Using Site-Level Modeling to Evaluate the Performance
of Parallel System Schedulers

Edi Shmuelif Dror G. Feitelsoh

*School of Computer Science & Engineering, Hebrew Univegrdgrusalem 91904, Israel
fIBM Haifa Research Lab, Mount Carmel, Haifa 31905, Israel

Abstract

The conventional performance evaluation methodology for parallel system schedulers uses an open
model to generate the workloads used in simulations. In many cases recorded workload traces are
simply played back, assuming that they are reliable representatives of real workloads, and leading to
the expectation that the simulation results actually predict the scheduler’s true performance. e show
that the lack of feedback in these workloads results in performance prediction errors, which may reach
hundreds of percents. We also show that load scaling, as currently performed, further ruins the repre-
sentativeness of the workload, by generating conditions which cannot exist in a real environment. As
an alternative, we suggest a novel site-level modeling evaluation methodology, in which we model not
only the actions of the scheduler but also the activity of users who generate the workload dynamically.
This advances the simulation in a manner that reliably mimics feedback effects found in real sites. In
particular, saturation is avoided because the generation of additional work is throttled when the system
is overloaded. While our experiments were conducted in the context of parallel scheduling, the idea of
site-level ssmulation is applicable to many other types of systems.

1. Introduction

In the conventional performance evaluation methodology#vallel systems schedulers, a model of
the scheduler is exercised in a simulation using a workloadenof a stream of incoming job submission
requests. The source for that stream is usually a trace @gmatecorded on a real system. At the end of
the simulation, performance metrics collected for the dalex model are used to predict the scheduler’s
performance in a real environment.

To generate the workload from the trace, the convention#hou®logy uses an open model, where
the trace is simply replayed according to the timestampf®fsubmission requests, and there is no
feedback between the completion of jobs and the submissismobsequent jobs. To evaluate the sched-
uler’'s performance under different load conditions, theestamps in the trace are modified before the
simulation begins; inter-submission times are reducedxpamded to increase or decrease the load,
respectively.

Whether the load is modified or not, an underlying premiskeasthe generated workloads are reliable
representatives of workloads that would be observed bydhedailer in a real environment. We argue
that this is not the case because these workloads lack tibdek effects that naturally exist between

1

users and the scheduler, and show this lack of feedback realy ireinaccurate performance predictions
of hundreds of percents. We also argue that load scalingreesntly performed further ruins the repre-
sentativeness of the workload, by violating preceden@iogis that existed in the real environment.

To get accurate performance predictions and allow for sade scaling, we suggest a nosgie-
level modeling evaluation methodology, in which the workload for the siatign isnot generated by
replaying a trace, but dynamically, in a manner that rejiahimics feedback effects found in reality. A
site-level model includes not only the scheduler but alsafers who generate the workload. When the
users wait for their jobs to complete, they infuse feedbadké workload generation process, because
the completion of jobs depends on the load in the system amldeoscheduler’s ability to cope with that
load.

To study these feedback effects, we analyzed recordednsystees in an attempt to understand the
way users submit jobs to the scheduler. To our best know|dtigeis the first attempt to extract such
information from traces.

We found that usen®b submission behavior can be modeled usirgatches: groups of jobs submitted
asynchronously, i.e. without waiting for one job to comelbefore submitting the next, and with short
inter-submission times between them. Furthermore, thesydimission model is independent of the
characteristics of the jobs themselves. The latter can beedeusing a separate model we named the
workpool model. Together, the two models dynamically generate tieaust of jobs to be scheduled.

We implemented all this in th&teSm framework for site-level simulations. SiteSim enables the
easy development of new job submission and workpool modelsibining them in various ways to
change the characteristics of the generated workload, ealdating different scheduler models using
these workloads in a reliable manner. It also generatesa tfeeach simulation, which can be used for
conventional simulations. We use these traces to demaoastra differences between the conventional
and site-level approaches.

This paper is organized as follows: Section 2 describes dmgentional performance evaluation
methodology, motivates a new methodology, and describesyaxel site-level modeling evaluation
methodology in detail. Sections 3 and 4 describe the job sgiam behavior and workpool models.
SiteSim is discussed in Section 5. Section 6 describes theriexents we performed to demonstrate
the effect of feedback on evaluations. Section 7 outlinésted work, and Section 8 concludes and
discusses future work.

2. Site-Level Modeling
2.1. Background: The Conventional Methodology

Scheduling policies for parallel systems have been theestbf intensive research for many years.
This research is often based on simulations, due to the chpadity of performing evaluations on real
production systems, and the reduced level of detail passilth mathematical analysis. In a simulation,
a model of the scheduler is exercised using a workload madestieam of incoming job submission
requests. Such a stream is often generaterbfhaying a trace containing a list of submission request
records, that is, records of jobs that were actually suleehith and executed on a production-use parallel
machine.

Within the trace, each submission request hamestamp which specifies when the job was submit-
ted, and also several attributes that specify the resowsed by the job. For a space-sharing parallel
machine executing rigid jobs, typical attributes are tH#ga@ize — the number of processors used by

2

job, and the job’suntime — the interval of time during which these processors weraluaad thus
were unavailable for other jobs. When the trace is used foulksition, these attributes are treated as the
resourcerequirements of the job. In addition, jobs may haverantime estimate — a rough estimation
provided by the user and used by the scheduler to plan ahead.

Replaying a trace directly implies apen model, in which the jobs’ submission rate is dictated by
the timestamps from the trace. Sometimes these timestarapscaled by a certain factor, so as to
increase or decrease the load. In either case, there is dbdele between the completion of jobs and
the submission of subsequent jobs.

The alternative is alosed model, having an unconditional feedback between the completi@jab
and the submission of the the next job. For this model, thedtamps in the trace are ignored and
submission requests are issued only after a previous jolpled@s. The problem is that this leads to
extreme regularity: there are no bursts of activity — seyelieiting the optimizations that can be
performed by the scheduler, and there is no way to manipthatéoad for the simulation. For these
reasons, the conventional performance evaluation metbgg@adopted the open model in generating
the workload.

During the simulation statistics are recorded for eachviddal job. These typically includes the job’s
wait-time — the time the job spent in the scheduler’s queue waiting foc@ssors to become available,
the response-time — the time between submission to completion (wait time + mgrime), and the
slowdown — the response time normalized by the actual runtime, whirdws how much slower the
job ran due to the load on the system. At the end of the sinmmathe means for these metrics are
calculated and used as performance metrics.

2.2. Motivating a New Methodology

We argue that workloads generated by replaying traces dnelmble representatives of real work-
loads, because the traces contasigaature of the feedback effects which existed between the users and
their scheduler at the site where trace was recorded, ahdeblaying that signature during simulation
results in inaccurate performance predictions.

Consider for example a loaded system where jobs wait for @ tione in the scheduler’'s queue for
processors to become available. Because users often wélitefio jobs to complete before submitting
more jobs, such a high load will actually cause the submissite to decrease, eventually leading to a
decrease in the load. As the load decreases, jobs wait thessrtithe queue and respond faster, causing
the submission rate to increase again, eventually leadiadhigher load, etc.

Figure 1 illustrates that sudelf regulation by users (avoid submitting additional jobs if the system is
already overloaded) indeed exists in real workload trabethese scatter plots, each log is partitioned
into weekly slices. For each slice, the number of jobs suiechits counted. In addition, the average
node-seconds needed by these jobs is tabulated. Plottenggainst the other shows that when there are
many jobs, they tend to be smaller; when jobs are heavy, teatkto be fewer of them.

Such feedback effects leave their signature in the tradeeiform of timestamps for each submission
request record. When replaying the trace according to tirasstamps, the generated workload matches
the scheduling policy that was in effect on the traced systestead of adapting itself to the scheduling
policy being evaluated. This means that the rate of subamsswill not decrease if the scheduler model
fails to handle the load, nor will it increase if the model tkes the load easily, causing performance
prediction to be underestimated or overestimated.

We also argue that load scaling, as currently performedhéuruins the representativeness of the

SDSC Paragon SDSC Blue
» 2500 - @ 2500 7
'© 2000 - '© 2000 - ;er“
S 1500 31500 4 .
E 4 k=" 4 e e,
g 1000 g 1000 - | ~.. LA
= 500 = 500 c .
0 T] 0 T]
0 400K 800K 0 400K 800K
avg. node-sec avg. node-sec
LANL CM5 SDSC SP2
@ 2500 i 2500
©.2000 4 . - © 2000 ~
E 1500 — .:;:,_.’: E 1500
= 1000 "i"?f’". = 1000 -
S 500 + St gsoo%hb
“ 0 — ? 0 e \
0 400K 800K 0 400K 800K

avg. node-sec avg. node-sec

Figure 1. The effect of feedback in real workloads: in weeks w
tend to be small, and vice versa.

here many jobs are submitted they

workload, because it generates conditions which cannet éxia real environment. One example is
the violation of dependencies between job completions abdexjuent submissions. As noted above,
users often wait for their jobs to complete before subngttimore jobs, which means that some jobs
simply will not reside together in the scheduler’'s queue.eWhcaling the load by modifying the jobs
submission timestamps, submission requests may be issf@e bhe jobs they depend on complete.

Finally, the conventional performance evaluation methoghpuses metrics that are conjectured to be
good proxies for user satisfaction, such as the wait timespanse time. It does not support a metric
that directly quantifies productivity, such as throughplthis is an inherent problem with open system
models, because in such models the throughput is dictatedebyworkload and is not affected by the
scheduler (at least as long as the system is not overloaded).

The methodology we suggest below incorporates feedbaoktiret workload generation processes
to get accurate performance predictions, but unlike the plased model discussed above, it postulates
bursts of jobs, allowing the scheduler to perform optimaad. Load scaling is performed in a safe man-
ner that preserves the workload representativeness, emuptiput (and hence productivity) becomes a
metric that can be measured.

2.3. Site-Level Modeling Details

We suggest a novalte-level modeling evaluation methodology to accurately predict the truegrerf
mance of parallel system schedulers. The essence of thimdwbgy is that workloads are generated

4

A User’s Session
Workload in Site-Level Simulation
Workpool Submittal
Model Model Seperating machine from schedul¢
model, for simulating jobs executic
[]O D # using a detailed machine model
= |
%I D w Scheduler
< =3 | Model ! l:| D u
. —— | O
. AN, 0800 Tt .
Jobs o Submit/ Wait . D 3 |:| | ' Performance
° AN Wait queue 1 Parallel machine : Metrics
Workpool Submittal . D ! '
Model Model N
D] Feedback to users
o [
Concurrent Users Sessions
Figure 2. In site-level simulation the workload observed by the scheduler model is dynamically
generated by several concurrent user sessions. Each sessio n has a workpool model that defines
the characteristics of the submitted jobs, and a job submiss ion model that defines when they are
submitted and infuses feedback to the workload generation p rocess.

dynamically during the simulation in a manner that reliafiynics feedback effects found in real sites.
This implies that we simulate not only the evaluated schadliut also the users, who generate the
workload for the scheduler. During their activity periotapown assessions, users may wait for their
jobs to complete; when they do, they infuses feedback ireaibrkload generation process.

In addition to the scheduler and user models, a completdesigd simulation may also include a
machine model. This may be important because the perforaarspecific applications may be affected
by the machine’s architecture [18], or by interference frother jobs [13]. However, such detailed
simulations require much more information about applaaiand take much longer to run. While we
do not rule this out, and in fact various research efforteh#sed detailed machine model simulations
[14, 9], in this paper we wish to focus on the feedback effesltsted to the workload generated by the
users. We therefore assume that job runtimes are not affégtéhe system state. This assumption is
often made in conventional simulations.

The workload observed by the modeled scheduler at any givenduring the simulation is a combi-
nation of workloads generated by all user sessions thattixe at that time (Figure 2). A session model
has two components: a job submission behavior model and lgp@olrmodel. The job submission be-
havior defines thetructure of the session, i.e. when the user submits more jobs and weraits for
jobs to complete. The workpool model specifies tharacteristics of the jobs. Importantly, we found
that these two models are independent of each other. Thislmates to the flexibility of the simulation,
allowing to experiment with different models and modify therkload generated by each session.

Table 1 summarized the difference between the conventanhsite-level evaluation methodologies.

\ Category | Conventional | Site-Level \

Evaluation tool Simulation Simulation
Workload source | Trace replay Users sessions

. . mission
Job submissions | Trace timestamps$ Sub SSI0

behavior model

Job characteristics Trace based Workpools model

. Trace (de)- Number of sessions
Load scaling . .

compression Submission model

Table 1. Methodology Comparison.

CDF of Think-Time

1
c
=
e -
2 06 7
©
) /
2 04
g pmpaanie .-uull--.\u.lhll
3 ﬁu-\u
g 02 sdsc_sp2_cin |
: ctc_sp2_cln
) : ___kth sp2 - .
-6000 -4000 -2000 0 2000 4000 6000
SeCOndS

Figure 3. CDF of think-times. Negative values indicate that one job started before the previous one
completed.

3. Modeling Users Job Submission Behavior

3.1. The Structure of Sessions

Users interact with computer systems in periods of contilsuactivity known as sessions [8, 1, 19].
For parallel systems schedulers, a session is made of onererjob submissions, and may contains
short periods of time in which none of the user’s jobs arevaciie., neither waiting in the scheduler’s
gueue nor running. These periods of inactivity, knownhisk times, are exploited by the user to think
about his previous jobs results, possibly make correctantsadjustments, and prepare new submis-
sions, all within the same session.

Zilber et al. [19] analyzed several parallel system scheduhces and classified user sessions. A
preliminary step to extracting sessions data was to deterthie session boundaries. This was done by
setting a threshold on the think-time distribution: shottenk times are considered to be think times
within a session, while longer ones are periods of inagti&iter which a subsequent submission starts
a new session.

The CDF of think-times for the different traces is shown igute 3. The plots show that at about
twenty minutes the CDF stops its steep climb, which meartstlaage portion of the jobs are submitted

6

Session 1 Session 2

— — — — —
— — H — I e B
N T D s B
! T IR B _
™ o Tse. T T Time

Session F— Job ISG - Inter-Session Gap

Batch TT - Thinktime (20 minutes max)

Figure 4. Sessions and batches.

within twenty minutes of the completion of a previous job —ditating continuous activity periods by
the users. Furthermore, beyond twenty minutes and for feékedime scale the think-times are evenly
distributed, without any features indicating a naturaéginold. Zilber et al. therefore defined sessions
to be sets of jobs submitted within twenty minutes from thepkztion of the previous job. In our work
we adopt this definition.

Another feature of the think time distribution, which hasléi importance for session classification,
but is highly important for understanding users’ job sulsias behavior, is the fact that a major fraction
of the think-times (over 50% for some traces) is below zertiese negative values result from the
definition of think-time aghe time between the completion of the previousjob and the submission of the
current job; they indicate that jobs were submitted before the prevjongompleted.

With respect to users job submission behavior this meartsvilthin sessions, users submit jobs
either synchronously or asynchronously. Synchronous submissions are those that may depend on the
completion of previous jobs, as identified by a positive khime. These submissions thus effectively
depend on the load on the system and the scheduler’s abilitgridle that load, and provide the desired
feedback. Asynchronous submissions are those that do fiidfowehe previous job to complete. These
submissions occur regardless of the state of the system.

For the purpose of modeling the users’ job submission behave define datch to be a set of jobs
submitted asynchronously to one another, and the batoh-width to denote the number of jobs in the
batch. Using this definition, a single job submitted synadogsly is simply a special case batch that has
a width of one.

Batches provide a convenient way to model the way users subsgir jobs: a session is made of
a series of one or more batches, where each batch contains onere jobs. The time between the
termination of the last job in a batch and the submission effitst job in the next batch must not
exceed twenty minutes — the session’s think-time bound&fithin a batch, all jobs except the first are
submitted before the previous job completes. All this issttated in Figure 4.

3.2. Simple Job Submission Behavior Model

To model the users job submission behavior we thus need sets®f data

e The distribution of batch-widths
e The distribution of job inter-submission times within Hag¢s
e The distribution of (positive, inter-batch) think-timekup-to twenty minutes

7

Distribution of Batch-Width Distribution of Batch-Width Distribution of Batch-Width

0.9 0.7 0.8
_ [sdsc sp2 cin 3| I [ctc_sp2 cin =3 [kth_sp2 =3]
0.8 0.6 0.7
0.7 0.6
2 os g 0o 2 o5
a 05 3 04 3
I < < 04
S o4 S 03 g
< <t 2 03
a 03 a g o
0.2 : 0.2
0.1 0.1 D 0.1 D
0 I—_—I == 0 A= 0 MAem—
2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12
Number of Jobs Number of Jobs Number of Jobs
(a) SDSC-SP2 (b) CTC-SP2 (c) KTH-SP2

CDF of Batch-Width

0.6

0.4

0.2 sdsc_sp2_cln
ctc_sp2_cln

kth_Sp2 e
2 4 6 8 10 12

Number of Jobs

Cumulative distribution

Figure 5. Distribution of batch-widths.

Data for these distributions can naturally be obtained aheang workload traces from different par-
allel machines. Given the data, one can model it by fittingrayppate probability distribution. Alter-
natively, one can use the empirical data directly. As fitttligtributions is secondary to our primary
goal of demonstrating the importance and effect of feedbaekuse empirical distributions from the
SDSC-SP2, CTC-SP2 and KTH-SP2 traces in the simulatiomstespin this paper.

Figure 5 shows the distribution of batch-widths for the éhweorkloads. Obviously the distributions
are quite similar in all the traces, indicating that thisadatrepresentative of user job submission behav-
ior in general. The dominating fraction of batches are ofttwvighe. Batches of width 2 are the second
most common, accounting for about 10% in each trace. Lam@gehbs are progressively rarer.

The distributions of inter-submission times for asyncloasmjob submissions within a batch is shown
in Figure 6. Note that this refers to the time frame submittal to the next, and is therefore non-negative
(as opposed to the think time, which is the interval from anieation to a submittal). These and the
distributions of think-times between batches shown in Fegufavor short times, and are also consistent
across the three traces.

4. Modeling Workpools

We claim that the users job submission behavior is largalgpendent of the characteristics of the
jobs that are submitted. Modeling flexibility is enhancedadsgociating each session with distinct job
submission and workpool models, which define the charatiesiof the batches and jobs submitted
during that session. In principle, the models should béssizdlly different, e.g. one model for light day
jobs and another for heavy night jobs. However, in our curi@plementation, they all draw from the

Probability

Probability

Distribution of Inter-Submission Times

Distribution of Inter-Submission Times

0.07 [sdsc sp2 cin 0.12 [ctc sp2 cin]
0.06 01
0.05 2> oos 2
0.04 § 006 §
0.03 s k]
0.02 o o004 a
0.01 1 0.02 I
, " |-
1 10 100 1000 10000 1 10 100 1000 10000
Seconds Seconds
(a) SDSC-SP2 (b) CTC-SP2
CDF of Inter-Submission Times
1

0.007
0.006
0.005
0.004
0.003
0.002
0.001

Figure 6. Distribution of jobs inter-submission times with

Cumulative distribution

Distribution of Inter-Batch Thinktimes

sdsc_sp2 cin

Probability

0 200 400 600 800 1000 1200

Seconds

(a) SDSC-SP2

Figure 7.

0.8

0.6

0.4

0.2

Cumulative distribution

sdsc_sp2_cIn
ctc_sp2_cln
kth 'sp2

0.004
0.0035
0.003
0.0025
0.002
0.0015
0.001
0.0005
0

10

100 1000 10000
Seconds

Distribution of Inter-Batch Thinktimes

[ctc sp2 cIn]
]
2z
el]
Q
S
h o
0 200 400 600 800 1000 1200
Seconds
(b) CTC-SP2

CDF of Inter-Batch Thinktimes

10

Seconds

Distribution of Inter-Submission Times

0.04

kth sp2 ——
0.035
0.03
0.025
0.02
0.015
0.01
0.005 11
0
1 10 100 1000 10000
Seconds
(c) KTH-SP2
in batches.
Distribution of Inter-Batch Thinktimes
0.0045 s —
0.004
0.0035
0.003
0.0025
0.002 |-
0.0015 e
0.001
0.0005
0
0 200 400 600 800 1000 1200
Seconds
(c) KTH-SP2

Distribution of think times between batches.

Distribution of Jobs Size Distribution of Jobs Size Distribution of Jobs Size

03 [sdsc sp2 CIn == O:i [ctc_sp2 cIn == 035 [kth sp2 ==
- 0.3
0.25 035
2 o2 2 o3 2z 0.25
a8 o o025 a8 0.2
< 015 < [
S g 02 S oi1s
a o1} a 015 o 01
0.05 0.1)
- 0.05 0.05 I
0 ' TN A Y 0 1. Ll 0 I | II a
1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128 256 512 1 2 4 8 16 32 64 128
Processors Processors Processors
(a) SDSC-SP2 (b) CTC-SP2 (c) KTH-SP2

CDF of Jobs Size
1

3 o=
5 o8 i
=
2 06 P
2 04 i
>
E 02 sdsc_sp2_cIn
3 ctc_sp2_cln
© 0 kth 'Sp2 e
1 2 4 8 16 32 64 128 256 512
Processors

Figure 8. Distribution of Job Sizes.

same empirical distributions.
A basic workpool model is essentially composed of two disitions, corresponding to the two main
attributes of parallel jobs:

e Size: the number of processors required for the job to ergasgsuming pure space slicing.
e Runtime: the actual time it will execute once all process$@nge been allocated

Analyzing the traces also indicates that jobs display adlibg of sampling”: successive jobs tend to
be very similar to each other. This may be because usersllgcgubmit the same jobs repeatedly. To
capture this effect, we also tabulate the distribution ahsiepetitions.

Just like for the job submission behavior model, we modelkwools using empirical data drawn
from the three traces. The distribution of the jobs sizedtierthree traces is shown in Figure 8. As
has been observed before, this is a modal distribution wiktjobs using power-of-two nodes [5]. The
distributions of runtimes and repetitions are shown in Feg and 10, respectively. Again we see that
they are reasonably similar across the three traces.

5. Simulation Framework

Our site-level simulation framework§teSm, enables easy development and combination of job sub-
mission and workpool models, and reliable evaluation ded#int scheduler models using dynamically
generated workloads.

SiteSim defines two types of entitiessers andschedulers. Users generate the workload in periods
of activity called sessions. At present, only a static sefasfsions is supported, and there are no user

10

Probability

Probability

Distribution of Size-Repetitions Distribution of Size-Repetitions Distribution of Size-Repetitions

07 [sdsc sp2 cin_ =—— 07 [ctc sp2 cin_ =—— 07 kth sp2 =——
0.6 0.6 0.6
0.5 >, 05 >, 05
0.4 T o4 T o4
E E
0.3 S 03 S 03
0.2 Qo2 Qo2
01 | 01 | 01 |
o ||I|. o | o |||..
1 10 100 1 10 100 1 10 100
Sequence Length Sequence Length Sequence Length
(a) SDSC-SP2 (b) CTC-SP2 (c) KTH-SP2
CDF of Size-Repetitions
1 ;
- s
§e] o
5 08
2 :
2 o6
©
o
2 04
<
>
g 02 sdsc_sp2_cIn .
=1 ctc_sp2_cln
O o kth_sp2
1 10 100
Sequence Length
Figure 9. Distribution of repetitions that cause locality e ffects.
Distribution of Runtimes Distribution of Runtimes Distribution of Runtimes
0%2: sdsc_sp2 cn] 0.006 [ctc sp2 cIn] 0%2: [kth sp2 ——]
0.016 0.005 0.016 I
0.014 E 0.004 E 0.014
0.012 = Z o012
0.01 g 0003 g o0
0.008 ° © 0.008
0.006 a 0002 o 0006
0.004 0.001 |1 | 0.004
0.002 | | 0.002
0 o L Ui sl 2 ,
10 100 1000 10000 100000 1 10 100 1000 10000 100000 1 10 100 1000 10000 100000
Seconds Seconds Seconds
(a) SDSC-SP2 (b) CTC-SP2 (c) KTH-SP2
CDF of Runtimes
1
c
§e]
5 08
=]
@ o6
©
o
2 04
<
>
e 02 sdsc_sp2_cIn .
=1 ctc_sp2_cln
O 0 E kth sp2
1 10 100 1000 10000 100000
Seconds

Figure 10. Distribution of jobs runtime

11

#uid load av-util av-resp av-wait av-sld numjobs conpl ete nodel wp
1 0.03 0.03 10442.51 4499.69 78.71 3813 31513254 Bat chMD Pl ai nWP

2 0.03 0.03 11117.34 5005.84 88.80 3725 31536947 Bat chMD Pl ai nWP

3 0.05 0.05 11347.87 4815.70 64.83 3324 31535919 Bat chMD Pl ai nWP

4 0.04 0.04 10644.51 4684.78 81.99 3103 31535571 Bat chMD PI ai nWP

5 0.06 0.06 12645.24 6177.19 118.85 3382 31546507 Bat chMD Pl ai nWP
6 0.05 0.05 11701.22 5476. 37 70.18 3468 31535337 Bat chMD Pl ai nWP

7 0.05 0.05 11398. 12 4763.21 61.94 3282 31556002 Bat chMD Pl ai nWP

8 0.06 0.06 10543.12 4365.96 53.99 3216 31541829 Bat chMD Pl ai nWP

9 0.04 0.04 11345.47 5104.82 67.69 3720 31554444 Bat chMD Pl ai nWP
10 0.05 0.05 11571. 11 5535.23 56.37 3380 31579372 Bat chMD Pl ai nWP
#sid load av-util av-resp av-wait av-sld numjobs conplete policy numusr
1 0.46 0.46 11273.54 5044.73 74.55 34413 31579372 FCFS 10

Table 2. SiteSim output: per-user and system-wide statisti cs.

arrivals or departures. As explained in Section 2.3, sitmdaa detailed machine model is not required,
and therefore the machine model is embedded in the schedabil. See Figure 2 for ilustration.

SiteSim supports multiple schedulers (and hence — machiméise same simulation. The reason is
that it is a convenient way to model a single machine havinljiphe partitions; A partition is a group of
processors dedicated for executing a specific class of jgbsieteractive or batch, short or long. Thus,
multiple schedulers, each having its own private waitingugiand a scheduling policy, is effectivly
equivelent to a single machine, with partitions dedicatedpecific classes of jobs.

SiteSim can also run conventional simulations, simply lptaging standard workload format traces
(See http://lwww.cs.huji.ac.il/labs/parallel/worklésgf.ntml). For these simulations only one user is
defined, with a job submission model that uses the jobs’ ssfion timestamps from the trace, and a
workpool model that takes job characteristics from thedraBy synchronizing the submission times
with the jobs characteristics, SiteSim guarantees an ¢veae replay.

Before the simulation starts, several parameters needdorifgured: the number of users that partic-
ipate in the simulation, their workpool and job submittaldets, the scheduler model (policy) managing
the machine, and the size of the machine to be managed.

SiteSim can be easily configured using command line parasjede@d provides defalt values for

parameters that were not specified. These parameters arédddelow:
#> ./sitesim-h

usage: ./sitesim[-d] [-c <l swf>| [-u <#>] [-m<batch>] [-w<plain>]] [-s

<f cf s| easy>]
The - d parameter is used for extended debug information. -Th@arameter is used for replaying

a trace using conventional simulation. The parameter defines the number of users, amdind- w
define their submittal and workpool models, respectivatytfie simple version, all users employ the
same models). Finally, thes parameter defines the scheduler model to evaluate. SiteSiaults
to 10 users, batch-based job submittal model (Section @)n pvorkpool model (Section 4), and the
first-come-first-served (FCFS) scheduler model.

At the end of a simulation, SiteSim generates per-user asttisywide statistics, and a standard
format trace containing records for every job job submittadng the simulation. This can be used for
post-mortem analysis or for other simulations. Examplabeftatistics are shown in Table 2.

In the simulations reported here, we typically define 10sisgho all use the same job submission and
workpool models. As noted above, these models use empitatalfrom real traces. We used distribu-

12

Distribution of Batch-Width
0.8

0.7
0.6
0.5
0.4
0.3
0.2

0.1 D
o I e PR

2 4 6 8

Number of Jobs

joint == |

Probability

10 12

(a) Batch width data

Distribution of Inter-Submission Times
0.09 joint ——
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01

Al

1 10 100
Seconds

Probability

1000

(c) Interarrival data

Distribution of Inter-Batch Thinktimes

0.004]

0.0035
0.003
0.0025
0.002 |
0.0015
0.001
0.0005

0
0 200

[joint

Probability

400 600
Seconds

(e) Think times data

Probability

Probability

10000

Probability

800 1000 1200

Distribution of Batch-Width
0.8

0.7
0.6
0.5
0.4
0.3
0.2

0.1 D
o e

2 4 6 8

Number of Jobs

[sitesim easy == |

10 12

(b) Batch width simulation

Distribution of Inter-Submission Times

0.12
sitesim_easy ——

0.1
0.08
0.06
0.04
0.02 |

0 1
1 10 100 1000 10000
Seconds

(d) Interarrival simulation

Distribution of Inter-Batch Thinktimes
0.004 sitesim_easy —— |
0.0035

0.003 |
0.0025

0.002 |
0.0015

0.001 |
0.0005

0
0 200

400 600
Seconds

800 1000 1200

(f) Think times simulation

Figure 11. Workload model validations.

tions generated by combining the data from all three tralcethe simulations, we randomly generated
job attributes from these distributions, and repeated gmoerding to the distribution of repetitions. To
validate this approach we plotted the resulting distritmsiof workload attributes in Figure 11. These
were indeed found very similar to the original distribugon

13

Distribution of Jobs Size Distribution of Jobs Size

0.4 — 0.35 —
[joint [sitesim_easy
0.35 0.3
0.3
0.25
2 o2 £
% 02 % 0.2
Ko) ! Ko)
DS_ 0.15 DS_ 015
0.1 0.1
0.05 0.05
0 L0 dobe 4, 0 1 L lila L
1 2 4 8 16 32 64 128 256 512 1 2 4 8 16 32 64 128
Processors Processors
(a) Job sizes data (b) Job sizes simulation
Distribution of Size-Repetitions Distribution of Size-Repetitions
o7 0® [~ Sitesim eas
06 05
> 0.5 2 04
% 0.4 %
0.3
5 0.3 5
& o2 o 02
0.1 | 0.1
0 | | I 0 I Lis.
1 10 100 1 10 100
Sequence Length Sequence Length
(c) Size locality data (d) Size locality simulation
Distribution of Runtimes Distribution of Runtimes
0.007 — 0.006 ——
[joint | [sitesim_easy —— |
0.006 | 0.005 |
> 0005 2 0004
% 0.004 % 0.003
2 0003 i g
o 0.002 o 0.002
0.001 0.001
0 ||| N 1 0 ||| RN |
1 10 100 1000 10000 100000 1 10 100 1000 10000 100000
Seconds Seconds
(e) Job runtimes data (f) Job runtimes simulation

Figure 11. (continued)

6. The Effect of Feedback on Evaluations
6.1. Inaccurate Performance Predictions

Users often wait for their jobs to complete before subnyttimore jobs. If they use a low-end sched-
uler, that fails to optimize the machine’s resource usdggr fobs will spend a long time in its queue
waiting for resources to become available. As a result, mdnspbmissions will be delayed. On the
other hand, if the machine’s resources are managed by aghnidischeduler, queuing times shorten and

14

Performance Predictions Inaccura

% || High/Low
Site Users | | Scheduler :
@ High/Low
Site—Level Simulation Load
Signature
.| Low/tligh ~N 7 LowMiigh
X femell Lo OH
e Users Scheduler Trace Replay | Scheduler

Site—-Level Simulation Conventional Simulation

® @

Metrics >> overestimated performance >> Prediction
Figure 12. Experiment illustration: (1) Site level simulat
scheduler. (2) Conventional simulation using this trace pr
(3) Site-level simulation of this other scheduler produces
prediction inaccuracy.

ion generates a trace with a signature of one
edicts another scheduler’s performance.
performance metrics used to quantify the

jobs complete earlier, causing new submissions to be issaidier.

When recording job submissions in a trace, the submissioestiamps form a signature of the feed-
back effects between the users and the scheduler, and asnexpbbove, different schedulers would
result in different signatures. Later, when the trace isayga during a simulation, it is the original
signature that determines the rate of submissions. A tnace & high-end scheduler will contain a
signature that, when replayed, will generate higher loadspared to a trace from a low-end scheduler.

To quantify how inaccurate performance predication usirgdonventional methodology may be,
we designed an experiment in which a low-end scheduler imatesd using a trace from a high-end
scheduler, and vice-versa (Figure 12). The idea is that#oe bf the high-end scheduler will generate a
load that will be too much for the low-end scheduler to handile to the lack of feedback the submission
rate will not decrease, and the simulation results will cade extremely poor performance for the low-
end scheduler, underestimating its true performance. |&iyithe high-end scheduler will handle the
low-load trace of the low-end scheduler easily, but becdahisesubmission rate will not increase as
happens in a real environment, the simulation will indicztey good performance for this scheduler,
overestimating it’s true performance.

To generate the two traces we used SiteSim to run a sitedawellation of 10 concurrently active
users (sessions). For the high-end scheduler we used th¥ E&feduler [11, 16], which employs back-
filling (executing jobs from the back of the queue) to reduegmentation and improve responsiveness.
For the low-end scheduler we used FCFS (first-come-firstegigr For the runtime estimates (required
by EASY) we used the actual jobs runtime, that is, our estatere perfectly accurate. The machine
we simulated had 128 processors.

15

Metric EASY | FCFS| FCFS | Prediction

(average) Site-lev.| Conv. | Site-lev. || inaccuracy
Response [s]| 8571 | 87370| 11897 634%
Wait [s] 2283 | 81082 5611 1345%

Slowdown 21.4 1127 78.7 1332%

Table 3. Underestimated performance.

Metric FCFS | EASY | EASY | Prediction
(average) Site-lev.| Conv. | Site-lev. || inaccuracy
Response [s]| 11897 | 7695 8571 10%
Wait [s] 5611 | 1409 | 2283 38%
Slowdown 78.7 17.3 214 19%

Table 4. Overestimated performance.

Underestimated Performance We ran a site-level simulation using the EASY scheduler ashigh-
end scheduler. We then ran a conventional simulation ubmgesulting trace, but this time we used the
FCFS scheduler. The results of the simulation indicate pexr performance of the FCFS scheduler:
over 24 hours on average for the jobs to respond, and 22.5 lodwvaiting in the queue. Obviously,
given these performance predictions, one would never densising an FCFS scheduler, especially
when comparing with EASY that achieves an average respdriessthar2; hours.

Next, we repeated the site-level simulation for the same ppulation, this time using FCFS. The
results indicate that FCFS actually performs reasonalitgidering its limitations; the jobs respond in
3% hours (just 39% more than EASY), and their mean wait is ah)élhours. The results for FCFS are
still worse than those of EASY, but not as poor as predictedguthe trace with the EASY signature.
In fact, FCFS mean response time was overestimated by 634%n mait time by 1345%, and mean
slowdown by 1332%! These results are summarized in Table 3.

Note that the comparison of EASY to FCFS when using a sitetlsvmulation is no longer based
on serving the sampbs (as in conventional simulations), but on serving the sasees. As a result
of the feedback FCFS actually served fewer jobs, but therdiffce was less than 10% for a load of 10
sessions. Throughput is further discussed in Section 6.3.

Overestimated Performance Repeating the above experiment methodology in the oppdiséetion,

we ran a 10 users, site-level simulation with the FCFS sdeeduanaging the machine, and then ran a
conventional simulation on the generated trace, using &&&¥escheduler. The results indicate excellent
performance for EASY: two hours on average for the jobs tpaed, and just 23 minutes of waiting in
the queue. However, these performance predictions aralbctar too good. A site-level simulation
of EASY for the same user population indicates its mean mesptime was overestimated by 10%, the
mean wait by 38%, and the mean job slowdown by 22%. Thesesemea summarized in Table 4.

The above results are summarized in Figure 13. Clearly,nestimated performance is much larger
than overestimated performance. Also, the response tigras® be the least sensitive to performance
prediction inaccuracy due to lack of feedback, and the ngitime the most sensitive; the slowdown
is in between. This is because the wait time is the most diresure of the system’s effect on job
performance.

16

Underestimated Performance Predictions Overestimated Performance Predictions
1400 , , 40

1200 4 35

30

1000

25

@
<]
S

20

-3
<]
S

15

Percentage of Inaccuracy
Percentage of Inaccuracy

I
S
S

10

N
=
S

T

o

o
o

Mean Job Mean Job Mean Job Mean Job Mean Job Mean Job
Response Wait Slowdown Response Wait Slowdown

Figure 13. Underestimated and overestimated performance.

6.2. Safe Load Scaling

One of the important features of a performance evaluatiothog®logy is the ability to examine
performance at different load levels. In the conventionatirodology, load scaling is typically done by
modifying the jobs submission timestamps before replathegraces in the simulation. By multiplying
job submission timestamps from the original traces by atemi$oad scaling factor, the time between
subsequent submissions either increases or decreasesddep on whether the factor is greater or
smaller than one, respectively. This either decreasesmrases the submission rate, and hence the load
observed by the scheduler.

Similarly, modifying the jobs runtimes from the originahtres increases or decreases the load; in this
case, the submission rate remains the same, but since dacdgjares more (or less) time in order to
terminate, the pressure on the machine, and thus the loasvelolsby the scheduler also increases or
decreases, respectively. Another alternative is to mad#yjob size, which has a similar effect (but may
be undesirable because it affects the way jobs pack together

Modifying the original traces may effect the representatiass of the workload, by generating condi-
tions which cannot exist in a real environment. One exangthe violation of dependencies between
job submissions. As explained above, users may wait for jbles to complete before submitting more
jobs, which means that there is a dependency between subnsigebs that are dependent cannot reside
together in the scheduler’s queue.

When scaling the load by modifying the jobs submission tiar@gs, it may well occur that when
replaying the trace, submission requests will be issuedrbe¢he jobs they depend on have completed,
and even worst — before the jobs they depend on even startitaxg@c This raises the risk that the
scheduler being evaluated will choose to execute jobs #zad on the completion of other jobs which
still reside in the queue, totally violating the originabjorder.

To quantify these effects, we used SiteSim to monitor susionsdependency and execution ordering
violations which occur during a conventional simulatiore Yan twosite-level simulations, both with 10
concurrently active user sessions. In the first simulatierused the FCFS scheduler, and in the second
we used EASY. For each scheduler SiteSim generated a tratairdog all job submission requests,
their time-stamps, and dependency information. Thesedrace different because they include the
signatures of the different schedulers.

We then ran conventional simulations using these tracesedah trace we simulated both the FCFS
and EASY schedulers, at varying load levels ranging from®@2.7 for FCFS and 0.2 to 0.9 for EASY
(as EASY can sustain a higher load). We instrumented Sité8inount the number aubmission

17

0.7 : : 0.7 T T
Submission Ordenng Violations —— Submission Ordenng Violations ——

Execution Ordering Violations Execution Otdering Violations

«n 06 «n 06
: /| & /
g 05 g 0
o o
S 04 / S 04
ks k]
pus 0.3 pus 0.3 /
ie] ie]
g 02 S 02
;i / ;i /
L 01 L 01

0 0 / i

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 02 03 04 05 06 07 08 09
Offered load Offered load

(a) FCFS trace / FCFS scheduler (b) FCFS trace / EASY scheduler

07 ‘ Submlssmn Ordering Violations —-— 07 ‘ Submlssmn Orderihg Violations ——
xxxxx tion Ordering Violations xecution Ordennq Violations
o 06 «n 06
S 5 | /
7 08 7 08 1
< o4 S o4
S 03 S 03
5 5 -/
g 02 g 02 ;
C 0.1 — J/ C 0.1 ! /
o 0 e
0.2 0.25 0.3 0.35 0.4 045 0.5 0.55 0.6 0.65 02 03 04 05 06 07 08 09
Offered load Offered load
(c) EASY trace / FCFS scheduler (d) EASY trace / EASY scheduler
Figure 14. Submission-dependency and Execution-ordering violations.

dependency violations — the number of times a job is submitted to the scheduler, tukdly depends
on the completion of a job that has not completed yet. We asatthe number of times the scheduler
chooses to start executing a job that depends on the cooplaftia job that still remains in the queue.
We call the latteexecution ordering violations.

Figure 14 shows the fraction of jobs whose submission orwgx@tinvolved violations. In all sub-
figures, the dashed vertical line shows the original loadhéttace, without any load scaling.

For the FCFS trace in sub-figures (a) and (b), we see that fibr $xhedulers, the percentage of
submission dependency violations starts to increase atffe@fd load — the original load in the trace.
For the FCFS scheduler the percentage of submission \dokincreases almost linearly, reaching
100% at 0.7 offered load — a load at which the simulated systesaturated. Obviously, because FCFS
executes jobs according to queue order, there are no eaxra@urtiering violations.

For the EASY trace in sub-figures (c) and (d), we see that wisergithe FCFS scheduler the per-
centage of submission dependency violations starts teaser far before reaching the original load in
the trace. The reason is that the EASY trace contains suaghald@d signature, which is too much for
the FCFS scheduler to handle, even if the load is scaled bislewriginal load in the trace. In fact,
some submission dependency violations occur even for tH&YEgcheduler under reduced load. There
are no violations only at an offered load of 0.55 (the origload from the EASY trace), because at this

1The offered load is the load imposed on the system in an opeleln®dhe accepted load is what the system manages to
handle, and may be lower than the offered load if it is satutatr requests are dropped.

18

Mean job response vs. # of concurrent sessions Mean job wait vs. # of concurrent sessions Mean job slowdown vs. # of concurrent sessions
70000 | 60000 | 800

easy easy easy
60000 || fcfs ! 50000 | Lfcfs ‘ 1 OE) 700 | fcfs
2 600
o 90000 © 40000 5 500
g 40000 g 30000 = 400
— [
(5] Q
$ 30000 o @
@ — O 20000 — 5 300
20000 i = 2 200
10000 pssti 10000 [~ & 100 —]
0 0 o E=—
5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50
of concurrent sessions # of concurrent sessions # of concurrent sessions
(a) Mean Job Response (b) Mean Job Wait (c) Mean Job Slowdown
Figure 15. Load scaling in Site-level simulations
Mean job response vs. Offered Load Mean job wait vs. Offered Load Mean job slowdown vs. Offered Load
350000 350000 4500
easy_trace ‘ easy._trace |[easy_trace |
300000 |-|__fcfs_trac | / 300000 fcfs_trace | / “E’ 4000 fcfs_trace | 7
= 3500
, 250000 / , 250000 / E Lo00 /
g 200000 g 200000 T 500 /
2 150000 2 150000 2 2000
n »n
100000 100000 % izgg
50000 50000 & s00
0 s 0 . 0 ===
0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65
Offered Load Offered Load Offered Load
(a) FCFS scheduler (b) FCFS scheduler (c) FCFS scheduler
Mean job response vs. Offered Load Mean job wait vs. Offered Load Mean job slowdown vs. Offered Load
50000 45000 300
easy_trace easy_trace easy_trace
45000 | fcfs trace l / 40000 fcfs_trace l / OE) 250 | L__fcfs trace _:/
40000 / 35000 / 2
@ 35000 «» 30000 S 200 y
kel / kel / o /
£ 30000 S 25000 ~ /
S S / > 150
Q25000 2 20000 g
9 20000 @ 15000 § 100 4
15000 10000 2 5
10000 = 5000 - 12 ~
5000 0 0
02 03 04 05 06 07 08 09 02 03 04 05 06 07 08 09 02 03 04 05 06 07 08 09
Offered Load Offered Load Offered Load
(d) EASY scheduler (e) EASY scheduler (f) EASY scheduler

Figure 16. Load scaling in conventional simulations

point the lack of feedback of the conventional simulatios ha effect on the representativeness of the
workload.

For site-level simulations, load scaling is performed byidating different numbers of users, which
effectively changes the number of concurrently active isess— increasing or decreasing the load.
There is no problem with violating any dependency becausentrkload is dynamically generated
which means that a submission which depends on the completti@ previous job will only commence
after a that job has completed and following a period of tHime.

Figure 15 shows how the value of performance metrics chamge=n the load is scaled for site-level
simulations. As can be expected, the performance of EAS¥uays better than that of FCFS, but the

19

Avg. utilization vs. Offered Load Avg. throughput vs. Offered Load
0.8 130

[[=
c i trace . 120 1 RRace S
§ o7 110
E 06 / > 100
= o 9
S 05 ~ 80
g, T
0.3
= 40
0.2 ¥ 30
02 03 04 05 06 07 08 09 1 02 03 04 05 06 07 08 09 1
Offered Load Offered Load
(a) FCFS Urilization (b) FCFS Throughput
Avg. utilization vs. Offered Load Avg. throughput vs. Offered Load
1 180 —
[[
g 09| ‘fcis wace / 160 [“fofe-trace]
= 08 . 140
N
= 07 S 120 o
3 06 > 100 o
£ 05 € 80 =
S 04 60
S
= 03 pA 40 }
0.2 ¥ 20
02 03 04 05 06 07 08 09 1 02 03 04 05 06 07 08 09 1
Offered Load Offered Load
(c) EASY Utilization (d) EASY Throughput
Figure 17. Utilization and throughput in conventional simu lations.

more interesting phenomenon is the shape of the curvesgiahsif the curves often seen in open-system
models, which tend to infinity when the load approaches thea@on point, see Figure 16, here the
degradation in performance is much milder, due to the feddb@at curbs the generation of additional
work.

6.3. Quantifying Productivity

Increasing overall site productivity is a primary goal oygoarallel system scheduler, but the conven-
tional evaluation methodology lacks a metric for quantifyproductivity. The only metric that correlates
with productivity is theaverage machine utilization — the fraction of the machine that got utilized over
its activity period. Intuitively, the larger this fractias, the more work that was performed, implicitly
indicating a higher productivity. However, in conventibsanulations this is dictated by the rate new
jobs are submitted, so it does not really reflect on the perdmice of the scheduler. Typical results
achieved by conventional simulations are shown in Figurea$7ong as the system is not saturated, the
accepted load matches the offered load.

In contradistinction, our site-level evaluation methamtpl provides a metric that quantifies produc-
tivity directly: the systenthroughout, which is defined as the number of jobs processed in a given tim
frame. Figure 18 shows the throughput, measured as thegaveusmber of jobs executed in a 24 hours
timeframe, for the FCFS and the EASY schedulers. For corspayit also shows the utilization. The

20

Avg. utilization vs. # of concurrent sessions Avg. throughput vs. # of concurrent sessions
1 200

easy — easy

g 09l 1 — 180 | ffs 1 —
g 08 .. 160
N
% 0.7 8 140
- 0.6 < 120
£ 05t € 100
< L]
S o04r 80 -
= o3 60

0.2 40

5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50
of concurrent sessions # of concurrent sessions
Figure 18. Utilization and throughput: implicit and explic it productivity measures.

results indicate that the two metrics are highly correlaidey also show how the throughput levels out
when the system becomes saturated. Beyond this point addergsessions does not contribute to the
throughput, but only increases the average response tifse, #he onset of saturation is gradual rather
than being sharp as in conventional simulations.

7. Related Work

Most of the work on workload modeling for parallel supercantgss has been based on the open
model, where jobs arrive at a given rate irrespective of Hmsvdcheduler handled previous jobs [10,
5, 4, 3, 12]. However, there has been some workload modelorl that also involved feedback. One
example is the study of gaming traffic [2]. Ganger and Patéolesthe neither the open nor the closed
model are satisfactory in their pure form, because real lwads are a mix with only some items being
critical for progress [6]. It has also been suggested todryse feedback in network design to avoid
congestion [15].

Our model of sessions built of batches of jobs is related b@rogenerative hierarchical workload
models, which use several layers to try and mimic the protegsggenerates the workload. Hlavacs et
al. [8] presented a framework for modeling user behavianieractive computer systems, using sessions,
applications, and commands, which are initiated synchisiyo An implementation of the framework
for generating workload for network traffic simulation wagsgented in [7].

Arlitt [1] analyzed user sessions for the 1998 World Cup Wetver. The analysis uncovered the
internal structure of the sessions, distinguishing autamequests generated by browsers for retrieving
embedded files such as images, from user-initiated regicesetrieving pages of information.

Zilber et al. [19] analyzed parallel systems traces andsidlad users and sessions based on their
characteristics. Traces generated using their modelamgdwork will feature self similarity, locality of
sampling and daily and weekly cycles — properties foundahtr@aces, which cannot be generated using
simple trace-generating models. Their work can be incagarin ours by defining diverse submission
behavior and workpool models.

8. Conclusions
We have shown that user sessions on parallel supercompateb® modeled as a sequence of batches

of jobs, where the jobs within each batch are submitted dspmously, but each new batch is only
started a certain time (the think time) after the last jokhe previous batch completed. This imparts a

21

measure of feedback on the workload generation proceskntes a better match between the workload
and the scheduler’s capabilities. Ignoring this feedbdigceleads to exaggerated evaluations, that mix
performance results related to the evaluated scheduleresults that are due to the scheduler that was
used when the workload data was traced.

The simulations presented in this paper are limited to uaistatic number of active sessions. In a
real site, users arrive and depart at different times, sadin@ber of active sessions changes dynamically.
A natural extension to our work would be to model the usersufain [17] and use that model in
the simulation, to dynamically change the number of usesises that are active at different times.
Furthermore, not all user sessions generate similar wadddor the scheduler. Our next challenge is
therefore to develop a library of workpools and submittatlels, and combine them in various ways to
produce sessions with different characteristics. Finally new methodology calls for new performance
metrics. One such metric, the scheduler’s throughput asaatiier for the site’s productivity, was
introduced in Section 6.3. An interesting research dioects to find new metrics that measure the
users’ satisfaction of the scheduler performance even diczetly.

Acknowledgments This work was supported in part by the Israel Science Foumdggrant no.
167/03).

Many thanks are due to all those who provided workload dathed’arallel Workloads Archive. In
particular, we used logs from the San Diego Supercomputaete€C¢SDSC), from the Cornell theory
Center (CTC), and from the Royal Institute of Technology tokBolm (KTH).

References

[1] M. F. Arlitt. Characterizing web user sessioil8GMETRICS Perform. Eval. Rev., 28(2):50-63, 2000.
[2] M. S. Borella. Source models of network game trafftmmput. Commun., 23(4):403-410, Feb 2000.
[3] W. Cirne and F. Berman. A comprehensive model of the stqgraputer workload. Idth Workshop Workload Charac-
terization, Dec 2001.
[4] A.B. Downey. A parallel workload model and its implicatis for processor allocatioluster Computing, 1(1):133—
145, 1998.
[5] D. G. Feitelson. Packing schemes for gang schedulingJomScheduling Strategies for Parallel Processing, pp.
89-110. Springer-Verlag, 1996. LNCS vol. 1162.
[6] G. R. Ganger and Y. N. Patt. Using system-level modelsvaiuate 1/O subsystem designE=EE Trans. Comput.,
47(6):667—678, Jun 1998.
[7] H. Hlavacs, E. Hotop, and G. Kotsis. Workload generatigmmodeling user behavior, 2000.
[8] H. Hlavacs and G. Kotsis. Modeling user behavior: A lakapproach. [Conf. Measurement & Smulation of
Comput. & Telecommunication Syst., pp. 218-225, 1999.
[9] C.J. Hughes, V. S. Pai, P. Ranganathan, and S. V. Adven:RSimulating shared-memory multiprocessors with ILP
processorsComputer, 35(2):40-49, Feb 2002.
[10] J. Jann, P. Pattnaik, H. Franke, F. Wang, J. SkoviraJaRiodan. Modeling of workload in MPPs. liob Scheduling
Strategiesfor Parallel Processing, pp. 95-116. Springer Verlag, 1997. LNCS vol. 1291.
[11] D. Lifka. The ANL/IBM SP scheduling system. liob Scheduling Strategies for Parallel Processing, pp. 295-303.
Springer-Verlag, 1995. LNCS vol. 949.
[12] U. Lublin and D. G. Feitelson. The workload on parall@bercomputers: Modeling the characteristics of rigid jahs
Parallel & Distrib. Comput., 63(11):1105-1122, Nov 2003.
[13] J. Mache, V. Lo, and S. Garg. Job scheduling that mingsizetwork contention due to both communication and 1/O.
In 14th Intl. Parallel & Distrib. Proc. Symp., pp. 457—-463, May 2000.
[14] S. S. Mukherjee, S. K. Reinhardt, B. Falsafi, M. Litzkdw, D. Hill, D. A. Wood, S. Huss-Lederman, and J. R. Larus.
Wisconsin Wind Tunnel II: A fast, portable parallel arcloiiere simulator.|EEE Concurrency, 8(4):12—-20, Oct-Dec
2000.

22

[15] S. L. Scottand G. S. Sohi. The use of feedback in multpssors and its application to tree saturation contetE
Trans. Parallel & Distributed Syst., 1(4):385-398, Oct 1990.
[16] J. Skovira, W. Chan, H. Zhou, and D. Lifka. The EASY - Laadeler API project. In D. G. Feitelson and L. Rudolph,

editors,Job Scheduling Strategies for Parallel Processing, pages 41-47. Springer-Verlag, 1996. Lect. Notes Comput.
Sci. vol. 1162.

[17] D. Talby. A User-Based Model of Parallel Workloads. PhD thesis, Department of Computer Science, Hebrew Uni-
veraity, in preparation.

[18] A.Wong, L. Oliker, W. Kramer, T. Kaltz, and D. Bailey. Sggm utilization benchmark on the Cray T3E and IBM SP2.
In Job Scheduling Strategiesfor Parallel Processing, pp. 56—67. Springer Verlag, 2000. LNCS vol. 1911.

[19] J. Zilber, O. Amit, and D. Talby. What is worth learningi parallel workloads? a user and session based analysis. |
Proc. 19th Intl. Conf. Supercomputing, pp. 377—386, Jun 2005.

23

