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Abstract

The Top500 list lists the 500 most powerful computers installed worldwide, and

has been updated semiannually for the last 10 years. Analyzing this data enables an

impartial analysis of the current state and the development trends of the supercomputer

industry, and sheds some light on the challenges which it faces.

Introduction

High-performance computing is now widely considered a strategic asset. The supercom-

puter industry, as the creator of this capability, is therefore very important, and is often also

a source of national pride. At the same time, this industry has traditionally been a leader

in the development of computer technology. It is therefore interesting to analyze the state

of this industry and its development trends. Luckily, data for such an analysis is avail-

able in the form of the Top500 list, which now covers 10 years. By identifying invariants

and trends in this data, we can predict growth rates, comment on technology, and identify

limiting factors.

The Top500 List

In 1986, Hans Meuer started publishing lists of system counts for different supercomputer

vendors. Even earlier, in 1979, Jack Dongarra formulated the Linpack benchmark, and
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started using it to gauge the capabilities of various models and configurations of computers

manufactured by different vendors [4]. in 1993 these two efforts led to the establishment

of the Top500 list. This lists the 500 most powerful computer systems installed around the

world in rank order. The emphasis on actual installations is crucial: it added a dimension

of market success, and removed (or at least significantly reduced) the clutter caused by

numerous computer models and configurations that were offered but not used.

The list of the top ranking 500 installations worldwide has been updated twice a year,

in June and November, ever since [5]. Over the years the list has gained in reputation, with

national labs vying to host machines that contend for the top spot. It has been used to gauge

the standing of different vendors and different countries in terms of the production and use

of supercomputers, and also to comment on the state of the industry as a whole [7, 2, 12].

However, the list is not without its shortcomings. Chief among them is the use of the

Linpack benchmark to rank the machines. This benchmark focuses on dense matrix opera-

tions, and tends to report optimistic performance figures that are closer to peak performance

than those typically observed in practice using some production applications. Moreover, it

may be that the discrepancy between the Linpack measurements and the performance as

measured by other applications is different for different classes of computers, so the rela-

tive ranking would be different when using other benchmarks. In addition, Linpack is not

a throughput benchmark, and there is no regard for the efficiency of the work done or to

loss of resources to fragmentation when multiple jobs are executed concurrently. Finally, it

does not take cost into account [3, 9, 11, 15, 10].

Nevertheless, Linpack has the advantage that it is easily ported and measured, making

the Top500 list the only list of its kind. And the accumulated data from 10 years allows

for some interesting insights, that are at least partly independent of the actual mechanism

used for the ranking. In the following analysis we use the November lists, and denote the

maximal computation rate achieved on the Linpack benchmark by Rmax.

Ranking and Performance Predictions

It has been widely observed that the performance of machines at a certain rank, and of the

list as a whole, grows exponentially with time. This can be seen by tabulating the log of

Rmax values as a function of year for a given rank, which leads to a straight line (Figure

1). The slope, however, depends on rank: performing a linear regression on data from 1997

to 2003, Rmax doubles every 13.5 months for the rank 500 machines, but only every 16.6
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Figure 1: Increase in computational power with time, as measured using Linpack.
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Figure 2: Distribution of computing power across the lists.

months for the rank 16 machines (the data at the very highest ranks is too noisy for an

accurate estimate). In other words, the bottom of the list is improving faster than the top.

In any case, the rate across the list is somewhat lower than the doubling every year reported

in the past [7]. But it is still faster than the doubling every 18 months predicted by Moore’s

Law.
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By tabulating the Rmax values as a function of rank on log-log axes, we find that the

computational power drops off polynomially with rank (Figure 2). To measure this, we

perform a least-squares regression starting from position 32 to the end of the list (the data

near the top of the list tends to be much noisier). The results indicate that the slope of

the line is growing slightly smaller with time (except in 2000, when it grew). Again, this

means that the bottom of the list is actually growing at a slightly faster rate than the top.

The current value is about−0.67. This means that as we double the rank, the computational

power drops to about 63% of what it was at the original rank.

Based on these regularities, we can actually make crude predictions of the Rmax values

at different ranks in future years. We know Rmax grows exponentially with time. Assuming

an average time constant of about 1.15 years, we can write

Rmax(r, t) = Rmax(r, t0) 2(t−t0)/1.15

where Rmax(r, t) is the Linpack rating at rank r at time t, Rmax(r, t0) is the rating at this

rank at time t0, and t and t0 are measured in years. We also know that log(Rmax) drops

linearly with log(rank), with a slope of about −0.7,

log(Rmax(r)) = C − 0.7 log r

which leads to

Rmax(r) = C ′/r0.7

Using this to calculate the Rmax value at a rank that is a factor of α higher we get

Rmax(αr) = C ′/(αr)0.7 = Rmax(r)/α0.7

implying that Rmax changes by a factor of 1/α0.7. Putting all the above together we then

get the approximate expression

Rmax(r, t) = Rmax(r0, t0) (r0/r)
0.7 2(t−t0)/1.15

As an example, let’s use the Rmax of the rank 500 machine in 1997, which is 9513, to esti-

mate the Rmax of the rank 100 machine in 2003. The formula gives 9513 (500/100)0.7 26/1.15 =

1, 091, 848. The true value is 1,142,000, so the error is less than 5%.

If the slope of log(Rmax) by log(rank) does indeed decrease, the consequence is that

machines will tend to fall off the list faster, and the list will end up dominated by new
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year new machines

1993 110

1994 206

1995 243

1996 253

1997 319

1998 276

1999 325

2000 307

2001 292

2002 306

2003 333

Table 1: The number of new entries in the list each year.

machines. To a degree, this is already the case, and has been for a long time: The number

of machines in the list drops off exponentially with age [7], and more than half the list is

new each year. However, the number of new machines has been relatively static at around

300 at least since 1997 (Table 1). If it grows, it may make sense to increase the length

of the list to some number higher than 500. This is also desirable since the prevalence of

certain machine models and configurations leads to long stretches of constant values in the

current lists.

Vectors and Micros

Much publicity had been given in 2002 to the capture of the top spot by Japan’s Earth

Simulator [6], after several years of dominance by American ASCI machines. This has also

re-ignited the controversy regarding the use of proprietary vector processors as opposed to

commodity microprocessors. NEC, the creator of the Earth Simulator, has pursued the

vector path originally developed by Cray Research, as have other Japanese firms. Most

American companies have preferred to use commodity microprocessors, including Cray

itself in its T3D and T3E models. The Top500 list has been used repeatedly to show that

vector machines are loosing ground to those based on commodity microprocessors (e.g.

[2]). But will the Earth Simulator and the recent introduction of the X1 line of vector
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Figure 3: Share of machines, processors, and cycles held by vector machines.

machines by Cray herald a new era of vector processing?

The truth of the matter is somewhat complex. Figure 3 shows the share of machines,

processors, and cycles held by vector machines in the last 10 years. The number of vector

machines has indeed dropped precipitously. But the share in cycles, as expressed by the

Rmax performance values, has stabilized at about 12–15% of the total since 1998, and sur-

passed 18% when the Earth Simulator was introduced in 2002 (and, if we accept the claim

that Linpack over-estimates the capability of microprocessor-based machines on various

important applications, these numbers should actually be larger).

Interestingly, the share of installed processors has remained relatively constant through-

out the 10-year period. As vector processors are generally much more powerful, there were

always many fewer of them, even when vector machines dominated the list. In the mid ’90s

the other processors were part of massively parallel SIMD machines, and now they are the

commodity microprocessors installed in large parallel machines and clusters.

Other interesting data is provided by focusing on the bottom end of the list, and tracking

the minimal number of processors needed to make the list. The results, shown in Figure

4, indicate that for microprocessor-based machines this number doubles every three years

(as predicted based on much less data in [7]). This explains the finding that the power of

installed supercomputers grows faster than that of desktop machines: it is the product of

improvements due to Moore’s law and using increasing numbers of processors [13] (note
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Figure 4: Maximal and minimal degrees of parallelism represented in the list compared to

the minimal number of microprocessors needed and to the parallelism at the top rank.

also that even vector machines have required multiple processors to make the list since

1997). This applies across the list, as witnessed by the fact that the ratio of the Rmax value

of the rank 100 machine to that of the last machine has been remarkably stable at around 3

since 1996.

Comparing the minimal size of microprocessor-based machines with the minimal par-

allelism in the list, we find that the latter grows faster than the former (Figure 4). As the

minimal parallelism is invariably achieved using vector processors, the higher slope indi-

cates that vector processors are improving at a slower rate than microprocessors. If they

continue at the same rate, the two lines are expected to cross around 2009. Alternatively,

the two types may converge as innovations initially developed for vector processors are

incorporated in microprocessor designs.

Limiting Factors

The capabilities of top-ranked machines are the product of how many processors they have

and what each one can do. Figure 4 also shows the biggest and top-ranking machines in

the Top500 list. Since 1997, it seems that there is a sort of glass ceiling that prevents

systems with more than about 10,000 processors. The significance of this bound is that it
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limits potential performance improvements by microprocessor-based machines at the top

of the list to the doubling every 18 months due to Moore’s law; and even this rate is being

questioned as chip feature sizes are approaching the atomic scale and manufacturing costs

are in the billions of dollars [14]. The bottom of the list, meanwhile, is growing faster by

increasing the number of processors used.

There are three main factors that limit the number of processors used in large-scale

machines. One possible factor is cost. Large scale machines obviously cost a lot of money,

with Japan’s Earth Simulator coming in at about 350 million dollars. The cost issue is the

main motivation for the growth of clusters as an alternative to vendor machines [2]. A few

years ago clusters were small-scale endeavors constructed by individual research groups.

In the 2003 Top500 list, they occupy 7 of the top 10 slots, and account for more than 40%

of the listed systems. As such large-scale clusters are much less expensive than previous

vendor machines, cost cannot explain the 10,000 processor limit.

The second limiting factor is management. This includes two components. One is

general management of the machine by its operators, including configuration management,

identifying and replacing faulty parts, etc. The other is on-line management by a combina-

tion of daemons and operating system services, including runtime support and scheduling.

It seems that these management issues may be the main factor that imposes the 10,000 pro-

cessor limit. Improved management, and especially improved fault tolerance, are needed

in order to surpass this number.

An example of progress in this direction is the STORM project from LANL [8]. This is

a resource management framework that leverages the capabilities of the Quadrics intercon-

nect in order to implement extremely scalable control functions. The idea is to construct

the management software itself as a parallel application, rather than as a distributed one as

has typically been done up to now.

A third limiting factor is effective usage by applications. The problem is basically one

of the programming model employed. Current programming practices are too rigid, and

only scale effectively for very regular problems. There is a need for more dynamic and

flexible mechanisms that will support massive resources and the reallocations needed to

handle imbalance and failures (which may be seen as an extreme case of imbalance: a

failed component has zero capacity, equivalent to infinite load).

To maintain progress, and in particular to outperform the Earth Simulator using com-

modity microprocessors, the 10,000 processor bound will have to be broken. A current
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invariant prediction

Rmax grows exponentially doubling ev-

ery 14 to 17 months depending on rank

rank 500 will achieve 1 teraflop in 2005,

and rank 1 will achieve 1 petaflop in

2008 or 2009

power drops polynomially with rank,

with exponent of about −0.7

machine at rank r will remain on the list

7.2− log2.365 r years

minimal parallelism grows expo-

nentially doubling every 3 years for

microprocessor-based machines, and

every 1.5 years for vector machines

in 2009 microprocessors will have the

same power as vector processors, and

about 512 will be needed to make the list

maximum usable parallelism is 10,000 this limit will drive progress towards bet-

ter management, programming, and reli-

ability, and it will be broken

about 15% of the total Rmax is due to

vector processors

vectors might make a modest comeback

age drops exponentially in list, with

around 300 new machines each year

about 50% of machines are used by in-

dustry

current growth rate meets current needs;

new markets needed to expand usage of

parallel supercomputers

Table 2: Invariants and predictions from analysis of the Top500 list.

effort to do so is the BlueGene/L project [1], which has a design point of 65,536 processing

nodes. One component of the design is to adopt a SIMD-like style, in which large blocks

of processors are used en masse. In addition, nodes will not run a full operating system, but

rather a simplified kernel. Interestingly, these design choices are re-incarnations of ideas

that were common some 10 years ago, and have been disused in the time since.

Conclusions

The above results (and updates to [7]) are summarized in Table 2, together with predictions

based on them. In summary, a large number of parameters have remained relatively static

over several years. This does not mean that the supercomputing industry is stagnating, as
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some of the constants are exponential growth rates. But their stability over time makes it

possible to make predictions of how things will change in the future.

Apart from allowing predictions, the analysis also allows us to identify major chal-

lenges. An increasingly important challenge is how to produce more efficient management

and scheduling mechanisms, that approach the high utilization that has been typical of vec-

tor machines in the past, and at the same time use more than 10,000 processors effectively

[10, 11]. This is partly a problem of designing better runtime systems, and partly a problem

of devising more flexible programming models. These issues may be more important for

long-term progress than the architectural innovations required to achieve a petaflop.

Another challenge is to increase the use of parallel machines outside of the research

community. Investigating the fraction of machines installed in industry locations shows

that the industry share of machines has doubled since the mid ’90s, and peaked at over 52%

in 2001. This is typically taken as a good sign, showing the maturity of the supercomputing

field. However, in the last two years industry share has dropped by 10 percentage points.

Moreover, the industry share of Rmax has grown at a slower rate than its share of machines,

and now stands at 27%. Overall, these findings indicate that new markets have to be found

to further increase the use of parallel machines.
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