
Meaningful Identifier Names:
The Case of Single-Letter Variables

Gal Beniamini Sarah Gingichashvili Alon Klein Orbach Dror G. Feitelson
School of Computer Science and Engineering

The Hebrew University of Jerusalem, 91904 Jerusalem, Israel

Abstract—It is widely accepted that variable names in com-
puter programs should be meaningful, and that this aids program
comprehension. “Meaningful” is commonly interpreted as favor-
ing long descriptive names. However, there is at least some use
of short and even single-letter names: using i in loops is very
common, and we show (by extracting variable names from 1000
popular github projects in 5 languages) that some other letters
are also widely used. In addition, controlled experiments with
different versions of the same functions (specifically, different
variable names) failed to show significant differences in ability
to modify the code. Finally, an online survey showed that certain
letters are strongly associated with certain types and meanings.
This implies that a single letter can in fact convey meaning. The
conclusion from all this is that single letter variables can indeed
be used beneficially in certain cases, leading to more concise code.

Keywords—Program comprehension, meaningful identifier
names, single-letter names

I. INTRODUCTION

Giving identifiers in computer programs meaningful names
is a widely accepted best practice. This is reflected both
in coding standards and in programming teaching materials.
For example, the Google C++ Style Guide states “Give as
descriptive a name as possible, within reason. Do not worry
about saving horizontal space as it is far more important to
make your code immediately understandable by a new reader.
Do not use abbreviations that are ambiguous or unfamiliar
to readers outside your project, and do not abbreviate by
deleting letters within a word.”1 Likewise, the Free Software
Foundation’s GNU Coding Standards say “The names of
global variables and functions in a program serve as comments
of a sort. So don’t choose terse names—instead, look for names
that give useful information about the meaning of the variable
or function.”2 McConnell devotes all of Chapter 11 of the
second edition of Code Complete to variable names [17]. This
includes the following: “The most important consideration in
naming a variable is that the name fully and accurately describe
the entity the variable represents. An effective technique for
coming up with a good name is to state in words what the
variable represents. Often that statement itself is the best
variable name.”

As these three examples demonstrate, a recurring theme
in variable naming is the suggestion that long descriptive
names should be used. But on the other hand, one often finds
loops indexed by a variable named i, rather than the more
descriptive indexOfLoopOverAllRecords or something

1https://google.github.io/styleguide/cppguide.html#General Naming Rules
2https://www.gnu.org/prep/standards/standards.html#Names

to that effect. This raises the question of whether this supposed
violation of the best practice has measurable consequences, or
maybe it is actually acceptable.

More precisely, one may ask under what circumstances is
it legitimate to use abbreviated or even single-letter variable
names. For example, we may speculate that this can be
appropriate when variables have a limited local scope, because
in this situation the meaning is implied by the immediate
context. Moreover, misunderstanding a local variable’s use is
expected not to have consequences beyond the surrounding
block of code. Indeed, Kernigham and Pike write that “shorter
names suffice for local variables; within a function, n may
be sufficient, npoints is fine, and numberOfPoints is
overkill” [14]. They then continue by giving an example where
a loop is much clearer when abbreviated names are used,
and conclude “Programmers are often encouraged to use long
variable names regardless of context. This is a mistake: clarity
is often achieved through brevity.”

Studying the effect of variable name length is confounded
by the question of what lengths to compare. We therefore focus
on the extreme brevity of single-letter names: if these are
found to be usable, less extreme abbreviations are probably
usable too. We perform a sequence of three studies. The
first uses repository mining to assess how commonly single-
letter variables appear in the code of popular applications.
As expected, i is the most common, but many other single-
letter variables are also used. Interestingly, this is language
dependent.

The second study is a controlled experiment in which
students were asked to comprehend and modify a pair of
functions in one of several versions: one in which variables
are given full names, and others in which some variables are
give single-letter names. The versions differed by the class
of variables that were given the shorter names: they could
be either local variables of limited scope or more substantial
variables representing data structures. The results did not show
any significant negative effect due to having some single-letter
variables.

The third study considers possible meanings attributed to
single-letter variables. This used a web-based survey in which
respondents were requested to share associations elicited by
different letters of the alphabet, and what variable types they
would consider naming with each letter. We found that some
letters are overwhelmingly associated with one or perhaps two
types, and sometimes also with one dominant meaning.

Taken together, these studies make two main contributions.
The first is to inform practice based on scientific evidence:

single letters are in fact used widely, they do not necessarily
impair comprehension, and they may convey meaning. The
second is to identify important knowledge gaps: for exam-
ple, we show that certain letters have well-defined expected
meanings, but this needs to be qualified by programming task,
developer experience, and domain.

II. RELATED WORK

While variable names are obviously important, and it has
repeatedly been suggested that long and descriptive names be
used, there has not been a lot of empirical research on the effect
of variable names and in particular the possible drawbacks of
single-letter names.

Coding standards such as those quoted above typically
focus on stylistic aspects of variable names, such as the use
of capitalization. Caprile and Tonella are among the few who
propose explicit methodologies to come up with good names.
Specifically, they suggest standardization of identifier names
using a lexicon of concepts and syntactic rules for arranging
them [7]. Likewise, Binkley et al. suggest rules for constructing
field names by concatenating words representing different parts
of speech [2]. These recommendations may be expected to lead
to longish names, and they do not consider abbreviations.

On a more conceptual level, Deißenböck and Pizka develop
a formal model of the mapping from concepts to names [8].
The model requires naming to be consistent (a one-to-one
relationship of names to concepts) and concise (names should
reflect the correct level of abstraction, and be neither too
general nor too specific). They go on to suggest tools to aid in
identifying naming issues, mainly synonyms as may be created
by different levels of abbreviation.

One of the best-known studies of variable names is “What’s
in a Name?” by Lawrie et al. [15]. This introduced a controlled
experiment similar to the one we performed, in which three
versions of each of twelve functions are used: one with full
names, one with abbreviations, and one with single letter
names. Subjects were required to understand the code, and
the results indicated that longer names led to better com-
prehension. However, in only 3 of the 12 code examples
was the difference statistically significant. Our experiment
differs by requiring subjects to also modify the code, and by
avoiding the use of “iconic” functions like binary sort. Another
similar experiment was conducted recently by Hofmeister et
al. [11], and found that code with full-word names was faster
to comprehend by 19% on average. But note that both the
Lawrie study and the Hofmeister study were unmindful of the
variables’ use, and abbreviated all the variables. Our focus is
on identifying the cases where single letter names can be used.

The possible detrimental effects of inappropriate naming
were considered in a number of studies. Scanniello and Risi
performed a controlled experiment in which students were
required to find and fix faults in either of two versions of a
program: one with full names and the other with abbreviated
names [18]. The result was that the abbreviations did not hurt
performance. We take the additional step of considering the
option of single-letter names.

Butler and colleagues performed a number of studies on
identifier names and naming conventions. In one they found

that both long names (above 25 letters) and short ones (less
than 8 letters, excluding some specific cases of commonly
used single-letter and short names) are associated with both the
cyclomatic complexity of methods and their Oman maintain-
ability index [6]. In another, focused on adherence to naming
conventions, they found that single-letter names (which they
call “ciphers”) are sometimes used as field names and not only
as locals and formal arguments [5].

Interestingly, a number of studies have shown that long
names may be implicated in reduced code quality. Binkley et
al. show that long names tax programmer memory, leading
to longer processing times and reduced recall [3]. Kawamoto
and Mizuno studied the possible use of identifier name length
in predicting faulty modules [13]. Their results indicate that
longer names (not shorter names) are a predictor of faults.
Aman et al. have shown that long local variable names
are a predictor of change-proneness after release, implying
lower quality [1]. They explain this effect by suggesting that
long names may be “deodorant” used by programmers to
compensate for problematic code. Similarly, in the readability
model developed by Buse and Weimer, maximal identifier
length provided a medium-level predictive input regarding a
code snippet’s readability [4]. But the minimal length and
specifically the use of abbreviations and single-letter names
were not checked.

Finally, an interesting historical analysis has been per-
formed by Holzmann, showing how variable names have
tended to become longer with time [12]. Binkley et al. suggest
that they have reached their useful limit, as longer names
become harder to remember [3].

III. RESEARCH QUESTIONS

Based on experience, Martin writes in Clean Code that
“single-letter names can ONLY be used as local variables
inside short methods. The length of a name should correspond
to the size of its scope” [16]. We want to put such recommen-
dations to an empirical test, by answering the following three
research questions:

RQ1) To what degree are single-letter variable names used in
practice?

• What fraction of variables are given single-letter
names?

• Is such usage universal, or is it project or language
dependent?

RQ2) Are single-letter variable names really harmful for pro-
gram comprehension?

• What is the impact of changing variable names to
single letters?

• Do all variables have equal impact on program
understandability? More specifically, is it reasonable
to use single letters for index variables and local
variables?

RQ3) What do programmers expect when they see a certain
single-letter variable name?

Together, these questions facilitate the assessment of how
single-letter variables are used, and how they may be used,
with implications to programming practice and education.

In answering the above questions, we use different experi-
mental methodologies. The first question concerns the current
state of the practice. Our answer is based on mining the github
repository, and extracting data on the usage of single-letter
variable names from the source code of multiple high-profile
projects. The second question concerns the potential impact of
single-letter names. To answer it we conduct a controlled ex-
periment, where subjects are confronted with different versions
of the same functions. The differences are that some variable
names are replaced with single-letter alternatives. Finally, the
third question relates to possible considerations when using
single-letter variable names. We conducted an online survey
to find what meanings programmers associate with the letters
of the alphabet. Variables that are related to commonly found
meanings can be expected not to cause problems if named with
the appropriate letter.

IV. USAGE PATTERNS OF SINGLE-LETTER VARIABLES

To answer the first research question we need to analyze
the usage of different variable names by real programmers,
spanning multiple programming languages and projects. Note
that different programming languages and paradigms bring
with them different coding conventions and idioms. These, in
turn, may affect the style and structure of the resulting code.
One way in which code bases differ from one another is in their
use of different variable names: some use longer names while
others prefer shorter names. In this research we specifically
focus on the usage of single-letter names.

A. The Dataset

In order to collect the data needed for our research, we first
needed to obtain a representative dataset of code to analyze.
We decided to use github3 as the source for the code, due
to three important factors: it houses a large collection of
recent projects, it allows easy categorization of each project
by programming language, and it supports a ranking of project
by their popularity (e.g., most starred, which probably reflects
some notion of quality and actual use).

Given the diversity of programming languages and styles,
a biased sample may lead to results that are representative of
only the analyzed projects. To avoid this danger we constructed
our dataset by first picking five programming languages with
different characteristics, and then collecting the 200 most
popular projects for each of these languages. The languages we
picked are C, Java, JavaScript, PHP, and Perl, and represent
conventional standalone programming, web programming in
browsers and servers, and scripting. This procedure resulted
in a large dataset (over 16 GB of source code), which is
expected to represent each of the programming languages since
it contains a large number of the most popular projects for each
language.

B. Data Extraction

The projects themselves were collected by writing a small
python script which automatically downloads the aforemen-
tioned projects from github.

3https://www.github.com.

In order to extract the variable names from each project
we created a framework which enables the loading of plugins,
dubbed “extractors”, for different languages. These extractors
know the language syntax and use this knowledge to retrieve
variable name declarations from projects written in this lan-
guage. The data is then stored in a local database. In order to
allow for easy scaling and handling of large amounts of data,
we elected to use MongoDB — a document database which
excels in storing and searching over large amounts of data.

The technical details of the extractors for the different
languages are as follows:

C We extracted the abstract syntax tree (AST) from the
clang compiler using a “syntax-only” execution (i.e.,
not requiring compilation, just performing lexing and
parsing of the source file), and from the AST we
extracted the variable names and types.

Java We used an open-source project which enables easy
parsing of Java source files4. We then wrote a plu-
gin using this framework which allows extraction of
variable names and types.

JS We wrote a short script which uses a Node.js frame-
work which analyses JavaScript source files5 in order
to dump the variable names. A special concern was
“minified” JavaScript source files. As JavaScript files
are often transmitted on the Internet together with
web pages, keeping them as short as possible has
operational advantages. Minification is a source-to-
source transformation that reduces size by removing
unnecessary white space and comments, and abbre-
viating variable names. We attempt to avoid minified
JavaScript source files by excluding files with very few
very long lines (indicative of minified code).

PHP We used a project which parses PHP source code6

in order to extract the variable names. As there are
no variable declarations, we count definitions (that is,
assignments to the variable). Note that variables in
PHP are prefixed with a $, so technically single-letter
variables are actually written with two letters.

Perl We used the actual Perl syntax tree using a command-
line flag in Perl itself (MO=Concise), and extracted
the variable names from that data. Like PHP, Perl too
prefixes variables with a $, which we ignore. Note that
there are also many predefined special variables named
using punctuation marks: $_, $., $,, $#, and more.
This increases the number of single-letter variables that
are found.

C. Results

After collecting the dataset, we first looked at the distri-
bution of variable name lengths in the selected projects in
each language. We also compared the distribution for all 200
selected projects with the individual distributions of the 5 most
popular projects, to verify that all look more or less the same
and the distribution is not overly affected by some projects
with unique characteristics.

4https://github.com/javaparser/javaparser
5http://esprima.org/doc/
6https://github.com/nikic/PHP-Parser

C

variable name length

1 5 10 15 20+

p
e

rc
e

n
t

0

5

10

15

20
max=53

JS

variable name length

1 5 10 15 20+

p
e

rc
e

n
t

0
5

10
15
20
25
30
35
40

max=135

Java

variable name length

1 5 10 15 20+

p
e

rc
e

n
t

0

2

4

6

8

10

12

max=115

PHP

variable name length

1 5 10 15 20+

p
e

rc
e

n
t

0
5

10
15
20
25
30
35
40

max=71

Perl

variable name length

1 5 10 15 20+

p
e

rc
e

n
t

0

5

10

15

20

25

max=117

Fig. 1. Distributions of variable name lengths in different programming
languages.

TABLE I. Acceptable
single letter variables in

Java [10].

b byte
c char
d double
e Exception
f float
i, j, k int
l long
o Object
s String
v arbitrary value

The results are shown in Figure 1. While single-letter
variable names are typically not the most common, they are
approximately as common as other short lengths except in PHP.
In C, Java, and Perl they make up 9–20% of the names. Hence
developers in many popular projects in diverse languages do
not shy away from using single-letter variable names.

Next, we drew the histogram of single-letter variables
in each language. This is shown in Figure 2. As may be
expected, the most commonly occurring single letter variable
name is i. This is most probably due to its use as a loop
index. In some cases (notably C and Java) j is also highly
used, probably for the same reason. But apart from that, the
distribution is language dependent. The name v is highly used
in Perl, even more than i. In C common names include p

(which probably indicates a pointer), c (for chars), and n

(presumably for counters). The Java Language Specification
includes a section about naming conventions. This includes
the acceptance of using single letter names to represent local

C

a b c d e f g h i j k l m n o p q r s t u v w x y z

o
c
c
u
re

n
c
e

s

0

10000

20000

30000

120135

Javascript

a b c d e f g h i j k l m n o p q r s t u v w x y z

o
c
c
u

re
n

c
e

s

0

25000

50000

75000

100000

Java

a b c d e f g h i j k l m n o p q r s t u v w x y z

o
c
c
u

re
n

c
e

s

0

2500

5000

7500

10000
40295

PHP

a b c d e f g h i j k l m n o p q r s t u v w x y z

o
c
c
u
re

n
c
e
s

0

2500

5000

7500

10000
17377

perl

a b c d e f g h i j k l m n o p q r s t u v w x y z

o
c
c
u
re

n
c
e
s

0

5000

10000

15000 lowercase

uppercase

Fig. 2. Histograms of single letter names usage in different programming
languages.

temporary or looping variables of different types, as listed in
Table I [10]. Our results show that some but not all of these
are indeed used more than other letters.

In addition, we observe that lowercase letters are used
much more often than uppercase ones. Indeed, uppercase
names are used mainly in Perl, where they typically outnumber

lowercase ones except for i, j, and v. In JavaScript uppercase
names are more or less evenly distributed across all letters, and
the variability of lowercase names is also somewhat smaller
than for other languages. This (together with the fact that
single-letter variables are very common as shown in Figure
1) may indicate that the dataset includes some minified code
that was not identified correctly and removed by our filter.

V. EFFECT OF SINGLE-LETTER VARIABLES

To answer the second research question we need to assess
the effect of single-letter variable names on programmer per-
formance. We do this using three experimental procedures. The
first two are controlled experiments where subjects are required
to modify a given function. Different subjects receive different
versions of the functions, either with full variable names or
with single letter names. The third part is an opinion survey in
which subjects indicate which version of a function they prefer.
The same subjects performed all three experimental procedures
in sequence.

A. Experimental Design and Execution

The experiment consisted of a sequence of two controlled
experiments and a survey. We used two functions in the
controlled experiment setting to reduce the threat to validity
arising from having only a single data point. The functions
were chosen based on three criteria: they are real code (not
concocted examples created for the experiment), they are
concise and well-defined, and they do not require specific
domain knowledge. One function was written in Java and the
other in C. In the first, three versions were used with different
patterns of changed variable names as described below. In the
second two versions were used.

The controlled experiments were executed by providing the
functions on paper. The assignment of experimental treatments
for each function was randomized. In total there were therefore
six combinations of version of the first function and version
of the second function. The survey was administered via
computer.

In performing the experiment subjects went through the
following steps:

1) Sign a consent form and be paid up front.
2) Fill in the demographic details questionnaire.
3) Read instructions and perform first experiment.
4) Read instructions and perform second experiment. This

experiment had two discrete steps.
5) Read instructions and perform third experiment.

Overall this typically took 30-45 minutes in total, although
some stayed longer. Subjects were allowed to leave at any
step of the experiment, and several did so without completing
the second experiment (which turned out to be the hardest).
No identifying information was collected.

B. Experimental Subjects

The experimental subjects were Hebrew University stu-
dents in the computer science and computer engineering pro-
grams. Some had a double-major with some other program,
such as mathematics or cognitive sciences. Subjects were

recruited from the student programming labs where they spend
time on self study and solving programming exercises in their
various courses. They were paid 50 NIS (approximately $13)
for participation. We found that physically walking through the
lab and inviting potential subjects to the experiment worked
much better than distributing fliers and waiting for subjects
to contact us. It also saved the need to schedule experimental
sessions and coordinate with multiple subjects.

In total 56 students were recruited. 41 were male, 13
female, and 2 did not report their sex. The vast majority were
undergraduates, with 31 completing their first year (2 semester-
long programming courses), 9 completing the second year, and
12 the third year. 2 were MSc students. The average age was
23.9 years.

C. Experiment 1

Our goal is to characterize the effect that single letter
variable names have on code clarity and understanding. In this
experiment we attempt to measure the negative effect of single-
letter variables on code, in combination with the question of
whether it is justified to exclude local and index variables from
the requirement of meaningful variable names.

1) Experimental Treatments: The first experiment was
based on a function that receives a sequence of URLs and
completes the sequence. The scenario is a web crawler col-
lecting data from an online forum. Forum pages usually have
links to other pages at the bottom, to enable non-sequential
browsing, but if the forum is long the list may include only
the first few pages and the last one. The function fills the
gap in order to enable parallel retrieval of all the pages. This
is based on identifying a common pattern (which is given)
and completing a sequence of serial numbers. However, it has
a deficiency that if the list comes from the first page then
number 1 will be missing, because links are given only to other
pages. The experimental task is to fix this defect. Subjects are
given a full explanation with examples at the outset. This is
meant to differentiate between comprehending the functionality
of the code and understanding the implementation of this
functionality. We want participants to focus on understanding
the code itself to find where to make the fix.

In terms of code, the function accepts two parameters and
is a full page long, including inline documentation. It has 9
local variables, of which 2 are in a loop, and 3 are lists. There
is no documentation about the variables. Given this function,
we created three versions with different characteristics:

V1) Full identifier names
V2) Both loop identifiers and a related local given single-

letter names
V3) Both parameters and the most important list (the page

numbers) given single-letter names

This was meant to enable two types of observation: first,
whether single-letter variables have an impact on compre-
hension, and second, whether it matters which variables are
those that are given single letter names. Specifically, it may
be acceptable to give index variables and other variables
of local and limited scope a single-letter name, but perhaps
comprehension is facilitated when parameters and major data
structures are given meaningful names.

TABLE II. Results of experiment 1: time to solution of successful subjects
and rate for all subjects. ± denotes standard deviation.

ver succ time [m]
V1 11 15.5±4.4
V2 13 18.6±6.3
V3 18 17.4±5.9

ver N rate
V1 17 .044±.036
V2 18 .042±.029
V3 21 .054±.029

2) Results and Analysis: The function works by identifying
common substrings in the given URLs, extracting page num-
bers (which obviously are not common to different URLs),
completing the set of page numbers, and then generating URLs
for the complete set. The best solution is therefore adding code
to add the integer 1 at the beginning of the already-completed
list of page numbers, in case it does not already start with 1.
We coded the solutions on a 4-point scale as follows:

0 no solution or wrong
1 inferior, e.g. generating the URL for 1 manually and

appending at the end
2 correct idea but with minor issues
3 perfect as described above

In addition we measured the time to solution.

To compare the times it took subjects to cope with the
different versions, we employ the following null hypothesis:

H0: The time required to cope with version A and
version B is the same.

This is applied to all three pairs of versions. We use SPSS for
the statistical analysis, first applying Levene’s test for equality
of variances, and then either the t-test or Welch’s test to see if
the null hypothesis should be rejected at α = 0.05 (the t-test
can be used only if variances are equal).

Comparing the times of all subjects leads to the result that
the null hypothesis cannot be rejected, but this is uninteresting,
because it mixes the times of those who solved the problem
correctly with the times of those who failed or gave up. We
therefore need to take the scores into account when comparing
times. We do so in two alternative ways. The first is to compare
the times of only those subjects who succeeded, and received
scores of 2 or 3. However, this scheme loses data about how
many subjects received lower scores. The second is to binarize
the score, with 0 representing failure or an inferior solution
(scores of 0 or 1) and 1 representing success (scores of 2
or 3). Inferior solutions were grouped with failed solutions
rather that with good solutions because they reflect trying to
circumvent the code rather than understanding it. We then
calculate the success rate as the binarized score divided by
the time. This includes the data about subjects who did not
do well and effectively creates a continuous transition from
taking a very long time to failing.

The results are shown in Table II. It is immediately obvious
that the averages are close to each other, and the differences
are smaller than the standard deviations. And indeed, the t-tests
use to compare pairs of versions to each other all indicated that
the null hypothesis could not be rejected. None of the p-values
were even close to 0.05. Note, however, that this can also be
the result of insufficient statistical power. The power, in turn,
depends on the effect size. As our results indicate that the effect
size is probably small, a much larger sample may be needed to

TABLE III. Results of experiment 1: odds ratio for the two extreme
versions.

ver fail success odds
V1 6 11 1.833
V3 3 18 6.000

bring differences to light. However, if the effect size is small
then these differences may not be very meaningful even if they
exist. In any case our present results should be interpreted as
failing to show a difference, and not as finding that there is
no difference.

To compare scores we calculate the odds of success (score
of 2 or 3 relative to score of 0 or 1) for each version, and
compare versions with an odds ratio test. Odds ratios are used
to see how an effect changes the odds for an outcome. A
common example is the effect of smoking on cancer. We have
four groups of subjects, with all combinations of smoking or
not and having cancer or not. The question is how the odds of
having cancer depend on smoking. This is quantified by how
the odds for smokers differ from the odds for non-smokers.
In our case, the question is how the odds of receiving a high
score differ for subjects faced with one version of the program
or another version.

The raw results are shown in Table III, with the calculated
odds to succeed. The odds ratio is then found to be 3.272,
meaning that the odds for success are more then 3 times higher
in version V3 (which has single letter names for important
variables). However, the 95% confidence interval spans the
range [0.68, 15.8], which includes 1. Therefore again we
cannot reject the hypothesis that the odds are actually the same.

It should be noted that our results can be seen as similar to
those of Lawrie et al. [15], who also compared programmers
trying to understand codes with full-name variable, abbre-
viations, and single letters. While they did find statistically
significant differences in 3 cases, their differences were not
significant (like ours) in another 9 cases.

To better understand the effects of all variables we used
ANOVA with time or rate as the dependent variable, and ver-
sion and demographic variables as the explanatory variables.
The resulting models were poor in the sense that they explained
only a small percentage of the variance (7–11%), and were
not statistically significant. Even so, they indicated that the
program version (treatment) had the smallest effect, and that
age and sex had a much larger effect.

D. Experiment 2

This experiment is focused on the possible adverse effects
of single-letter names, using a more extreme treatment than
the previous one.

1) Experimental Treatments and Tasks: This experiment
uses a very short function written in C, whose aim is to count
the number of set bits in a given array of bytes. It uses a pre-
defined lookup table to count the number of set bits in each
nibble of the given bytes. The table would look like a random
series of numbers to the layperson. We have created two
versions of this function: one containing informative variable
names, the other containing only single-letter variable names,
as shown in Figure 3.

Full names:

uint32_t num_set_bits[] = { 0, 1, 1, 2,

1, 2, 2, 3,

1, 2, 2, 3,

2, 3, 3, 4 };

uint32_t f(uint8_t* data, int data_length) {

uint32_t count = 0;

for (int i=0; i<data_length; i++)

count += num_set_bits[data[i] & 0xF] +

num_set_bits[(data[i] >> 4) & 0x0F];

return count;

}

Single-letter names:

uint32_t n[] = { 0, 1, 1, 2,

1, 2, 2, 3,

1, 2, 2, 3,

2, 3, 3, 4 };

uint32_t f(uint8_t* d, int l) {

uint32_t c = 0;

for (int i=0; i<l; i++)

c += n[d[i] & 0xF] +

n[(d[i] >> 4) & 0x0F];

return c;

}

Fig. 3. Versions of the C function used in experiment 2.

TABLE IV. Results of experiment 2: time to solution of successful
subjects.

task ver N succ time [m]
1 V1 26 7 16.9±8.5

V2 28 8 15.2±7.7
2 V1 22 7 10.0±5.0

V2 24 6 9.7±4.4

Subjects are required to perform two experimental tasks.
The first is to deduce the purpose of the function. Once done,
we reveal the actual specification of the function. Subjects then
proceed to the second part, where they are asked to extend the
function to count pairs of bits, instead of single bits. This
allows us to check whether variable names have any effect
on the depth of understanding of the code. For example, a
shallow level of understanding might be more prone to making
mistakes when attempting to modify the code.

2) Results and Analysis: As in the previous experiment,
times were recorded separately for both parts and both were
separately graded on a scale of 0 to 3. We then performed
exactly the same statistical analyses described above on both
parts. Results are shown in Table IV.

An important observation is that relatively many subjects
failed to understand the function in the first part, and even
after it was explained at the outset of the second part, many
failed to modify it. Thus this function was probably too hard
relative to the programming knowledge of at least some of the
student subjects.

As in experiment 1, the results indicated a lack of statis-
tically significant differences between the experimental treat-
ments — both groups (with or without meaningful identifier
names) succeeded (or failed) to a similar degree. This implies

that factors such as individual differences, domain knowledge,
or technical knowledge have a much more significant impact
than variable names: if you do not have the required back-
ground and skills, good variable names will not save you.

E. Experiment 3

In order to assess how participants feel about functions with
single-letter variable names compared to meaningful variable
names, we presented each subject with four questions, all of
the type “which function do you prefer”, intentionally not
specifying the characteristics by which they should make a
choice. Three questions included all pairings of 3 versions
of one short function, and the fourth compared two versions
of another longer function. The short function shuffles the
elements of an array, and the versions are similar to those used
in experiment 1 above: all long names, only local and index
variables given single-letter names, and all variables given
single-letter names. The long function does a deep comparison
of two objects. The difference between the versions is calling
them a and b or rather first and second (and likewise for
related variables, such as aStack vs. firstStack). Both
functions are real life code from the Underscore.js library.

The survey results were that in each comparison between
71% and 82% preferred the longer version. The biggest dif-
ference occurred when comparing full names to single letter
names. Thus it can be clearly concluded that an overwhelming
majority prefers methods with longer, more meaningful names.

Interestingly, this result differs from the results of the two
controlled experiments reported previously. Those experiments
indicate that there is no significant difference in how program-
mers cope with modifying a function when variables have
full names or single letter names. In particular, we found
that the variable names have a much smaller effect than
other independent variables, especially demographic ones. But
despite this lack of actual effect, the programmers reported
that they prefer the longer more meaningful names.

VI. ASSOCIATIONS OF SINGLE-LETTER VARIABLES

As noted above, it is pretty common to use i as a loop
index, so when programmers see i they may expect it to be
a loop index. But what about other letters, such as s or t?
Are they also associated with a common meaning that can
help comprehension? To answer this question we conducted
an online survey. In this survey we ask about the associations
with all letters of the alphabet.

A. Survey Structure

The survey starts with basic demographic details about
each subject. The collected details are age, gender, education
level, years of experience in programming, number of pro-
gramming languages, and different programming level skills.

The survey aims to question the subjects about each
single letter in the English alphabet. This means there are 26
questions. Each such question has two parts. In the first we
ask for what types would you consider naming a variable by
this letter. The possible answers are:

• Integer

• String
• Char
• Array
• Boolean
• Float/Double
• User defined type
• Other (free text answer)

The second part is the open question “What associations spring
to mind when you see a variable named ‘a’?” (of course using
a different letter in each question).

Because the English alphabet has 26 letters our survey
is very long, with 26 questions that each has two parts. In
addition the questions are very repetitive, as they all have
exactly the same structure. There is therefore a danger that
subjects will lose interest and abandon the survey in the
middle, or just pause it and fail to return. As a result we will
have much less data for letters toward the end of the alphabet.
To mitigate this danger we need to randomize the order that the
letters are presented. Thus some subjects will get the question
about a at the beginning of the survey, but others will get it in
the middle or the end. And on average we will get enough data
about all the letters even if subjects quit during the survey.

B. Survey Platform and Administration

Very many platforms for conducting online surveys are
available, and we checked 14 of them. Our considerations
for selecting a platform were the following:

• Support for dividing the survey into pages. We need a
separate page for each letter, so we can randomize the
order.

• Support for randomization of the questions.
• Saving partial results in case the user abandons the survey

in the middle.

In addition, we naturally prefer low-cost (or free) platforms.
In the end we selected Qualtrics7 as our platform, as it supports
all our requirements and allows a single survey for free.

In order to attract subjects we used two methods: word
of mouth among friends and colleagues, and advertising in
online forums. We mainly focus on reddit as a major source,
and posted the survey on three different channels: SampleSize,
Programming, and AcademiCode.

C. Results

Altogether 96 subjects entered the survey. 35 of them
completed all the questions, and 15 left without answering
even a single question. 62% of the participants were male,
17% were female, and 21% did not specify their sex. Ages
ranged from 16 to over 60, with the majority between 17
and 32. Respondents seem to be quite experienced, with 30%
claiming 10 years of experience or more, and 23% claiming
knowledge of 6 or more programming languages. The most
commonly known languages were Java and JavaScript. 33 of
them had a Bachelor’s degree, 19 a Masters, and 3 a Doctorate.
An additional 12 had some college training but no degree.

7https://www.qualtrics.com/

a b c d e f g h i j k l m n o p q r s t u v w x y z

re
s
p
o
n
s
e
s

0

10

20

30

40

50

60

70

80

90
other

user defined

float

boolean

array

char

string

integer

Fig. 4. Considered types for each letter of the English alphabet.

The types that would be considered for variables names
with the different letters of the alphabet are shown in Figure
4. Note that some respondents noted several optional types in
some cases, so the total may be larger than the number of
respondents. As may be expected, in some cases the type that
is associated with a letter starts with this letter. Examples are
s for string and c for char. But in other cases this is not so
dominant, as in the case of b and boolean or a and arrays.
Likewise, o tends to be associated with object (as noted under
“other”).

In other cases the type does not start with the letter. For
example, i, j, k, and n are all strongly associated with
integers. Somewhat surprisingly, d, e, f, r, and t tend to be
associated with floating point. And interestingly, the generic
variables x, y, and z are associated with integers and floating
point to a similar degree.

The common interpretations for each letter are listed in
Table V, and statistics of the results are shown in Figure 5.
Each letter received around 30 answers on average (bottom
panel). Interestingly, many participants bothered to note ex-
plicitly when they had no associations (orange overlay), and
this differed considerably from letter to letter: nearly everyone
had associations for i and j, but half or more didn’t for h,
q, and u. In many cases the associated meanings were very
diverse, with up to 21 different meanings suggested for the
same letter (middle panel). However, in some cases many of
the responses were in fact concentrated in a single meaning
(top panel, excluding no-association replies).

High concentrations include the letters s, which very many
took to mean “string”, and t which was associated with “time”.
i, j, and k were all associated with “loop index” (or just
“index”). Interestingly, the highest concentration occurred for
j and not for i. That happened because i had more competing
interpretations, including “integer”, “counter”, and “temporary
variable”. The same effect occurred with the meaning “co-
ordinate”, which was the most common interpretation for x,
y, and z. But x had some other common meanings, so the
concentration on “coordinate” was lower.

a b c d e f g h i j k l m n o p q r s t u v w x y z

to
ta

l
a
n
s
w

e
rs

0

10

20

30

40

50

a b c d e f g h i j k l m n o p q r s t u v w x y z

d
if
fe

re
n
t
m

e
a
n
in

g
s

0

5

10

15

20

a b c d e f g h i j k l m n o p q r s t u v w x y z

m
o
s
t
c
o
m

m
o
n
 m

e
a
n
in

g
 [
%

]

0

20

40

60

80

Fig. 5. Number of interpretations given to variable named by different letters
of the alphabet. Overlay in bottom panel is responses of “none”.

TABLE V. Common meanings associated with different letters of the
alphabet. (Number in parentheses is number of occurrences.) Boldface entries

were suggested by 50% or more of total participants who answered; italics

denotes letters where the maximum was supported by 20% or less.

a array(8) counter(3) temporary(3)
b boolean(9)
c character(13) counter(5)
d double(5) distance(3) date(3)
e math e(5) error(3) event(3) exception(3)
f float(11) function(10)
g global state(5) function(4) local const(3)
h height(8)
i loop index(19) index(6) integer(5) counter(4) temporary(3)
j loop index(21) index(6) counter(3)
k loop index(17) index(4) constant(3)
l length(4) long(3) loop index(3)
m counter(8) number(5) member(3)
n counter(8)
o object(10) zero(4)
p pointer(9) probability(3)
q query(3)
r radius(9)
s string(25)
t time(23) temporary(4)
u [no meaning]
v vector(10) matrix(3)
w weight(9) wide(5)
x coordinate(6) math operation(5) temporary(3)
y coordinate(8) math example(3)
z coordinate(9) data(4)

Another interesting effect is the discord between the asso-
ciated meanings and the actual usage. Table V shows that i,
j, and k were all associated with indexes to similar degrees.
But Figure 2 shows that i is very heavily used, j is used
somewhat, and k seldom.

Considering other letters, opinions about f were nearly
equally divided between “float” (floating point variable) and
“function”. There are also some ambiguities. For example, the
results above for i, j, and k actually include both “loop index”
and just “index”; for i a couple of subjects also suggested
“array index”. For w a relatively common interpretation was
“wide”, which is related both to “wide string” (meaning
Unicode as opposed to ASCII) and to “width” which were
mentioned only once each.

VII. THREATS TO VALIDITY

The threats to validity are different for the different studies
reported. In the initial repository mining, an external threat
is that our results exhibit a variability between languages.
They therefore may not pertain to projects written in other
languages. But the most salient results (that single-letter vari-
able names are in fact used, and that i is very common) are
probably universal. Moreover, for each language studied we
used 200 popular projects from github; other projects may
exhibit different patterns, although an individual comparison
with the top 5 projects showed the overall results to be
representative. Finally, in the case of JavaScript we may have
inadvertently included some minified code. This is a potential
construct validity issue.

In the controlled experiment study, a common problem is
variability among experimental subjects which leads to a threat
to internal validity. We could not use a within-subject design
to control for this, due to the expected learning effect: once a
subject sees a function in one treatment, you cannot use the
same function in an alternative treatment. Also, other effects
such as stress and fatigue may be at play. However, we did
mitigate all these concerns, at least to some degree, by random
assignment of experimental treatments.

Another commonly cited issue is the use of students as
experimental subject. We think students are adequate for basic
programming tasks like the ones we used [9]. However, we
may have had too many first year students, as witnessed
by their difficulties in solving the second task. This resulted
from their lack of schooling in specific required technologies,
mainly bit operations in C, which forced us to give explana-
tions during the experiment. Students may also be problematic
for opinion tasks, such as preference for a coding style, as they
are influenced by the requirements of TAs in an academic
setting (“you will lose points if you use cryptic identifier
names”) and this is not offset by real-world experience.

An additional threat is that only two functions were used,
and these functions may not be the most revealing for this
type of issue, i.e. maybe the variable names are not the most
important thing in these specific functions. Also the treatments
may not have been extreme enough, as we changed only some
variables and not all of them. Our results therefore cannot be
generalized to a claim that single letter variables do not have
any effect in general.

The survey regarding associations and types suffers from
the threats associated with any online survey, namely lack of
control over participants. We do not really know who they are
and how serious they are. In addition fatigue effects may be
present, but these are mitigated by randomizing the order of
the questions.

VIII. CONCLUSIONS

Single letter variable names are used in many projects
across programming languages, and may constitute 10–20%
of all names. This reflects the advice given by Kernighan and
Pike that “Local variables used in conventional ways can have
very short names. The use of i and j for loop indices, p and
q for pointers, and s and t for strings is so frequent that there
is little profit and perhaps some loss in longer names” [14].

However, which letters are widely used is language spe-
cific, and probably reflects the domains in which the language
is used. For example, the use of p for pointer variables is
probably confined to C. Furthermore, their conjecture that q
and t would also be frequently used for pointers and strings,
respectively, is not supported by the data collected (because
they are used much less frequently than p and s). This
underlines the need to collect and analyze real data.

The main motivation for out work was to contribute to the
discussion of whether and when single letter variable names
may be used. In our experiments we did not find any significant
detrimental effect of such variables on comprehension. This
implies that programmers can cope with such variables, and
can use them without significant ill-effects. However, more
work is needed to complement these results using additional
functions and treatments, e.g. with few or many variable
name substitutions. Using more complicated functions with
numerous variables may identify situations in which single
letter variable names do have a deleterious effect.

At the same time, we note that our work does not cover
all aspects of variable naming. For example, Martin notes that
it is important for variable names to be searchable [16], and
single letter names fail this test. Likewise certain letters should
most probably be avoided, like lowercase L and uppercase O,
which look like 1 and 0.

As a side effect, the results indicate that domain knowledge
and experience with specific technologies may trump the effect
of variable names. In addition, individual differences between
experimental subjects have a very strong effect. So another
interpretation of the results is that variable names are simply
not that important relative to other factors.

Finally, we found that specific letters (in addition to i) are
in fact strongly associated with certain types and meanings.
Using these letters in these specific contexts is therefore
expected to be benign and safe, and provides a possible
mechanism that explains why use of single letter names had
little if any detrimental effect. Indeed, our results should be
interpreted as suggesting that certain single letter variable
names can be used in some roles; this does not imply that
all single-letter variable names are always acceptable.

Further empirical work is required to elucidate the details
of how single letter variable names interact with the specific
letter and context. A good starting point would be to extend

our initial survey of the associations between letters, types,
and meanings. This can be combined with a more detailed
study of the roles that single letter variables play in existing
code (e.g. what is v used for in Perl?). Also, an open ended
survey of programmers would allow them to explain when they
use single letter variables. Sorting the answers into categories
would then enable the derivation of a taxonomy of uses.

VERIFIABILITY

In the interest of verifiability and reproducibility,
our experimental materials and results are made available at
https://bitbucket.org/sophiko/single-letter

-variables-icpc-2017.

ACKNOWLEDGMENTS

This research was supported by the ISRAEL SCIENCE
FOUNDATION (grant no. 407/13).

REFERENCES

[1] H. Aman, S. Amasaki, T. Sasaki, and M. Kawahara, “Empirical analysis
of change-proneness in methods having local variables with long names
and comments”. In Intl. Symp. Empirical Softw. Eng. & Measurement,
pp. 50–53, Oct 2015, DOI: 10.1109/ESEM.2015.7321197.

[2] D. Binkley, M. Hearn, and D. Lawrie, “Improving identifier in-
formativeness using part of speech information”. In 8th Working

Conf. Mining Softw. Repositories, pp. 203–206, May 2011, DOI:
10.1145/1985441.1985471.

[3] D. Binkley, D. Lawrie, S. Maex, and C. Morrell, “Identifier length and
limited programmer memory”. Sci. Comput. Programming 74(7), pp.
430–445, May 2009, DOI: 10.1016/j.scico.2009.02.006.

[4] R. P. L. Buse and W. R. Weimer, “Learning a metric for code readabil-
ity”. IEEE Trans. Softw. Eng. 36(4), pp. 546–558, Jul/Aug 2010, DOI:
10.1109/TSE.2009.70.

[5] S. Butler, M. Wermelinger, and Y. Yu, “Investigating naming convention
adherence in Java references”. In 31st Intl. Conf. Softw. Maint. & Evol,
pp. 41–50, Sep 2015, DOI: 10.1109/ICSM.2015.7332450.

[6] S. Butler, M. Wermelinger, Y. Yu, and H. Sharp, “Exploring the
influence of identifier names on code quality: An empirical study”. In
14th European Conf. Softw. Maintenance & Reengineering, pp. 156–
165, Mar 2010, DOI: 10.1109/CSMR.2010.27.

[7] B. Caprile and P. Tonella, “Restructuring program identifier names”.
In Intl. Conf. Softw. Maintenance, pp. 97–107, Oct 2000, DOI:
10.1109/ICSM.2000.883022.

[8] F. Deißenböck and M. Pizka, “Concise and consistent naming”. In 13th
IEEE Intl. Workshop Program Comprehension, pp. 97–106, May 2005,
DOI: 10.1109/WPC.2005.14.

[9] D. G. Feitelson, “Using students as experimental subjects in software
engineering research – a review and discussion of the evidence”, Dec
2015. ArXiv:1512.08409 [cs.SE].

[10] J. Gosling, B. Joy, G. Steele, G. Bracha, and A. Buckley, The Java

Language Specification: Java SE 8 Edition. Oracle America, Inc., 2015.
[11] J. Hofmeister, J. Siegmund, and D. V. Holt, “Shorter identifier names

take longer to comprehend”. In 24th IEEE Intl. Conf. Softw. Analysis,

Evolution, & Reengineering, Feb 2017.
[12] G. J. Holzmann, “Code clarity”. IEEE Softw. 33(2), pp. 22–25, Mar/Apr

2016, DOI: 10.1109/MS.2016.44.
[13] K. Kawamoto and O. Mizuno, “Predicting fault-prone modules using

the length of identifiers”. In 4th Workshop on Empirical Softw. Eng. in

Practice, pp. 30–34, Oct 2012, DOI: 10.1109/IWESEP.2012.15.
[14] B. W. Kernighan and R. Pike, The Practice of Programming. Addison-

Wesley, 1999.
[15] D. Lawrie, C. Morrell, H. Field, and D. Binkley, “What’s in a name? a

study of identifiers”. In 14th Intl. Conf. Program Comprehension, pp.
3–12, Jun 2006, DOI: 10.1109/ICPC.2006.51.

[16] R. C. Martin, Clean Code: A Handbook of Agile Software Craftmanship.
Prentice Hall, 2009.

[17] S. McConnell, Code Complete. Microsoft Press, 2nd ed., 2004.
[18] G. Scanniello and M. Risi, “Dealing with faults in source code: Abbre-

viated vs. full-word names”. In 29th Intl. Conf. Softw. Maintenance, pp.
190–199, Sep 2013, DOI: 10.1109/ICSM.2013.30.

