoordinated workpile of chores to be done, e.g. the independent

iterations of a doall loop, or evaluations injected into tuple space. The actual execution can

be carried out in either of two ways. One is by a set of \worker" threads, one on each PE

[597, 17, 178]. Creating the worker threads and mapping the tasks or chores to them is then

the responsibility of the runtime system. The other is to de�ne a set of virtual processors

at compile time, and map the units of work onto them statically [434]. At runtime, each of

these virtual processors becomes a thread that executes on a PE.

Dynamic thread creation

It is simple to deal with programs written in the SPMD style, with all threads created at

the outset and no changes thereafter. But many applications are structured as a sequence

of phases with di�erent degrees of parallelism. This translates into the use of a changing

number of threads. It could be taken to imply that threads be created and destroyed on

the 
y. On the other hand, if thread creation is expensive, an implementation can choose to

retain threads from one parallel phase to the next, even if they are not being used [444].

An important aspect of dynamic thread creation is that it is a symptom of a deeper

change: a change in resource requirements. It is well known that load balancing improves

performance when faced with a dynamically changing workload [483, 175]. This implies

that, if PEs are allocated to jobs, the allocation should change in concert with changes in

the number of threads. This is exactly what dynamic partitioning does. On the other hand it

is possible to avoid the re-partitioning problem by allocating processing power to individual

threads in the �rst place, rather than to jobs. This is done in systems that schedule threads

independently.
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Dynamic thread creation is more problematic when some guarantees are made about

their execution, e.g. in gang scheduling systems that schedule all the threads simultaneously.

In this context, it might be impossible to add threads because there is not enough room for

them, and deleting threads might leave PEs idle. Therefore it is typically not possible to

change the size of a gang after it was created. However, it is possible to create new gangs,

that will not necessarily execute simultaneously with the previous ones.

Thread weight

The issue of thread weight is perhaps the most widely debated. The options span con-

ventional heavy-weight Unix processes, implementing light-weight threads in the operating

system kernel, or implementing them in a user-space thread package.

Parallel versions of Unix have been quite popular, due to the popularity and availability

of Unix itself (and especially the availability of source code). In these systems the unit

of parallel execution is typically the Unix process, complete with a separate address space,

signal-handling facilities, open �les, etc. Early examples include multiprocessor Unix systems

[37], Symunix on the NYU Ultracomputer [182], and Dynix on the Sequent Balance [570].

With the advent of parallel machines based on workstation technology in recent years, this

approach has received a new push. For example, the Meiko CS-2, Intel Paragon, and IBM

SP2 all run a full Unix system on each node.

The problem with Unix processes is that the overhead in creating and destroying them is

signi�cant. Therefore they cannot be used as the underlying technology for dynamic thread

creation. In the Mach system, the process abstraction was therefore divided into two parts:

tasks

34

, which represent resource allocation, such as an address space and communication

capabilities, and threads, which represent execution within the context of a task [482, 568,

494]. Each thread belongs to a single task, but a task can have multiple threads that all

share its resources; the Unix process is equivalent to a task with a single thread. As threads

include less state, their manipulation is less expensive than that of a traditional Unix process.

The forking of new tasks is also optimized, by using a copy-on-write mechanism to duplicate

the address space.

Threads are not unique to Mach. The same abstractions are available in the OSF/1

operating system, which is based on Mach [437, 634]. A similar notion of threads exists in

Topaz [569], in PEACE [505, 506], in Panda [61], and in the Portable Common Runtime

interface [612]. Variable-weight threads, where some of the resources are allocated per-thread

rather then being shared, have also been proposed [27]. This is used in the plan 9 system

from AT&T Bell Labs. Finally, threads have been included in the IEEE POSIX standard

and implemented in the DCE framework from OSF.

Despite the relatively light weight of threads, their manipulation (including scheduling)

still requires a trap to the operating system kernel. This in itself is a costly operation,

because the kernel has to protect itself from potentially malicious programs, even if it is just

34

Note that \task" has a speci�c technical meaning in the context of Mach, which is totally di�erent from

other uses, such as to describe the nodes of a task graph.
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switching two threads in the same address space [20]. In addition, even switching light-weight

threads requires the CPU's register contents to be stored and restored. This too is costly on

modern RISC processors with large register �les [22]. Therefore it has been suggested that

all thread manipulation should be done in user space, using two-level scheduling [20]. An

alternative method for reducing the cost of thread scheduling is to use continuations where

possible [166, 152]. With continuations, a blocking thread speci�es the context in which it

should be resumed, rather than requiring the current context to be stored.

User threads vs. kernel threads

From a programmer's point of view, threads refer to an abstraction provided by the program-

ming environment, not to any speci�c entity at the operating system level. The mapping be-

tween the two depends on the language runtime system. With one-to-one mapping, the user

is essentially using the threads supplied by the operating system directly (kernel threads).

This has the advantage that all the kernel's thread-manipulation facilities are available, in-

cluding suspending, resuming, priority control, and use of synchronization mechanisms. It

has the disadvantage that all these services require a trap into supervisor mode, and are

therefore relatively costly.

Alternatively, the language runtime system can multiplex multiple language-level threads

onto a smaller number of processes or kernel threads. This is called user threads, because

all thread manipulation occurs in user space. It is the basis for two-level scheduling: the

underlying kernel threads are either each mapped onto a separate PE, or they are scheduled

preemptively by the operating system. In turn, these threads | sometimes referred to as

\virtual PEs" | execute the user threads. Examples of thread packages based on this

approach include Cthreads [130], Presto [59, 192], FastThreads [21, 20], WorkCrews [597],

Chant [252], Distributed Filaments [218], the Portable Common Runtime [612], the DIA

thread library [105], some implementations of Concurrent C [124, 224], and the XERO

system [286]. It should be noted that this list is by no means complete; thread packages are

not considered to be great innovations, so they tend not to be published in the literature.

User threads are more 
exible than kernel threads, because their functionality depends

on code at the user level. In fact, multiple 
avors of threads may be supported concurrently

on the same system [509]. The overhead of various operations, including scheduling, is much

lower than for kernel threads. The main drawback of user threads is that they are unknown

to the kernel. For example, a user thread might perform an I/O operation. As far as the

operating system is concerned, it is the underlying kernel thread that performed the I/O,

so that thread is blocked. If only that kernel thread was executing on its PE, that PE

remains idle until the I/O operation completes. This reduces the parallelism in the program

inappropriately, because there might be other user threads that are ready to run. It would

be better if only the user thread were blocked, and the kernel thread was left free to execute

other user threads.

Some alternatives to the conventional thread model have been proposed recently to cope

with this problem. These include scheduler activations [20], �rst-class threads [390], and
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cooperative threads [286]. The unifying theme of these proposals is the use of callbacks,

signals, or software interrupts to notify the user-level scheduler of a change in its state, e.g.

that the current thread has been blocked. This information is then used to reschedule in

user space. Additional details are given in Section 4.4.2.

Finally, the notions of virtualization and optimal simulation are related to the use of

threads [593, 393, 208]. The idea is that if a job's degree of parallelism is much higher than

the physical parallelism in the system, so that each PE executes multiple threads, it can

switch among these threads and thus hide various latencies and overheads. This is a special

case of hardware support for user-level threads. It was used in the design of the HEP and

Tera systems [540, 297, 321, 18, 15].

Synchronization among threads

Synchronization among threads can have an explicit e�ect on scheduling, e.g. when a thread

blocks to wait for another thread to release a lock. But there might also be an implicit

requirement for simultaneous execution, e.g. through gang scheduling. For example, users

may expect that threads that are spawned together actually execute in parallel, and therefore

busy waiting can be used to synchronize them. If gang scheduling is not used, this can have

grave performance implications [198, 631]. Moreover, if the scheduling is not preemptive at

all, it could lead to deadlock [84].

A related issue is the granularity of the interactions. In general, granularity refers to

amount of computation performed between successive interactions [336]. Thus in �ne-grain

interactions, interactions (such as synchronization or transfer of data) are numerous and

frequent, whereas coarse-grain interactions are faraway. Monitoring a variety of numerical

applications has shown that granularities can be as low as a hew hundred or a thousand

instructions [277, 136].
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