Self-Tuning Systems

Dror G. Feitelson Michael Naaman
Institute of Computer Science
The Hebrew University of Jerusalem
91904 Jerusalem, Israel

{feit,mnaaman } Qcs.huji.ac.il

Abstract

Modern operating systems are highly parameterized, allowing system administra-
tors to tune them in order to achieve optimal performance for the local workload.
However, this is a difficult and time consuming process. We propose a mechanism to
automate this process, by running simulations of system performance for various pa-
rameter values instead of the system’s idle loop. The simulations are driven by log files
containing information about the local workload, and genetic algorithms are used to
search for the optimal parameter values. We evaluated this idea by running such sim-
ulations off-line. A case study involving batch scheduling on an iPSC hypercube found
parameter values that reduced fragmentation and salvaged a quarter of the computing
cycles that were lost when using the default values.

1 Introduction

Modern operating systems are highly parameterized, meaning that the algorithms and poli-
cies used are not completely defined. Instead, the policies are controlled by a set of parame-
ters that can be modified by the system administrator in order to tune system performance.
Perhaps the best know examples come from file systems, in which various features such as
the block size and the way in which disk blocks are allocated can be modified, albeit within
the general framework dictated by the system design [11].

Regrettably, the process of tuning the system is typically ad-hoc, possibly with some
vague guidelines, but nearly always with no direct way to measure the effect of changes
to the parameter values. Thus system administrators are forced to use a trial-and-error
approach as they seek parameter values that will optimize system performance for their
local workload. We suggest a mechanism to automate this process.

Our approach is based on the observation that systems typically make detailed records
of various aspects of the workload. For example, Unix systems maintain a log of all user
sessions and of all processes executed, including detailed resource usage information. Web

servers can be configured to maintain a log of all the pages that they serve. These log files
represent knowledge about the local workload. Our methodology is to use this knowledge
to drive simulations of system behavior with different parameter values, and measure the
resulting performance. Genetic algorithms are used to create new parameter combinations
and to conduct a systematic search for optimal parameter values. The simulations are run
in place of the system’s idle loop, so as not to cause any overhead.

The concept of self-tuning is explained in greater detail in Section 3, and evaluated using a
specific case study in Section 4. But first we provide some background on genetic algorithms
and their use in optimization.

2 Genetic Algorithms

Genetic algorithms, as their name suggests, are based on a biological analogy. In fact, it
is now common to view the evolution of sexual reproduction — and the genetic mixing
that comes with it — mainly as a mechanism for sampling and searching the vast space of
possible genomic configurations [7]. In computer science, “genetic algorithms” refers to an
optimization procedure that mimics this biological process. The name is actually a bit of a
misnomer, as it refers to a framework more than to a specific algorithm.

In essence, genetic algorithms involve iterative searching in a large configuration space.
In each iteration, several potential configurations from different parts of the space are eval-
uated. The best ones are then combined with each other in random ways, and used as the
starting points for the next iteration. The search terminates when additional iterations do
not produce additional improvements, or after a predefined number of iterations.

The biological analogy stems from the theory of evolution and the principle of survival of
the fittest. Each iteration is called a generation. Fach configuration is called an individual,
and together all the configurations being considered in a certain generation are the population.
The configurations are represented by chromosomes — essentially a list of the parameter
values that define the configuration in question.

The evaluation of the different configurations is outside the scope of the optimization
procedure — it is determined by the goals of the optimization. But the result of the evalua-
tion is translated into a single value that reflects the quality of each configuration. In genetic
algorithm terms, this quality index is called the fitness of the individual.

The key to the operation of genetic algorithms lies in how the population is changed from
one generation to the next. First, the members of the population are ranked according to
their fitness. Next, they are mated with each other, and produce offspring (this is the reason
for the name “genetic algorithms”). The probability of mating is proportional to the fitness;
individuals with a higher fitness mate more often, and produce more offspring, thus passing
their high-quality genes (configuration parameters) to the next generation.

When two individuals are mated, the cross-over operator may be applied. This operator
chooses a random point in the chromosome, and creates two new chromosomes based on the
two parents: one gets the first part from one parent and the second from the other parent,

This
section
should
be a
sidebar

mating mutation

original l l .
chromosomes | | \
random location
\ random cross-over
point

; l I |
resulting m
chromosomes | []

Figure 1: The genetic algorithm operations on chromosomes.

and the other gets the opposite (Fig. 1). Thus parameter combinations that lead to higher
performance are mixed in various ways, potentially leading to new combinations with even
better performance. If cross-over is not applied, the two parent chromosomes are simply
inserted into the next generation without change; as they were selected according to their
fitness, this means that the fittest individuals persevere.

In addition to cross over, mutations may be inserted into chromosomes, in order to create
parameter values that were not present in the original population. This is done by changing
a single bit at random (Fig. 1).

Many variants on this basic scheme are possible. For example, one must decide on the
following issues:

e How are configurations represented in chromosomes? Specifically, what alphabet of
symbols is used?

o When a new generation is created, does one take only the offspring, or rather the best
individuals out of the joint pool of parents and offspring?

o What should the size of each generation be?
e How does one normalize the fitness values and turn them into mating probabilities?
e What are the probabilities of cross-over and mutations?

Significant research has been conducted on these and other issues, and on how they affect
the convergence properties of the optimization procedure [6].

3 Self-Tuning Using Genetic Algorithms

When designing operating system algorithms and policies, many micro-decisions have to be
made: the size of a table, the threshold used to decide when to activate a certain procedure,
the order in which a data structure is scanned, and so on. The problem is that these decisions
may have unknown consequences in terms of performance. However, exhaustive research of

all the alternatives is impossible, both because it is too much work, and because the results
necessarily depend on the local workload at each installation. Not only is such data not
available when the system is being designed, it also differs among installations.

An elegant way out is to parameterize the algorithm or policy in question, rather than
hard-coding a specific choice. All the parameters then have default values selected by the
designers, but they can be changed by each installation’s system administrators. For example,
the table size may be decided by the system administrator as part of the system configuration.
The threshold value may be set by a special system call, executed by an operator’s user
interface.

While this approach shifts the burden from the system designers to its operators, it does
not always solve the problem. True, the operators should have more knowledge about the
local conditions and workload, and should be able to use this knowledge in order to fine-
tune the system. But the operators may lack detailed knowledge about the inner workings
of the system, and thus not appreciate the finer implications of setting various parameter
values. Also, system administrators are notoriously overworked and busy solving various
crisis situations, leaving little if any time for elective chores such as tuning.

The alternative that we propose is self-tuning systems. In this approach, the system
designers create the framework that will carry out the optimizations and tuning. However,
the execution of this framework is delayed until the system is deployed in the field, and can
measure its specific workload. Technically, the framework simply consists of a systematic
search of the parameter space.

Given that the search space is very large (many parameters that can have many different
values) and unknown (is there one global optimum? are there many similar maxima? do all
parameters have the same impact on performance?), an efficient search procedure is required.
We chose to use genetic algorithms as our optimization procedure. The rest of this section
explains the mapping of the system tuning problem into genetic algorithm structures.

The easy part is the representation of a set of parameter values as a chromosome. This
can be done by simply concatenating the binary representation of the parameter values.
Crossing over will then take one set of values from one parent, and the rest from the other.
It is also possible to allow the binary representation of a single parameter to be broken in the
middle, thus creating two new values. Likewise, mutations can create new values by flipping
a single bit.

The harder part is evaluating the fitness of these chromosomes. First, on must define
an appropriate objective function. This objective function reflects the performance metric
that one wishes to optimize, such as utilization or response time. Indeed, it is possible to
construct a system that can optimize any of a set of metrics, and leave the choice of metric
as the only parameter that has to be set by the local system administrator.

The evaluation of the chosen function for a certain set of parameters is done by simulating
the behavior of the system based on a record of the local workload. This implements a
sampling of the mapping P x W + (), where P is the set of possible parameter value
combinations, W is the set of possible local workloads, and () is the set of possible outcomes
in terms of the objective function. Thus we are able to rank the different combinations of

4

parameter values as they relate to the local workload, and quantify their quality in terms of
the chosen performance metric. This quantification is the fitness value.

Doing the simulation correctly is perhaps the most challenging aspect of the whole pro-
cedure. Operating systems are complex things, and a detailed simulation may be needed,
involving high overhead and extensive logs. Luckily, this need not always be the case: some
aspects of the operating system can be evaluated in isolation, with little information, such as
the batch scheduling algorithm used in our case study. But there are harder cases. Consider
the optimization of the scheduling parameters that govern the priority boost given to pro-
cesses that complete an 1/0O operation. Simulating this requires detailed information about
individual CPU bursts and 1/0O operations, which is not maintained normally. A possible
solution is to use sampling and collect the required information only for a short duration
rather than all day long.

Given the definition of chromosomes and the procedure to evaluate fitness, the genetic
algorithm machinery can be put into motion. Starting with the default system parameter
values and some other randomly chosen sets of parameter values, the process of iteratively
evaluating these sets using simulation and then combining the best-performing sets together
will lead to the generation of new and better combinations.

A nice feature of this design is that new and improved parameter values can be used
immediately as they are found — there is no need to wait for a separate optimization
procedure to complete. Moreover, by continuously using this procedure with the latest
system logs, the parameter values will track changes in the workload as they occur. All
this can be achieved essentially at no cost, by running the optimization procedure in the
background in place of the idle loop. Thus the system devotes cycles to optimization only
if there are no user applications that can use them. In particular, idle time at night can be
used to optimize a system that is heavily utilized by day.

4 Case Study

The iPSC/860 hypercube has a well defined, non-trivial, and highly parameterized batch
scheduling algorithm [9]. In addition, a trace of a production workload on such a system
is available [5]. This therefore makes a good case study, even if batch scheduling and the
iPSC/860 are not of much interest in themselves.

4.1 The iPSC/860 System

The iPSC/860 is a parallel supercomputer produced by Intel in the late 80s. The architecture
is based on nodes containing an Intel 1860 RISC processor and some local memory, which
are connected to each other in a hypercube topology. The topology implies that the number
of nodes in the system has to be a power of two. Our workload data comes from a 128-node
machine, which is a hypercube of dimension 7. Multiprogramming is possible by running

time number of nodes
limat 16 32 64 128
20 minutes | ql6s q32s g64s ql28s
1 hour qlém ¢32m g64dm ql128m
3 hours qlél 321 641 ql128]

Table 1: Batch queues used on the 128-node iPSC/860 at NASA Ames.

jobs on subcubes, i.e. on embedded hypercubes of a lower degree. The operating system
imposes a limit of 9 on the degree of multiprogramming.

The workload trace used in this study comes from the iPSC/860 installed at NASA Ames,
and covers the fourth quarter of 1993 [5]. At the time, this machine was the workhorse for
computations at the Numerical Aerospace Simulation facility. The log includes a total of
1044 batch jobs. The batch queues that were in effect at the time are summarized in Table
1. The use of these queues is explained below.

4.2 The Batch Scheduling Algorithm and its Parameters

The iPSC scheduling algorithm works on two types of jobs — interactive and batch. Inter-
active jobs require immediate running, while batch jobs are submitted to some queue and
await their turn. The system divides the day into two: the prime shift during the day and
the non-prime shift at night. During prime time, some of the nodes are allocated to the
batch partition, and the rest are reserved for interactive work. During non-prime time, all
nodes are in the batch partition. Batch jobs may only run on nodes from the batch partition,
while interactive jobs can run on any nodes that are available. Jobs run to completion (or
until a time limit is exceeded); preemption is not used.

We chose to focus only on the scheduling of batch jobs, as this was sufficient in order
to demonstrate the workings of self-tuning. Thus we only handle the optimization of those
parameter values that are unique to batch scheduling. We do not optimize other parameters,
such as the one that controls the size of the interactive partition during the prime shift.
the following description is based on the Intel MACS (Multiuser Accounting, Control, and
Scheduling) manual [9].

The batch scheduling algorithm is based on two main concepts. The first is prioritizing
the jobs to decide which job will be scheduled next. The second is the use of reservations in
order to accumulate processors for large jobs, which is called leveling.

The scheduler has a set of queues, to which jobs are submitted. Each queue is charac-
terized by several attributes. For example, queue attributes include limits on the number
of requested nodes and on the requested run time (the actual values in effect in the traced
system are given in Table 1). Another attribute is whether the queue is active only during
non-prime time, or also during prime time. The most important attribute for our work is
the queue’s priority, which has a direct impact on the priority of jobs submitted to it. In

processors

PL P2 P3 P4 P5 P6 P7 P8

jobl

job3

time

job2

job4

time of leveling job5
—_— >

decision

job6

time leveled job
—_— =
will start

job8 (queued)

Figure 2: Leveling is done if the induced idleness is smaller than ALHOLE_SIZE +
B_HOLE_SIZFE x reqnodes; otherwise it is considered too expensive. Gray shading rep-
resents idle nodes.

addition, there is a global system parameter called A_-TIME PRI, which determines the weight
of waiting time in the queue. The formula for computing a job’s priority is:

pri = q_pri + wait time x A TIMFE_PRI

where g_pri is the basic priority of the queue, and wait_time is the time the job is already
waiting on the queue. This formula is used to sort the jobs, and decide which job to run
next.

If the next job to run requires more nodes then there are free, the scheduler considers
leveling it. Leveling means not scheduling any more jobs until there are enough nodes to
run the waiting job. Obviously such leveling requires the scheduler to leave nodes idle, so
processing resources are lost. It is therefore necessary to carefully weigh when to engage in
leveling. The algorithm tries to estimate how much resources will be lost, and compares this
amount with a tolerance that is determined by these parameters:

e A HOLE SIZE — node-hour idleness tolerated forthwith

e B HOLE SIZE — additional node-hour idleness tolerated per requested node (allowing
more tolerance for large jobs)

The maximum idleness to be tolerated is then calculated by
A HOLE SIZFE+ B.HOLE_SIZFE X reqg_nodes

where reqg_nodes is the number of nodes required by the job.

An example is given in Fig. 2. When job 4 terminates, the scheduler has two nodes
available, and the queued job with the highest priority (job 8) requires all 8 nodes. Using
the runtime bounds on the currently running jobs (jobs 5, 6, and 7), the scheduler can
estimate when all the nodes will be freed and job 8 will be able to run. However, such
leveling will cause nodes 1 through 6 to remain idle for various durations. The scheduler
sums up these idle node-hours (represented by the dark gray area with the heavy border in
the figure), and compares it with the value of AHOLE_SIZE+ B_.HOLE_SIZE x 8. If
the wasted area is not bigger than this value, the job will be leveled. If it is bigger, the job
will remain in the queue and other smaller jobs will be scheduled.

To reduce the loss of resources, the scheduler does attempt to schedule small jobs on the
idle nodes, provided their time limit indicates that they will end before the time of leveling.
However, this is only done after the decision to level.

4.3 Formulation for Genetic Algorithms

The iPSC batch scheduling algorithm on the NASA system has 15 parameters. But what
parameter values will lead to the best performance? In order to use the self-tuning framework
to find optimal parameter values, it is necessary to encode the algorithm for optimization
using genetic algorithms.

4.3.1 Representation in Chromosomes
The different parameters to be optimized have different ranges of values:

e A HOLESIZE — in the range of 0-255

e B HOLE SIZE — in the range of 0-5

e A_TIME PRI — in the range of 0-5

e 12 queue priorities — in the range of 0-255

We represented all these parameters as a string of bits, each parameter occupying 8 bits,
for a total chromosome length of 120 bits. Thus, the resolution of values in the queue
priorities and A_HOLE_SIZE was 1, and in B_HOLE_SIZE and A_TIME_ PRI it was approximately
0.02. When running the simulation, the string was first transformed to a struct holding the
parameters. This struct was then passed to the simulation function, which used it to run
the simulation and compute the fitness.

4.3.2 Fitness Function

As a fitness parameter, we used the average utilization of the machine. For each day’s
simulation, we calculated the utilization as the ratio between the resources (measured in
node-seconds) the jobs actually used:

Zrun_timei X nodes;

K3

and the total resources available for the duration of running all the jobs:
total time x batch_partition_size

(where total time is the wall clock time from the start of the first job to the completion of
the last job.)

This ratio gives a non-normalized fitness function — the maximum utilization is 1, but
the sum of all fitnesses is bigger than 1. We used utilization as a fitness function for reasons
of simplicity, and because it matches the goals of a batch scheduler. The results may be
different if another definition of fitness is used.

4.3.3 Evaluating the Fitness

For each set of parameter values (represented by a chromosome in the current population) we
simulated the behavior of the scheduler in order to evaluate its performance. The simulation
assumes the following:

e Only batch mode — all 128 nodes of the machine are in the batch partition, and we
are only optimizing the batch scheduling algorithm.

o All jobs were submitted before scheduling begins. This assumption reflects a model
where batch jobs are submitted during the day, but not scheduled, because most batch
queues are disabled. Then, when the prime-time shift ends, all nodes are allocated to
the batch partition, and all queues are enabled, allowing the jobs that were accumulated
during the day to be scheduled.

o All queues can be scheduled. Again, this is the situation in the non-prime-time shift.

As noted above, the workload used to drive the simulation is based on a detailed log
of everything that ran on the iPSC/860 at NASA Ames during the fourth quarter of 1993
[5]. However, we did not use the recorded workload directly, because the batch load on that
system was generally too low to exercise the scheduling algorithm. Instead, we sometimes
unified groups of several consecutive days of real workload into a single day of simulated
workload, thus artificially increasing the load during each simulated day. The job character-
istics (number of processors and runtime) remain the same as in the original workload. The
criteria for unifying days was the desire to achieve either of the following: a load of around

Population size 120
Chromosome length 120 bits
Probability of mutation 0.1
Probability of cross-over 0.5

Run length 150 generations

Table 2: Parameters used in genetic algorithm implementation.

20-25 jobs, or 1000-1300 node hours (corresponding to 8-10 hours of using 128 nodes). After
these unifications, the duration of the log was reduced from three months to 70 days.

The simulation handles each day individually, and then reports the average utilization
for all the days. It is an event driven simulation of the scheduler, where the events are the
terminations of running jobs (it is assumed that there are no additional arrivals during the
non-prime shift). The simulation then schedules the next jobs to be run, according to the
algorithm described above. If the next job cannot be scheduled, it tries to level it. If the job
can be leveled, smaller jobs are scheduled as possible to reduce the idleness. Otherwise, this
job scheduling is deferred, and the next job will be considered. This is done until there are
no free nodes, or no jobs to schedule. Then, simulation time is advanced to the finish time
of the next finishing job. Its resources are freed, and scheduling runs again.

4.3.4 Genetic Algorithm Dynamics

The implementation of the genetic algorithms framework was done with the sga-c package, an
implementation of Goldberg’s Simple Genetic Algorithms [6, chap. 3]. This implementation
gives a very basic set of tools to implement genetic algorithms, and was sufficient for our
needs.

The parameters used in our experiments are summarized in Table 2. The population
consisted of 120 individuals. The first generation started with randomly generated chro-
mosomes; we also checked starting with the Intel defaults as one of the chromosomes, but
this did not affect the results. Experiments continued for a total of 150 generations. At
each generation, the probability of cross-over during mating was 50%, and the probability
of mutation was 10%.

4.4 Experimental Results

The following results were obtained by executing the genetic algorithm as described above.
This is a retrospective experiment, using old logs, rather than performing a run within a live
system. However, note that this is not a simulation of the self-tuning idea, but rather these
are exactly the same simulations that would be used in a real implementation.

Starting with random sets of parameters, we tracked the best set of parameters found in
a run, that is, over all 150 generations. We performed 100 such runs, to see if the genetic
algorithm would converge to a single set of optimal parameter values. We tried two methods

10

for selection — one using the “raw” fitness values, and one using normalized fitness which
amplifies the differences between individual fitness values. The results were similar, and
those for raw values are shown.

Using a Pentium Pro 200 running BSDI, the time to complete one generation was about
1 second. This includes the simulation of scheduling about 20 jobs in each of 70 days under
each of 120 different sets of parameters. A run involving 150 generations therefore took
between 2 and 3 minutes, and executing all 100 runs with different initial populations took
several hours. While this is a significant amount of time, it should be noted that we only
needed it in order to evaluate the approach. A real implementation only needs to perform
a single run, which in our case takes a couple of minutes, to find a set of good parameter
values. The overhead for such a procedure is negligible.

Moreover, it is not always necessary to perform a complete run. In some of our runs, the
optimal parameter values were found as early as the fourth generation. A real implementation
can also use good parameter values as soon as they are found, and continue the search for
even better values only as time permits.

In general the results we achieved showed a significant improvement in utilization. Run-
ning the simulation with the default Intel parameters resulted in 88.4% utilization for our
workload. In all our runs we achieved utilizations of between 91.03% and 91.25%. This is a
3.2% increase in utilization in absolute terms, and a 24.6% reduction in wasted processing
capacity because of fragmentation. These results also testify to the efficiency of genetic al-
gorithms as a search procedure: each run included specific checks of only 120 x 150 = 18000
parameter combinations out of the 2!20 possible combinations, yet they all achieved essen-
tially the same results.

Though we found an improvement in utilization, there is no straightforward behavior of
the parameters. It seems as though the surface of the fitness function is relatively flat, with
many local peaks and valleys, but no one outstanding peak. Thus the different runs produced
widely different sets of parameter values, that all lead to about the same utilization. This
implies that there are no prameter combinations that can achieve better performance than
those we found, at least for this workload.

The combinations of parameters we found are presented graphically in Fig. 3. There is a
graph for each optimized parameter, showing the value of this parameter in the best set from
each of the 100 runs. It can be easily seen that the values of all parameters do not converge
into some specific value, but are rather scattered. However, it is clear that for job sizes
of 16, 32, and 64 nodes, the priority of the short queue should be relatively low, whereas
the priority of the long queue should be relatively high. This indicates that the system
“invented” the first-fit decreasing bin packing algorithm: it is more efficient to first pack the
long jobs, and then pack the short ones in the space that is left [2]. We note in passing that
the Intel manual suggests that queues for long jobs be given a priority of 40 rather than
15 as for short jobs [9], but our results indicate that this value is still much too low. The
priority of the 128-long queue is especially interesting as it had a bi-modal distribution: in
some cases it was low, and in others high. This may be interpreted as meaning that the

11

Parameters:

Queue priorities:

16

nodes

32

nodes

64
nodes

128

nodes

Figure 3: Parameter values that produced the best results in different runs (run number is
from 1 to 100 along the x axis). The dashed lines are the default values; for A HOLE SIZE it

1S 7Zero.

a_hole_size b_hole_size a_time_pri
256 5 . 5 .
192 R 4r S - 4
. . . 3 : 3 -
128 ’ ! .
e 2 2 .
64 R R] . . .
0 . 0 ol .
short (20min) medium (1hr) long (3hr)
256 256 256 —
192 192 . 192 R ;
128 N . el . . 128 | . X
64 s 64 L . 64
0 0 0
256 256 256 —
192 192 192
128 " 128 AR N 128
64| .o . 64 -) 64
0 0 0
256 256 256
192 192 192 [’ ’
128 128 . . 128 '
64 " R 64 E 64
0 Dl 0 0
256 256 — 256 —
192 s : 192 . 192 '
128 . 128 128
64 X 64 [L 64
0 0 0

12

128-node jobs should either be scheduled first, or last, but not mixed with other sizes, so as
to reduce the waste of multiple leveling actions.

It can also be seen that the parameters that control leveling decisions (A_HOLE_SIZE and
B_HOLE_SIZE) are much higher than the defaults, leading to a tendency to allow more leveling
and larger idle times than the default parameters. On average, our results indicate that the
decision was to level in about 84% of the cases when it was considered. The values for
A_TIME PRI are generally low, as the queueing time of batch jobs is indeed not an important
consideration when optimizing for utilization. Had response time been included in the fitness
function, we expect that this parameter would have been more important.

5 Related Work

Our tuning algorithm is related to the concept of systems that learn about their environment.
However, to the best of our knowledge, this is the first general methodology for creating self-
tuning systems. Previous work has only dealt with self tuning that is built into a specific
algorithm.

Interestingly, the concept of tuning system behavior to the workload has been rather
popular in the field of parallel job scheduling. Indeed, the whole area of scheduling with
adaptive or dynamic partitioning is based on systems that change the allocation they make
as a function of load conditions. Sevcik has proposed adaptive policies that decide on par-
tition sizes based on the load and information about characteristics of the applications [15].
McCann et al. have proposed a dynamic policy that changes the allocation at runtime to
reflect changes in the load and requirements [10]. Severance et al. propose a scheme that
is less dependent on explicit information, in which the system measures the performance
of a barrier synchronization to decide if the current number of threads is appropriate [16].
The closest scheme to ours was proposed by Nguyen et al., who measure the efficiency of
a parallel job on several partition sizes and then decide on the allocation [12]. However,
these schemes involve learning about a specific application at run time, and are irrelevant
for other jobs. They do not learn about the workload in general, and therefore cannot make
a persistent change in the system parameters.

Scheduling is not the only area where the system may learn something about its workload.
Another area where significant research has been performed concerns memory management
and page placement. The question is where to map a memory page, and when to move
it to another processor, in order to reduce communication; this has to be done subject to
dampening rules that avoid ping-pong situations. For example, Cox and Fowler describe a
system in which pages are replicated and migrated according to their usage, but pages that
migrate too often are frozen in place [4]. The Millipede system uses a more sophisticated
algorithm to detect ping-pong conditions, based on the access history of each thread [13].
Moreover, it combines page migration with thread migration in order to ease such situations.
An on-line competitive algorithm for page placement was suggested by Black et al. [1]: the
page is moved when the cumulative cost of remote accesses matches the cost of moving it.

13

This
section
should
be a
sidebar,
with
separate
refer-
ences

Again, these schemes learn about a specific job, at the expense of that job; the collected
information cannot be used to benefit the whole workload.

There has also been some work that is directly related to our case study, in that it
uses genetic algorithms to solve scheduling problems. However, this is typically done in the
context of off-line algorithms that search for a specific near-optimal schedule [8], whereas
our work is about finding good parameters for an on-line policy. Interestingly, it has also
been suggested that the genetic algorithms themselves be parallelized [14].

Finally, it should be noted that other search techniques are also possible, in place of our
use of genetic algorithms. For example, simulated annealing has been used in the context of

task scheduling [3].

6 Conclusions

We have introduced a general framework for the optimization and performance tuning of
operating systems: using the idle loop to run genetic algorithms that search for optimal
parameter values based on data about the local workload. With this approach, the trial-and-
error methodology often employed by system administrators is replaced by a scheme that at
once removes load from human system administrators, and uses real data and measurements
for a more methodological search for optimal solutions.

A case study involving the batch scheduling algorithm from the iPSC/860 hypercube
was conducted to validate this approach. We carried out the proposed optimization scheme
off-line, simulating the scheduling of multiple jobs under various scheduler parameter values.
The results were very promising. Specifically, the search procedure always found parame-
ters that lead to about 91% utilization for the workload we used, as opposed to only 838%
utilization for the default parameters. While this is only a difference of 3 percentage points,
it represents a reduction of one quarter of the resources that are lost to fragmentation. In
retrospect, it turns out that the parameter values that were found by self tuning cause long
jobs to be scheduled first, which is indeed known to lead to better packing.

While we are confident that the proposed approach has merit, much remains to be done.
Our main goal is to implement self tuning in a real system setting, and test its performance
in such a context. This will enable us to also consider self-tuning at the price of additional
overhead. The question is whether the potential improvement in performance is worth
running the optimization procedure at the expense of user applications, rather than only
instead of the idle loop, and also whether the overhead for additional logging of information
(beyond that normally collected by the system) is worth while.

Acknowledgements

Thanks to Bill Nitzberg for providing the NASA Ames iPSC workload log, and to Reagan
Moore of SDSC for introducing us to the iPSC batch scheduling algorithm. Thanks are also
due to the reviewers (especially #4!) for their help in improving this paper.

14

References

1]

[10]

[11]

[12]

D. L. Black, A. Gupta, and W-D. Weber, “Competitive management of distributed
shared memory”. In 34th IEEE Comput. Soc. Intl. Conf. (COMPCON), pp. 184-190,
Spring 1989.

E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson, “Approximation algorithms for
bin-packing — an updated survey”. In Algorithm Design for Computer Systems Design,
G. Ausiello, M. Lucertini, and P. Serafini (eds.), pp. 49-106, Springer-Verlag, 1984.

C. Coroyer and Z. Liu, “Effectiveness of heuristics and simulated annealing for the
scheduling of concurrent tasks — an empirical comparison”. 1In bth Parallel Arch.
& Lang. Furope, pp. 452-463, Springer-Verlag, Jun 1993. Lect. Notes Comput. Sci.
vol. 694.

A. L. Cox and R. J. Fowler, “The implementation of a coherent memory abstraction
on a NUMA multiprocessor: experiences with PLATINUM”. In 12th Symp. Operating
Systems Principles, pp. 32-44, Dec 1989.

D. G. Feitelson and B. Nitzberg, “Job characteristics of a production parallel scientific
workload on the NASA Ames iPSC/860”. In Job Scheduling Strategies for Parallel
Processing, D. G. Feitelson and L. Rudolph (eds.), pp. 337-360, Springer-Verlag, 1995.
Lect. Notes Comput. Sci. vol. 949.

D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison Wesley, 1989.

J. H. Holland, Adaptation in Natural and Artificial Systems. MIT Press, 1992.

E. S. H. Hou, N. Ansari, and H. Ren, “A genetic algorithm for multiprocessor schedul-
ing”. IEEE Trans. Parallel & Distributed Syst. 5(2), pp. 113-120, Feb 1994.

Intel Corp., iPSC/860 Multi-User Accounting, Control, and Scheduling Utilities Manual.
Order number 312261-002, May 1992.

C. McCann, R. Vaswani, and J. Zahorjan, “A dynamic processor allocation policy for
multiprogrammed shared-memory multiprocessors”. ACM Trans. Comput. Syst. 11(2),
pp- 146-178, May 1993.

M. McKusick, W. Joy, S. Leffler, and R. Fabry, “A fast file system for UNIX”. ACM
Trans. Comput. Syst. 2(3), pp. 181-197, Aug 1984.

T. D. Nguyen, R. Vaswani, and J. Zahorjan, “Maximizing speedup through self-tuning
of processor allocation”. In 10th Intl. Parallel Processing Symp., pp. 463-468, Apr 1996.

15

[13] A. Schuster and L. Shalev, Access Histories: How to Use the Principle of Locality in
Distributed Shared Memory Systems. Technical Report LPCR-9701, Computer Science
Dept., The Technion, Jan 1997.

[14] M. Schwehm and T. Walter, “Mapping and scheduling by genetic algorithms”. In
Parallel Processing: CONPAR 94 — VAPP VI, pp. 832-841, Springer-Verlag, Sep 1994.
Lect. Notes Comput. Sci. vol. 854.

[15] K. C. Sevcik, “Characterization of parallelism in applications and their use in schedul-
ing”. In SIGMETRICS Conf. Measurement & Modeling of Comput. Syst., pp. 171-180,
May 1989.

[16] C. Severance, R. Enbody, and P. Petersen, “Managing the overall balance of operating
system threads on a multiprocessor using automatic self-allocating threads (ASAT)”.

J. Parallel & Distributed Comput. 37(1), pp. 106-112, Aug 1996.

16

