
Why Is Recursion Hard to Comprehend?
An Experiment with Experienced Programmers in Python

Aviad Baron

aviad.baron@mail.huji.ac.il

The Hebrew University

Jerusalem, Israel

Dror G. Feitelson

feit@cs.huji.ac.il

The Hebrew University

Jerusalem, Israel

ABSTRACT

Recursion has the reputation of being hard to teach and understand.

Our goal is to identify precisely what it is about recursion that

makes it hard, and use this to devise a systematic teaching plan. We

first make a distinction between regular recursion and tail recursion

— the special case where the recursive call is the last command that

is executed by the function. Tail recursion is the preferred form

used in functional programming, because it simplifies memory man-

agement, and we hypothesize that it is also easier to understand.

We conducted a controlled experiment with 139 participants, in

which they were asked to understand different recursive functions.

This revealed that tail recursion, when it is natural to use, is indeed

easier to understand than the more general form of recursion where

significant processing is performed after the recursive call. But it

also showed that using tail recursion may come with a price, as

when achieving the tail form requires a transformation of the code

that obfuscates the underlying recursive algorithm. We conclude

that having significant processing after the recursive call, or dis-

torting the code so as to remove such processing, are major factors

that make recursion hard. We therefore suggest to start teaching

recursion with a basic form of tail recursion, and then progress

to more complicated cases with processing after the recursive call.

Transformations to tail form should be taught last, if at all.

CCS CONCEPTS

• Theory of computation→ Functional constructs; • Software

and its engineering → Designing software; • General and

reference → Experimentation.

KEYWORDS

Recursion, Code comprehension, Computer science education

ACM Reference Format:

Aviad Baron and Dror G. Feitelson. 2024. Why Is Recursion Hard to Com-

prehend? An Experiment with Experienced Programmers in Python . In

Proceedings of the 2024 Innovation and Technology in Computer Science Edu-

cation V. 1 (ITiCSE 2024), July 8–10, 2024, Milan, Italy. ACM, New York, NY,

USA, 7 pages. https://doi.org/10.1145/3649217.3653636

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ITiCSE 2024, July 8–10, 2024, Milan, Italy

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0600-4/24/07. . . $15.00

https://doi.org/10.1145/3649217.3653636

1 INTRODUCTION

Recursion is a fundamental construct both in the theory of program-

ming and for actually writing code. Recursion has been explored

from various angles over the years. Several have highlighted the

significant challenges involved in teaching and understanding re-

cursion [10–12, 15, 17, 19–22]. They point out that recursion is “one

of the most universally difficult concepts to teach” [7].

Some researchers compared the comprehension of recursive and

iterative code, and tried to analyze the difficulties in understanding

recursive code [2–4, 13, 16]. Benander et al. studied students’ ability

to comprehend recursive and iterative codes in Pascal [3]. The codes

implemented searching in a list and list copying. Results showed

that comprehension of the recursive search procedure was faster

than that of the iterative code, with statistical significance. They

conjectured the search task might be “more naturally recursive than

the copy task; searching continues on the basis of what occurred

in the previous step, whereas copying continues independently of

what occurred in the previous step”.

McCauley et al. replicated this study in Java [16]. Unlike the

original study, the replication found that students could just as

easily comprehend the recursive and iterative search methods. They

suggest the difficulty students had in the earlier study with the

iterative search method may have been due to the way the method

was written in Pascal.

Several studies describe different mental models used by students

when they learn recursion [8, 10, 12, 14, 20]. Specifically, students

tend to understand recursion as a form on iteration, which is wrong.

George named the flow of control leading to the recursive call the

active flow, and the flow back from it the passive flow [8]. A common

mistake is when students did not follow the passive flow at all,

and simply calculated the solution at the base case [6, 9]. They

apparently have the misconception that the base case stops all the

calculation.

An important class of recursive functions are those that use

“tail recursion”. Tail recursion is defined as a recursive function in

which the recursive call is the last command that is executed by

the function. In other words, in tail-recursive functions there are

no instructions after the recursive call. We believe that this may

make them easier to understand. Tail recursion may also be more

efficient than non-tail recursion, therefore in functional languages

it is recommended to use the tail form.

Only few previous studies have focused specifically on compar-

ing the understanding of tail recursion to non-tail recursion. This

comparison can shed light on what makes recursion a challenging

concept to students to understand. Therefor, we designed an experi-

ment that deals with understanding different types of tail recursion

versus non-tail recursion.

https://orcid.org/0000-0002-2733-7709
https://doi.org/10.1145/3649217.3653636
https://doi.org/10.1145/3649217.3653636

ITiCSE 2024, July 8–10, 2024, Milan, Italy Aviad Baron and Dror G. Feitelson

Our results indicate that tail recursion is indeed more readable

when the embedded recursion containsmany non-trivial commands

after the recursive call. However, there are cases of recursion that

formally is not tailed, but which include only one simple operation

after the recursive call. In these cases, if one transforms the code

to achieve tail form, this transformation makes the code harder

to understand. Specifically, a common methodology to create tail

recursion is to add an “accumulating variable” parameter to the

function. This parameter is passed to recursive calls and serves

as the place where the answer is built up. When the termination

condition is reached, the final result is available in the accumulator

and is simply returned with no further processing. But this is a

somewhat artificial structure, and therefore harder to understand.

Our main contributions in this work are the following:

• Unlike previous studies, we examine understanding of re-

cursion among experienced developers, and show that it is

hard also for them;

• We compare understanding tail recursion and embedded

recursion, and the implications of this comparison for the

question of why recursion is difficult to teach and under-

stand;

• We identify significant computation after the recursive call

as an important factor in making the recursion harder to

understand;

• We identify the use of additional parameters as an important

factor that can make tail recursion difficult;

• We suggest that these results have implications for teaching

recursion, and in particular the importance of presenting

a wide variety of different examples in an order that helps

build a full understanding of the concept of recursion.

2 RESEARCH QUESTIONS

Our work centers on the distinction between tail and non-tail recur-

sion. But we do not expect one style to be globally preferable over

the other. Our research questions therefore concern the factors that

may affect which style is easier to understand:

(RQ1) Is tail recursion easier to understand than non-tail recursion?

What factors have an effect on this comparison?

(RQ2) Does the use of an accumulating variable increase the diffi-

culty of understanding tail recursion? Are base conditions in

tail recursion with accumulating variables harder to write?

(RQ3) Can the use of an intermediate variable to separate the pro-

cessing from the recursive call alleviate the difficulty of un-

derstanding recursion?

3 EXPERIMENTAL DESIGN AND EXECUTION

3.1 Experimental Materials

The experiment consisted of comprehension questions applied to

various code snippets. The codes are all concerned with list pro-

cessing using different nuances of recursion. In most cases these

are native Python lists, and in one case regular linked lists.

All the code snippets were written for the experiment, taking

several considerations into account. First, the code snippets should

address the research questions. Second, they should not enable par-

ticipants to deduce their functionality without really understanding

the code itself. For this reasonwe do not give the functions meaning-

ful names. Finally, they need to be short and avoid mixing different

factors.

We used four groups of code snippets, implementing solutions

to different problems. Three of these are 2×2 designs, where one
dimension is using tail or embedded recursion, and the other dimen-

sion is one of the factors we want to check. The fourth concerns un-

derstanding code with or without an accumulating variable, which

is relevant only for tail recursion.

count appearances. The first group contains four implementa-

tions of finding certain elements in a list. In addition to comparing

tail or non-tail recursion, they compare the possible use of interme-

diate variables. Specifically, in one pair of codes the identification

of the elements is embedded in the recursive call, and in the other

it is separated by using an intermediate variable. The tail version

in both cases uses an accumulating variable. These codes are used

for RQ1 and RQ3.

The following code snippet is the base case. It implements regular

recursion without an intermediate variable:

1 de f func (l s t , x) :
2 i f l e n (l s t) == 0 :
3 r e t u r n 0
4 r e t u r n (1 i f l s t [0] == x e l s e 0)
5 + func (l s t [1 :] , x)

The following code is an example of the other cases. This one

implements the version with tail recursion (the recursive call is

the last thing in the function) and using an intermediate variable

(called w) to identify list elements before the recursive call.

1 de f func (l s t , x , w=0) :
2 i f l e n (l s t) == 0 :
3 r e t u r n w
4 cu r r en t _ coun t = 1 i f l s t [0] == x e l s e 0
5 r e t u r n func (l s t [1 :] , x , w + cu r r en t _ coun t)

reverse list and reverse Py list. The second group are four

implementations of reversing a list. In addition to comparing tail or

non-tail recursion, they compare the possible use of a Pythonic list

implementation or a regular linked list implementation. The tail

version in both cases uses an accumulating variable. These codes

are used for RQ1.

The first of the four code snippets, using regular recursion on a

linked list, is:

1 de f func (c u r r) :
2 i f (c u r r == None) :
3 r e t u r n cu r r
4 i f (c u r r . nex t == None) :
5 r e t u r n cu r r
6 nex t = cu r r . nex t
7 r e s t = func (nex t)
8 nex t . nex t = cu r r
9 c u r r . nex t = None
10 r e t u r n r e s t

The second, using tail recursion on a linked list, is:

1 de f func (cur r , p rev = None) :
2 i f c u r r . nex t i s None :

Why Is Recursion Hard to Comprehend? ITiCSE 2024, July 8–10, 2024, Milan, Italy

3 c u r r . nex t = prev
4 r e t u r n cu r r
5 nex t = cu r r . nex t
6 c u r r . nex t = prev
7 r e t u r n func (next , c u r r)

The versions using Python lists are shorter, as they do not need

to manipulate pointers explicitly. The tail recursion one is:

1 de f func (l s t , r e s u l t = []) :
2 i f l e n (l s t) == 0 :
3 r e t u r n r e s u l t
4 r e t u r n func (l s t [: − 1] , r e s u l t + [l s t [− 1]])

all numbers. The third code group includes only two code snip-

pets, both of which are versions of tail recursion. The functionality

of both is to check if all elements in the list are numbers. One uses

tail recursions where the results is accumulated in a special variable,

and returned this variable when the termination condition was met.

The other uses a different tail call optimization without the need

for an accumulator variable. This is used for RQ2.

The code without the accumulating variable is:

1 de f func (l s t) :
2 i f l s t == [] :
3 r e t u r n True
4 e l i f i snumber (l s t [0]) :
5 r e t u r n func (l s t [1 :])
6 e l s e :
7 r e t u r n F a l s e

The code with the accumulating variable is:

1 de f func (l s t , r e s u l t = True) :
2 i f l s t == [] :
3 r e t u r n r e s u l t
4 e l s e :
5 r e t u r n func (l s t [1 :] ,
6 r e s u l t and isnumber (l s t [0]))

Base case completion. Finally, the fourth group has four incom-

plete code snippets, where participants are required to complete

the base condition of the recursion. Two are tail recursion and two

are non-tail recursion, with the tail versions using accumulating

variables. Note that in both cases, the description of the function-

ality was presented with the question, and the participants were

only asked to complete the base case conditions. These codes are

used for RQ1 and RQ2.

The firs pair calculates the length of a list. The code for the

embedded recursion version is the following, with ?? representing
the part that the experiment participants were required to complete:

1 de f l i s t _ l e n (l s t) :
2 i f l e n (l s t) == 0 :
3 r e t u r n ? ?
4 r e t u r n 1 + l e n _ l i s t (l s t [1 :])

The tail recursion version is:

1 de f l i s t _ l e n (l s t , w = 0) :
2 i f l e n (l s t) == 0 :
3 r e t u r n ? ?
4 r e t u r n l i s t _ l e n (l s t [1 :] , w + 1)

The second pair is the same: a embedded recursion and a tail

recursion, where participants need to complete the base case. The

only difference is in the problem being solved, which is summing

the number of occurrence of numerical characters in all the strings

in a list of strings. These codes are used for RQ1 and RQ2.

3.2 Experimental Task

The task presented to the experiment participants was to provide

a short description of the functionality of the code snippets. This

represents a higher level of comprehension than just saying what

a code prints, which can be achieved by tracing the code without

really understanding it.

The descriptions given by the participants were graded on a

binary scale of “correct” as opposed to “incorrect”. This was based

on an agreed rubric of the minimal information that an answer

should include.

3.3 Experiment Execution

The experiment was conducted online, using the Qualtrics plat-

form. This platform supported all the features we needed: question

selection randomization and questions order randomization.

We recruited the participants through various methods, includ-

ing reaching out to university students who were simultaneously

working in the industry, distributing the survey link within a What-

sApp group of developers, contacting industry colleagues, and us-

ing online reddit forums for programmers. A total of 139 partici-

pants took part in the study and responded to at least one question.

Among them, 89 reported their gender, with 81 identifying as male

and 8 as female. Additionally, educational backgrounds were re-

ported by 82 participants, with 52 holding a BSc degree, 17 holding

an MSc degree, 9 holding a PhD, and 4 indicating only a high school

education. 85 reported their years of experience as follows: 23 had

0-2 years of experience, 51 had 3-10 years of experience, and 11

had more than 10 years of experience. This raises the question of

whether results from experienced developers also apply to novices

and students who are just learning about recursion. We believe that

they are, because recursion is a relatively rarely-used construct,

so even experienced developers most probably do not have much

experience with recursion.

The experiment started with an introductory page explaining

that the experiment is about comprehension of recursive code,

and explicitly targeted developers with a background in Python to

ensure that they are familiar with Python syntax. We also noted

that the expected time to complete the experiment was 10 to 15

minutes. This time estimate was based on the performance of the

pilot participants. Participation was completely anonymous, and no

identifying information was collected. We received IRB approval to

conduct an experiment involving humans. Informed consent was

explicitly implied by moving on the the experiment questions.

Each participant received one snippet from each of the four

groups described above, selected at random. After the code ques-

tions we added an explicit question about searching for data on

Google. The goal of this question was to neutralize the effects of

unfamiliarity with a specific concept. Participants who reported

using Google were excluded from the analysis.

ITiCSE 2024, July 8–10, 2024, Milan, Italy Aviad Baron and Dror G. Feitelson

Figure 1: CDF of time for correct answers to count appear-

ances, tail (N=26) vs. non-tail (N=30).

4 RESULTS

We have two types of results for each code snippet: correctness and

time. The graphs below show the cumulative distribution function

(CDF) of the time to correct results. The distributions are truncated

at 5 minutes. This is a reasonable limit because the codes are short

and simple, and are nearly universally understood in 1–2 minutes.

We represent incorrect results by assigning them a time of infinity.

As a result the CDFs converges to the fraction of correct results

instead of to 1. In other words, one can see the fraction of incorrect

results as the difference between the end of the graph and 1.

For example, the graphs in Figure 1 should be read as follows.

The tail recursion version (the orange line) is more to the right than

the embedded recursion version (the blue line). This means that the

distribution of times is shifted a bit towards higher values. It also

converges to a lower value of around 0.8. This means that there

were around 20% wrong answers. The combination of these two

observations indicates that the tail recursion version was harder to

comprehend: it took more time and led to more errors.

4.1 Tail vs. Non-Tail Recursion

Commencing with the examination of RQ1, we delve into the com-

parison of tail-recursive and non-tail-recursive functions. To ex-

plore this aspect, we utilize various pairs of code samples. Figure

1 illustrates that, in the context of the count appearances sce-

nario, tail-recursive implementations exhibit approximately triple

the number of errors compared to their non-tail counterparts, while

also demonstrating slightly increased comprehension time. We in-

terpret these findings to suggest that embedded (non-tail) recursion

has a slight advantage over tail recursion when only a single un-

complicated operation follows the recursive call.

Different results are observed in the reverse list scenario. The

results in Figure 2 indicate that this problem is harder than the

previous one: it took more time and led to more errors. But in

this case understanding the tail recursion is much faster than the

embedded recursion. We conjecture that this is because changing

the structure of the list requires many non-trivial operations after

the recursive call. The reader of the code needs to keep this in mind

to form a complete picture of what is happening, and this is hard.

This conjecture finds further support when comparing it with

the second version of this problem, reverse Py list. In this case, the

Figure 2: CDF of time for correct answers to reverse list,

tail (N=22) vs. non-tail (N=33).

Figure 3: CDF of time for correct answers to reverse Py list,

tail (N=32) vs. non-tail (N=31).

programming problem remains identical, but a Python list is used

instead of a linked list. The results displayed in Figure 3 reveal that,

in this case, the embedded version performs significantly faster. This

discrepancy can be attributed to Python’s abstraction of pointer

manipulations, rendering the operations following the recursive

call simpler and more straight-forward.

4.2 Using Accumulator Variables

The same set of results is applicable to RQ2, which pertains to the

use of accumulating variables. In certain cases, such variables are

necessary to transform a recursive function into a tail-recursive

one. Specifically, the results in Figure 1 show that the tail version

utilizing an accumulating variable exhibits slightly increased com-

prehension time.

A direct comparison between tail recursion with and without

an accumulating variable is available in the all numbers scenario.

The results can be found in Figure 4. It’s evident that the version

with accumulating variables takes a longer time, corroborating the

results mentioned above. There is no effect on correctness.

Using accumulator variable also has an effect on understanding

the base case of tail recursion compared to the base case of embed-

ded recursion. Understanding the base case has been recognized

as indicative for understanding recursion [6, 21]. To check this we

used two question where participants had to complete the base case

Why Is Recursion Hard to Comprehend? ITiCSE 2024, July 8–10, 2024, Milan, Italy

Figure 4: CDF of time for correct answers to all numbers

versions of tail recursion with (N=57) and without (N=53) an
accumulating variable.

Figure 5: CDF of time for correct answers when completing

the base case of calculating the length of a list, comparing

tail (N=23) vs. non-tail (N=26) recursion.

Figure 6: CDF of time for correct answers when completing

the base case of counting numeric characters, comparing tail

(N=22) vs. non-tail (N=15) recursion.

rather than understand a given code.

As can be seen in both Figures 5 and 6, the tail-recursive version

was more challenging to complete in terms of timing and signif-

icantly more complex in terms of errors. So, in practice the base

case in tail recursion is one of the challenging aspects of grasping

Figure 7: CDFs of time for correct answers for recursive code

with (N=26) and without (N=30) intermediate variables. The

results combine embedded and tail versions of count ap-

pearances.

the concept, and appears to be less intuitive than the base case in

non-tail recursion. This is perhaps because we are accustomed to

thinking that the base case handles the smallest sub-problem, and,

therefore, returns the answer to this small problem only. But when

using accumulator variables, the base case actually returns the ac-

cumulated result of the whole calculation, not just of the smallest

sub-problem, which may be confusing. This has implications for

instruction and teaching recursive thinking, emphasizing the type

of thinking required in this context and drawing attention to the

fact that the base case can indicate the comprehension of the code

in this context.

4.3 Using Intermediate Variables

In RQ3 we consider the use of intermediate variables to separate

the processing of each element from the recursive call, which may

make the code simpler to understand. Figure 7 shows that, at least

in this case, it did not help. For half of the participants, and specifi-

cally those that reached a correct answer quickly, it did not matter

whether the code used an intermediate variable or not. But for

others the version with an intermediate variable took more time,

or led to more mistakes in comprehension.

The reason may be that this case is actually rather simple, so

adding code for the intermediate variable was detrimental rather

than beneficial. Using intermediate variables may perhaps have

a positive effect in more complicated cases, but this needs to be

checked. A similar result, that intermediate variables only help in

hard cases, was obtained by Cates et al. in the context of expressions

unrelated to recursion [5].

5 THREATS TO VALIDITY

Construct validity. We measured the difficulty of understand-

ing different recursive codes by measuring time and checking the

correctness of the answers. This faces two threats. First, ‘under-

standing’ is not directly observable. We use a common proxy of

explaining the functionality of code, which is very close (up to

the need to judge the explanation and how closely it corresponds

to the true functionality). Second, ‘difficulty’ is also not directly

observable. We assume difficulty is reflected in time to solution and

ITiCSE 2024, July 8–10, 2024, Milan, Italy Aviad Baron and Dror G. Feitelson

in correctness, which are commonly used proxies [18]. However,

there have been indications that they are not always correlated,

because correctness may also be impaired by unmet expectations

[1]. We therefore measure both, and in our case they are indeed

correlated, thereby providing a measure of support for each other.

Internal validity. Internal validity is endangered when there are

alternative explanations of the results. In our case, an example of

such a risk would be using a functional language in which tail recur-

sion elimination is an inbuilt feature. In such languages developers

may be accustomed to solving certain cases with tail recursion, mak-

ing it the natural choice and giving it an advantage over embedded

recursion. To reduce this threat we conducted the experiments in

Python, in which use of both tail and embedded recursion is not

widely popular, making it less biased in favor of either approach.

The programmers we recruited have industry experience, which

sets them apart from a specific paradigm they might have been

exposed to in academic courses.

External validity. There are a lot of cases and examples of re-

cursions and tail recursion. Our research examined only a limited

number of basic examples. It’s important to acknowledge that the

results for the expression we employed may not necessarily gener-

alize to other scenarios of embedded recursion, tail recursion, filter,

reduce, etc.

6 IMPLICATIONS FOR TEACHING

RECURSION

This research illustrates how recursion continues to be a complex

issue even for experienced developers. Our observations can also

make a significant contribution to the teaching of recursion. Prior

researchers claimed that “Students need to be shown a wide range

of recursive problems, particularly embedded recursive functions

with commands that have to be executed after the recursive call”

[20]. We agree, but augment this recommendation with a detailed

suggestion of the order that concrete examples should be taught.

Both past studies and our study indicate that tail recursion in its

basic form is the easiest to understand. It requires an understanding

of the basic concept of recursion, but without additional difficulties.

More advanced examples of recursion require an understanding

that the calculation does not end when the termination condition

is reached, and continues after the recursive call.

Based on our experiment we distinguish three levels. The first is

when there are no additional commands after the recursive call, as

in tail recursion. The second is where the recursion is formally not

a tail recursion, because it has some processing after the recursive

call, but this processing is trivial so it is easy to follow. Only the

third is recursion that is more difficult to follow, with many non-

trivial commands that are executed after the recursive call. This

distinction has not been emphasized enough in previous work.

Based on the above considerations, we suggest that recursion be

taught in four steps:

(1) First, teach the basic idea of a function that calls itself. This

includes the need for a termination condition. It should be

done using the simplest examples possible, which are prob-

lems that are naturally solved using tail recursion. These are

similar to iterative solutions, so should be easy to understand

for novices [2]. An example is searching a list for a certain

element.

(2) Second, emphasize the importance of the passive flow, and

the return to additional processing after the recursive call. It

should be done with simple examples with trivial computa-

tion after the recursive call, which still resembles iteration

and is therefore easy to follow. Calculating the factorial is

the classical example. The non-tail recursive version of the

count appearances problem from our experiment can also

be used.

(3) Third, challenge the students with more complex forms of

recursion, which require a more advanced mental model

than iteration. An example is reversing a linked list as de-

scribed above. This is a good example because the recursion

is still linear, and the difficulty in monitoring lies in the fact

that there are many commands that are executed after the

recursive call. Additional example of such cases can be found

in [20]. It is important to also teach multiple recursion with

a constant number of calls (as when traversing a binary tree,

or calculating the Fibonacci sequence) and when the number

of recursive calls is not constant, including the case that the

recursive call is in a loop. An example is to check if an input

string (e.g. “schoolbus”) can be segmented into sub words
1
.

(4) Tail recursion is important for functional programming, so

transformations to tail form should also be taught. Our exper-

iment showed that sometimes such transformations cause

difficulties. Therefore emphasis should be placed on trans-

formation methods and above all on the use of accumulating

variables. Good examples from our experiment are all num-

bers and the calculation of the length of a list.

Only by exposing students to a wide variety of recursions will it

be possible to ensure that they develop the full cognitive model

necessary for understanding recursion.

7 CONCLUSIONS

The comparison of tail recursion to embedded recursion exposes

the computation after the recursive call as a factor that may make

recursion hard to understand. Tail recursion resembles iteration,

and aligns more closely with our intuitive mental models. In con-

trast, embedded recursion with a non-trivial computation after the

recursive call introduces complexities that require a deeper, often

less intuitive, mental model to navigate. But cases with a trivial

computation after the recursive call, for example when the last

instruction in the function is an expression that includes the recur-

sive call, enjoy the cognitive advantage of tail recursion, in that

you already know what the function does when you encounter the

recursive call.

These observations suggest a natural progression for teaching

the basic elements of recursion. Start with tail recursion to intro-

duce the idea. Add a trivial computation after the recursive call

to distinguish recursion from iteration. Only after these are es-

tablished show the full force of recursion with more complicated

examples. Our future work is to test this in a course setting.

The experimentalmaterials are available at 10.5281/zenodo.10846692.

1
e.g. https://www.geeksforgeeks.org/word-break-problem-dp-32/

Why Is Recursion Hard to Comprehend? ITiCSE 2024, July 8–10, 2024, Milan, Italy

REFERENCES

[1] S. Ajami, Y. Woodbridge, and D. G. Feitelson. Syntax, predicates, idioms — what

really affects code complexity? Empirical Software engineering, 24(1):287–328,

Feb 2019.

[2] A. Baron andD. G. Feitelson. How a data structure’s linearity affects programming

and code comprehension: The case of recursion vs. iteration. In 34th Workshop

Psychology of Programming Interest Group (PPIG), Aug 2023.

[3] A. C. Benander, B. A. Benander, and H. Pu. Recursion vs. iteration: An empirical

study of comprehension. J. Syst. Softw., 32(1):73–82, 1996.

[4] A. C. Benander, B. A. Benander, and J. Sang. An empirical analysis of debugging

performance - differences between iterative and recursive constructs. J. Syst.

Softw., 54(1):17–28, 2000.

[5] R. Cates, N. Yunik, and D. G. Feitelson. Does code structure affect comprehension?

on using and naming intermediate variables. In 29th IEEE/ACM Intl. Conf. Program

Comprehension, pages 118–126. IEEE, 2021.

[6] D. Dicheva and J. Close. Mental models of recursion. J. Educational Computing

Research, 14(1):1–23, 1996.

[7] J. Gal Ezer and D. Harel. What (else) should CS educators know? Communications

of the ACM, 41(9):77–84, Sep 1998.

[8] C. E. George. EROSI - visualising recursion and discovering new errors. In Proc.

31st SIGCSE Technical Symp. Computer Science Education, pages 305–309, 2000.

[9] T. Götschi, I. D. Sanders, and V. Galpin. Mental models of recursion. In Proc. 34th

SIGCSE technical symp. Computer science education, pages 346–350, 2003.

[10] J. E. Greer. A comparison of instructional treatments for introducing recursion.

Computer Science Education, 1(2):111–128, 1989.

[11] B. Haberman and H. Averbuch. The case of base cases: Why are they so difficult

to recognize? Proc. 7th Conf. Innovation & Tech. in Comput. Sci. Education, pages

84–88, 2002.

[12] H. Kahney. What do novice programmers know about recursion. Proc. SIGCHI

Conf. Human Factors in Computing Systems, page 235–239, 1983.

[13] C. Kessler and J. Anderson. Learning flow control: Recursive and iterative

procedures. Human-Computer Interaction, 2(2):135–166, 1986.

[14] N. Kiesler. Mental models of recursion: A secondary analysis of novice learners’

steps and errors in Java exercises. In 33rd Workshop Psychology of Programming

Interest Group, pages 226–240, 2022.

[15] E. Lee, V. Shan, B. Beth, and C. Lin. A structured approach to teaching recursion

using cargo-bot. In 10th Conf. International Computing Education Research, page

59–66, July 2014.

[16] R. A. McCauley, B. Hanks, S. Fitzgerald, and L. Murphy. Recursion vs. iteration:

An empirical study of comprehension revisited. In 46th ACM Tech. Symp. Comput.

Sci. Education, pages 350–355, 2015.

[17] C. Mirolo. Is iteration really easier to learn than recursion for CS1 students? In

Proc. 9th Conf. International Computing Education Research, pages 99–104, Sept

2012.

[18] V. Rajlich and G. S. Cowan. Towards standard for experiments in program

comprehension. In 5th International Workshop on Program Comprehension, pages

160–161, Mar 1997.

[19] I. D. Sanders, V. Galpin, and T. Götschi. Mental models of recursion revisited. In

11th Innovation & Tech. in Comput. Sci. Education, pages 138–142, Jun 2006.

[20] T. L. Scholtz and I. D. Sanders. Mental models of recursion: investigating students’

understanding of recursion. In 15th Innovation & Tech. in Comput. Sci. Education,

pages 103–107, Jun 2010.

[21] J. Segal. Empirical studies of functional programming learners evaluating recur-

sive functions. Instructional Science, 22:385–411, 1995.

[22] S. Wiedenbeck. Learning iteration and recursion from examples. International

Journal of Man-Machine Studies, 30(1):1–22, January 1989.

	Abstract
	1 Introduction
	2 Research Questions
	3 Experimental Design and Execution
	3.1 Experimental Materials
	3.2 Experimental Task
	3.3 Experiment Execution

	4 Results
	4.1 Tail vs. Non-Tail Recursion
	4.2 Using Accumulator Variables
	4.3 Using Intermediate Variables

	5 Threats To Validity
	6 Implications for Teaching Recursion
	7 Conclusions
	References

