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Abstract— Simulations sometimes lead to observed sensitivity real, it should be robust to such small variations. But if the
to configuration parameters as well as inconsistent perforance  effect is the result of a unique coincidence, there is a good
results. The question is then what is the true effect and whas a  -hance that the shaking will change the conditions enough to

coincidental artifact of the evaluation. The shaking methaoology - . .
answers this by executing multiple simulations under small eliminate the spurious effect. Details of the methodology a

perturbations to the input workload, and calculating the average described in Sectiont/ andV.
performance result; if the effect persists we can be more cditent Sectionll elaborates on our motivation, ald discusses
that it is real, whereas if it disappears it was an artifact. We  re|ated work.
present several examples where the sensitivity that appesrin
results based on a single evaluation is eliminated or conssdably
reduced by the shaking methodology. While our examples come Il. SENSITIVITY OF PERFORMANCE EVALUATION
from evaluations of scheduling algorithms for supercompuers, Ay oyr examples are from simulations of the EASY sched-
we believe the method has wider applicability. S,
_ _ _ uler [1], which is currently the most common method for
Index Tirlmsd_ Perfo{)m?”‘?e eVa_'Ugtl'_Onx S'mg!ﬁt'onx Workload  parallel-job scheduling. We found several cases of noisy or
trace, Workload perturbations, Variability, Instability , Sensitivity ;o nsjstent performance results, where very small maific
tions to the workload or to a system parameter — that were
[. INTRODUCTION expected to have little or no effect on the evaluation result

Performance evaluations are routinely done by simulating actually caused a large effect.

how a system would work with a given workload. In the FO' €xample, in the SDSC workload (see Tab)e job

interest of obtaining reliable and representative resute 04241 was estimated to run for 18 hours and ran for 18 hours
workload is often taken from a trace of events that wefd'd 30 seconds. Running another simulation in which theextr
recorded on a real system in production use. The evaluatigy S€cONds were truncated, which represents a modification o

results may then be influenced by unique interactions betwek046%. resulted in a change of 8% in the average bounded
the system and the specific trace used. slowdown of all the jobs in the trace [2]. Moreover, other

As an example, consider the following simulation of éninor modifications caused different changes (e.g. addihg 1

backfilling parallel job scheduler. Backfilling amounts ing S€¢0Nds resulted in a change of 3.5%). This is obviously an
undesirable sensitivity.

small jobs from the queue of waiting jobs to fill in holes in h | in EibLwhich sh h

the schedule. This requires estimates of job runtimes to eAngt dertlaxar(;wpeapfpgaLS|r} Fﬂg.wh|c showst kelavgrage

available. The scheduler in question obtained these estim ounded slowdown ot Jobs from t € CTC workloa as a
unction of the load on the system (higher loads are achieved

by averaging the runtime of the lastjobs submitted by the . v reducing the i val ti b .
same user. Simulations using a specific workload trace th@Y\ consistently reducing the interarrival times betwedss)o

showed that changing the number of job&rom 12 to 13 led As in queueing theory, we would expect the curve to be smooth
to a major reduction of 29% in the average bounded slowdown
measured for all jobs in the trace. If this is a real effecq an 120
13 is indeed the magic number to use, this would be a major
breakthrough. But if it is an artifact of unique conditiomst 100 -
occurred in this specific simulation, it is a distraction ttha o : i
should be ignored. In fact it turns out to be an artifact; this L
and other examples are detailed in Sectiin

Our solution is to “shake” the input workload: perform mul-
tiple runs with small random variations in the workload, and
calculate the average of the results. For example, we caecau 20
jobs to arrive a few minutes earlier or later than they do & th
original workload trace. Shaking is similar to using mukip 0 s o5 o8 oo o7 o7 08 o0& o5 oS
measurements to characterize the distribution of resaittd, Utilization
calculating an average and confidence interval. If an effectFig. 1. Bounded slowdown as a function of utilization, CT@.lo
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and continuous, growing asymptotically as we approach- satu
ration. But the actual results show strong irregularitielsere
small changes to the load lead to jumps in the average bounded
slowdown. Moreover, applying small random perturbatians t

the workload (the arrival times of some jobs are modified by up
to 5 minutes) changes these irregularities, which now appea

at other loads. Thus the irregularities do not have a realifsig Perormance resus

cance, and are just artifacts of unique interactions betviee

workload and the system. If we were to compare schedulers

based on these evaluations, we could have concluded wronfgty 2. Flow diagram of the shaking methodology.
that one scheduler is better than the other, while in adyali
each single evaluation is simply not representative.

A well-known problem with using workload traces is that a
trace provides only a single data point. It is therefore impo Shakingconsists of performing small perturbations on a
sible to say with certainty whether a result is real or boguspecific parameter of the workload, executing simulations
With workload models, in contradistinction, one can geteeraunder these perturbations, and finally calculating the ayer
multiple workloads that are statistically identical andsetve of the performance results. In other words, the same sioulat
the effect of variability on the evaluation results. Shakinis run repeatedly, but before each run, one characteristic i
attempts to achieve the same utility with a given workloaghodified by a small amount. The results of the multiple
trace, by generating multiple closely related workloadarats. repetitions are then summarized to produce the final outcome

It should be emphasized that the purpose of shaking is notftig- 2 shows a flow diagram of the shaking steps.
solve irregularities but to circumvent them. Each case tss i The cost of applying shaking is a multiplication of the
own reasons for why irregularities arise. These can be vgintime: if simulations are repeated 100 times, this wiketa
hard to track down [2], and are usually a combination @pproximately 100 times more than a single simulation. @/hil
unfavorable circumstances. Our purpose is not to resobmth this is a significant increase, it can be done as witnessed by
but to prevent their influence on the performance evaluatiomultiple examples shown in Sectiovil. Of course if fewer
repetitions are used the cost is reduced.

The main methodological questions are what parameters to
shake, and to what degree. The main consideration is how
Instability in performance evaluations has not been studienuch one can modify a workload without changing its nature.
in depth. Our work is a followup to that of Tsafrir andThelevel of shakings defined by the amount of perturbation,

Feitelson [2], who traced the instability to workload fle@si the attribute chosen, and the percentage of jobs shaken.

In another study on job scheduling, England et al. [3] ex- In the context of parallel job scheduling, workloads in&ud
plain that performance evaluations are affected by theepieess many thousands of jobs, each having (1) an arrival time, (2)
of large deviations and that robust systems should witlistaa size (number of processors used), (3) a runtime, and (4) an
these disturbances and maintain stable performance seswstimate of the runtime provided by the user. These at&gut
They present a methodology to measure the robustness dfaae different properties in terms of their distributioesy.
system by determining the degradation in performance witthether they are continuous or discrete. The also haverdiffe
the Kolmogorov-Smirnov test [4] to quantify the maximaknt effects on how the job may interact with the scheduldr. Al
difference between the CDFs with and without perturbatiotisese are considerations regarding how to shake them.
added to the system. For example, the arrival time is a function of when users

In a paper by Lawson and Smirni [5], the system adaptedrive at work, perform their tasks, take breaks, etc. Tioege
its backfilling parameters to the workload fluctuations. onmodifying the arrival time by a few minutes shouldn’t affect
of the presented results seem to exhibit large localized fluweither the scheduler’s strategies nor the overall resilthe
tuations, e.g. the measured slowdown for successive wegksformance evaluation. But user estimates are often ahdrt
on four workloads (Section 3, Figure 4). Thus it seems thaome from a restricted repertoire of different values [d, s
multiple-queue backfilling may also be sensitive to uniquehanging them by a few minutes may completely change the
circumstances in the simulation. behavior of the scheduler.

Alameldeen and Wood presented the variability of results of Once we select the workload attribute to shake, the degree
architectural simulations of multi-threaded workloads[6), of perturbation is applied using the following formula:
and presented a methodology for reducing the probability of
reaching incorrect conclusions. The methodology is based o
a technique of injecting random perturbations to createaaesp This increases or decreases the original value with the same
of runs and using the mean as the performance result. Thipisbability. The maximal modification is given by the pertur
very similar to our shaking methodology. They also presgnteation value. The random factor assures a uniform distahut
the WCR (Wrong Conclusion Ratio) metric to quantify the The degreeof shaking denotes the maximal magnitude of
risk of reaching an incorrect conclusion in the comparisbn the perturbation performed on the jobs. The shaking becomes
two different system configurations. stronger as the degree increases. This can be absolute or

IV. THE SHAKING METHODOLOGY

I11. RELATED WORK

new-val = orig-val £ pert x rand (1)



relative. Absolute shakings performed as is using the degree The percentagef jobs denotes the fraction of jobs that are
that was given as a parameter to the shaking proceduwsbaken. For example, setting the percentage to 50% means
Relative shakingon the other hand, also takes into accounhat half of the jobs in the workload will be shaken. Shaking a
the relationship with the original value: lower percentage of jobs stays closer to the original watt|o
pert = min{deg, relpet x orig-val} @) but we need to shake enough to get an effect.

Thus relative shaking performs smaller changes than atesolu V. VARIATION OF PARAMETERS

shaking: we use the minimum between the degree of shakingspaking has two important numerical parameters: the degree
given and the _relatlvg percen_tage of the original va_lue &ksh of shaking, and the percentage of jobs to shake. Setting
For example, if shaking on size of 5 processors with a rédalijhese parameters to different values has an effect on the
percentage of 10% is applied to a job using 21 processors, the formance result. The experiments in this section doumi
the perturbation igert = min{5,10% x 21} = 2.1, which iS5 oyr understanding of the impact of shaking, and to our
rounded to 2 (the size is an integral number of processorgp]i“ty to set ranges of reasonable shaking values.
Here, the relative factor limited the perturbation. Fig. 4 shows the pdf of the bounded slowdown metric

Turning next to the workload attributes, we note that shgkin, oy shaking the interarrival attribute by different degre
the arrival time directly may lead to considerable modificazy, g percentage of 1% and 10%. THE axis units are
tions to the structure of the workload in terms of burstinesg) ;nded slowdown relative to the original result (with no
and the sequence of jobs that are submitted. We therefgigying at all), so the original result always appears at 100
prefer to shake thaterarrival time, i.e. the time between WO gach cyrve represents 100 runs of the same configuration
consecutive jobs. Thus, a job's arrival time is shaken kat jy ;¢ \yith different random seeds. The figure shows that as
to the time elapsed since the previous job’s arrival im&e8i e perturbation degree increases, the distributions sflte
an arrival t'met/i’ the interarrival time isy; = t; —ti—1. ThiS  gepart from the original. In general, simulations configlire
IS rrl10d|f|ed to“g = a; £ pert, and the new arrival time is Setyith small degrees of perturbation did not spread much, and
tot; =ti—1+a; L . . . .. thus were not effective for avoiding irregularities.

the that_the modified mtgrarrlval is a_pphed the or|g|_nal The percentage has a similar effect: when only 1% of the
previous arrival, so as to avoid accumulation of pertutvedi s are shaken, the results remained relatively close do th
As a result some localized jobs can be interchanged. FQfqina| and the span of results was in the range of 98—105.
example, in Fig.3 the modification to the relatively 10ng\yhen 109 of the jobs were shaken, the range grew to 96-112:
interarrival between job 1 and job 2 is enough to change th&, hercentage of jobs shaken increased, and so, moresresult
order of job 2 and job 3. spread away from the original evaluation. With 100% of jobs
shaken, the span did not grow, but results spread away from

i1 23 i1 23 . .
o e L the original evaluation.
‘ EERRRRRN ‘ ‘ ! ‘arrivaltime[sec] ‘ EERERRRN : ‘ ‘ ‘arrivaltime[sec,
Ei)r(1)ter—z;1rriva|:20 s%g 9nter-arrival=22 set-? 100 degree=1 ——
80 degree=10 —— ||
. . . X I degree=30 -
Fig. 3. Example of job interchange as a result of shaking. = 60 [ degree=60 |
g ““ \\ degree=300
Shaking theruntime changes the job duration, thus is § 40 \
considered a stronger perturbation than interarrival dy mso T 2 i
change the predictability of the workload, as real workkad 0 ‘Hﬁ
often include repeated executions of the same job [8]. Slgaki 96 98 100 102 104 106 108 110 112
the user estimate or job size are considered even stronger, a Bounded Slowdown [% of original]
therefore less desirable. Modifying tlestimated runtimeloes 100 T EE—
not change the actual runtime of the job. However, given that _ 8o ggg;ggfgg ,,,,,,,,,, .
. . . 5 =
estimates tend to be modal (e.g. 5 minutes, 15 minutes, orZ 4, Jogree=00y |
2 hours [7]), shaking may actually give the scheduler more £ 0 /\
information by making the jobs distinct from each other.sThi 2 / \
risks affecting the behavior of the scheduler. 20 » l/t
The size attribute is obviously discrete, and shaking it may o b N

96 98 100 102 104 106 108 110 112

affect the workload considerably. For example, given a job »
Bounded Slowdown [% of original]

of One processor shaklng byl_ will either cancel or dou_ble Fig. 4. distribution of bounded slowdown when shaking iatevals of 1%

the job. In most workloads size requests are predominangyp) or 10% (bottom) of the SDSC jobs (original=93.37).

for powers of two, and shaking them will create new values

which may influence the fragmentation. The same applies inSimilar results were obtained for other workloads and
workloads where allocations are node-based, e.g. mugtipiie attributes; overall, millions of simulations were perfatto

8 processors. For these reasons, shaking size is considedtbct and compare the results. To obtain a better view of ho
a strong perturbation, leaving the interarrival time as ttghaking the parameters impacts the evaluation, we turn to 3D
preferred attribute to shake. plots in which we modify both the degree and the percentage.
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Fig. 5. Metrics used to quantify the effect of shaking.

Fig. 7. Distance of average wait time from original, shakimgrarrivals on
the BLUE log.

. . R . 2) The Distance:Another way to quantify the influence
The degree of shaking for the interarrival time attrlbuteS\_sat of shaking is to measure the distance between the original
0 1 10, 30, 60, and 300 seconds. The percentage of jobs Wluation and the average shaken results (again, the units
varied by 1.' 3,10, 30, and 100 pgrcent. The measures a_dopé? percents of the original value). A small distance shows
for evaluating the gﬁect of shaking are presented In Big. that the single evaluation was close to the shaken resgjt. Fi
We used three main measures. (1) the span of resul.ts, (2) fhghows that as we perform stronger shaking, the distance
distance between the o_rlglnal evaluation f"‘r.]d the Sha'“?‘@“e tends to increase. Thus strong perturbations may change
and (3) the concentration around the original evaluation. the workload significantly and remove similarities with the

1) The SpaniThe span is the interval which includes all thgyiginal evaluation. To reach reliable conclusions, one ase

results. However, we use a more restrictive definition of thfe results based on a combination of the span and the distanc
interval from the 5th percentile to the 95th percentile, idey 3) The Concentration:The concentration measures the
to reduce the sensitivity to outliers. This shows the IMEHCt yeyiation of the shaken results from the original evaluatio
shaking on the dispersal of the results. The main importangge purpose is to observe whether the shaken results were
of the span is that it characterizes the degree of confideece Winhin +1% of the original evaluation. If the results are
can have in the results. If the span is relatively small despigncentrated, it means that the impact of the shaking esult
aggressive shaking, we know that the results are robust.\|Bq minor. However, shaking might still be effective sinoe o

most cases, stronger shaking increases the span. To aeoid-ty, circumvent the instability with very minor changes, s w
issue of units, we express the span as a deviation from ¢ iustrated in the next section.

original value in percents, as in Fid.

5-95 Span [%] o Concentration [%]
12 ” 100
10 90
g 80
70
g 300
0
0
100
306 3 1030 { 0 pert. [sec]
0 L jobs [%] jobs [%]

pert. [sec]
Fig. 8. Concentration of the wait time metric when shakinterarrivals,

Fig. 6. Span of bounded slowdown when shaking interarrMAISUE log. SDSC log.

Fig. 6 shows the effect of shaking on the span. We see that
a minimal percentage of 10% and a degree of 10—-30 seconds
are required to get a real impact. Less then that is not eféect Concentration [%]

and more perturbation doesn’'t make a difference. Similar 100
measurements for the runtime and estimate attributesrestjui &0
a minimal percentage of 30% and a degree of 60 seconds to 20
have an impact on the performance results. By comparing the 300
results on four different workloads, with different deggesnd 0
percentages, we see that as we perform stronger shaking, the 3% { 0 pert. [sec]

jobs [%]

span of results increases. Importantly, one single resuit c
be any of the points in the span, and so we need to use g 9.  Concentration of bounded slowdown when shakingrantivals,
average of all these points to get a representative result. BLUE log.



. . . TABLE Il
Flg' 8 shows the concentration of results when Shaklng theBOUNDED SLOWDOWN WITH AND W/O THE 30-SECOND TRUNCATION

interarrival attribute, based on the SDSC log. The figurevsho

Original shake 1mn shake 5mn shake 15mn

that, even with the most aggressive shaking, 65% of theteesutyyjotrunc. — 88.15 86.82 86.99 87.04
were in the interval of 99-101%. Thus, most results remairwith trunc. 81.38 86.62 87.01 86.91
close to the original evaluation. In Fi@, the concentration abs diff  8.31% 0.23% 0.02% 0.14%

decreases to 40%. To resume, strong shaking creates new )
evaluation results which are included in the shaking awerad: Simultaneous Job Arrivals
and these are responsible for the change of the outcomes If thWhen several jobs in the trace have the same arrival time, it
perturbations are too small the overall effect is reduced ais natural to schedule them in the order that they appear. But
the original result prevails. a simulator that inserts arrival events into the first appede
The purpose of shaking is to yield reliable performandecation in the event queue will end up reversing this order.
evaluations without applying a major change on the workloatihis is an implementation detail that should not have a large
Considering that and the above results, we can suggesimact on results. But an evaluation on the SDSC log with and
default minimal configuration for shaking in the context ofvithout the reversal of simultaneous jobs led to a surpgigin
parallel job scheduling: a minimal percentage of 10% ariigh 6.7% performance difference, which casts a shadow
a degree of at least 60 seconds on the interarrival or the the whole simulation methodology. Running the same
runtime attribute. Specific studies may however requirthlmr simulation using the shaking methodology with a degree of 5
adjustments depending on the case parameters to which imisiutes (thereby creating different sets of jobs that hagpe
applied, e.g., the log, the performance metric, etc. have the same arrival times) reduced the difference to 0.47%

VI. SHAKING APPLIED TOSENSITIVE TESTCASES

In this section, we discuss several examples of performan%e
evaluations, where similar simulations lead to very défar ~ The load on the system can be varied by modifying the
results. All the examples relate to parallel job schedyligy interarrival times. Effectively, we linearly increase tagival
ing logs from the Parallel Workloads Archive (Talb)e which rate of jobs in the system to increase the load. Note that with
represent real parallel production environments. Spetlific this modification we preserve the statistical characiessif
we present five such evaluations, and study the impact tbg arrival pattern in the original trace, except that theesa
shaking on each. jobs now arrive faster. As shown in Fid, this leads to
surprising irregularities in the results.

Load Variations

TABLE | . . . . .
L 065 USED IN OUR EXAMPLESAVAILABLE FROM [9 To investigate this more closely, we performed simulations
: [ES : (31 of all loads in the range [0.5..0.95] with a resolution of @0
source duration jobs file d d th qinal luati ith the shak It
CTC SP? 1996-7 79302 CTC-SP2-19962 and compared the original evaluation wi e shaken r&su

SDSC SP2 1998-0 73,496 SDSC-SP2-1998-2.1-cln Fig. 10 shows the bounded slowdown as a function of the
Blue Horizon  2000-3 250,440 SDSC-BLUE-2000-2.1-cInload on the CTC workload. The curve of the single evaluation
is very noisy, and even minute differences of 0.001 in the
A. The Butterfly Effect load can lead to large changes in the results. The curves of
The butterfly effectefers to the sensitivity of the outcometn® shaking results are much smoother and show the expected
on the initial conditions, especially where tiny variatioin a trepd. Thus a_II the_vanaﬂc_ms in the original evaluatioms a
specific attribute produce large variations in the perforoea artifacts of using this specific workload trace.
results. An example is described in [2], where job 64,241 120
of the SDSC workload was estimated to last 18 hours and
turned out to run for 18 hours and 30 seconds. To correct this,
the job was shortened by 30 seconds in the simulation. This
modification truncated a single job by 0.046%. Surprisingly
it resulted in a change of 8.3% in the average bounded
slowdown ofall the jobs in the trace (79,302 jobs), which
is an undesirable sensitivity to the initial conditions. 20 oLl A
Tablell compares the original evaluation with the shaking o e
result of the performance evaluation with and without the 30 005 055 06 065 07 075 08 085 0.9 095
second truncation. The input to these two simulations islpea Utilization
identical: all job arrivals and attributes are the samegpkéor Fig. 10. Bounded slowdown as a function of load variatiorthvaind without
a 0.046% difference in the runtime of one job out of 79,302haking, using the absolute version.
The first column of the table shows the 8.3% difference of o
the original evaluation (no shaking). The other columnsashd?- The Prediction Window
results for various relative shaking degrees on the inteedr  The first sensitivity example in Sectioh concerned the
time attribute. Even a small degree of one minute on all jolpsediction of job runtimes by averaging the runtimes of the
removes the instability yielding a 0.2% difference with anthst k& jobs by the same user [10}. is called thepredication
without the truncation. window Changing its value from 12 to 13 when simulating the

orig
shaken 60 sec
shaken 5min e
shaken 15 min

100

80

60

40

Bounded slowdown




% gg T m orig ~ apparent peiformgnce fluctuatioris as some input parameter o
2 e : i\ii I /i/ ‘\ 7\;\ [N e |shakenGosec  system configuration .pan_':\meier is changed.
o Rl ./i:L\i‘*iii“i T Sls's Wi shaken 15 min The second contribution is to propose a methodology
g 70 iii‘i | that enables us to verify whether this sensitivity is a keall
g gg ‘ meaningful effect, or an artifact. The methodology, called
1 10 20 30 40 50 60 70 80 90 100 “shaking”, is based on executing multiple simulation runs
Window size each with a small modification to one selected attribute ef th

Fig. 11. Rleducing instability by relative shaking for theegliction window \orkload. This generates multiple closely related workkoa
Size example. that serve as multiple equally-valid samples from the waal

) ) space. Averaging the performance results obtained wittall
SDSC workload led to a high peak at size 12, and an abnormaghyen workloads was found to be much more stable than the

low at size 13. These variations created a major differerﬁce&iginm simulation result.
29% in the bounded slowdown. , In order to assess the effect of shaking, we applied the
Fig. 11 extends these results by showing the bounded sloWahodology on four workloads, four job attributes, severa
down for all values oft from 1 to 100, and how it is effected ot rhation degrees, and also several different job perce
by relative shaking. The shaking curves are much smootligfes |t appears that the best attribute to shake is theritex
then the single evaluation curve, and in particular, there 4o of 4 job, for at least 10% of the jobs in the workload
no real threshold between 12 and 13. The reduced variabilfy4 o minimal perturbation of 1 minute. We applied this and
also clearly exposes the trend of degraded performancesasdfiyntiy more extreme configurations to several examples of
window size grows to 40. unstable evaluations, and found that it significantly invexb
the quality of the performance results and allowed the true
E. The Estimation Factor system behavior to be identified.

A simple way to study the effect of inaccurate runtime Our experience with multiple examples indicates that rela-
estimates is to assume that a job's estimate is unifornifye shaking is more robust than absolute shaking: it retain
distributed within [R, (f + 1)R], where R is the job’s real the characteristics of the original workload more closalyg
runtime, andf is a “badness” factor (so called because esfiberefore the results do not depend so much on the specific
mates become increasingly inaccurate @gows, whilef = 0 degree of shaking used. As a result, it is sufficient to use a
implies that the estimates are identical to the runtimesjedy  relatively low degree of shaking, e.g. 1 to 5 minutes. Nog th
surprising result was that, in terms of performance, ineateu €ven with shaking, the simulation results are never peyfect
estimates seemed preferable to accurate ones. HowevepM@oth. However, it would be wrong to use more aggressive
more thorough investigation shows that the result is veftaking to completely smooth out the results, as this risés t
sensitive to the precise value gfused [11]. In Fig.12 we elimination of true effects.
see a comparison between the shaken result and the origindin€ shaking methodology is easy to understand and easy to
evaluation. Without shaking, the performance is noisy ar@PPly. and we hope it will be further used for performance
unstable. Relative shaking has a smoothing effect for bugh t€valuations of scheduling algorithms, and perhaps in other

bounded slowdown and the wait time metrics. domains.
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