
The Vesta Parallel File SystemPeter F. Corbett Dror G. Feitelson�IBM T. J. Watson Resear
h CenterP. O. Box 218Yorktown Heights, NY 10598July 4, 2001Abstra
tThe Vesta parallel �le system is designed to provide parallel �le a

ess to appli
ationprograms running on multi
omputers with parallel I/O subsystems. Vesta uses a newabstra
tion of �les: a �le is not a sequen
e of bytes, but rather it
an be partitioned intomultiple disjoint sequen
es that are a

essed in parallel. The partitioning | whi
h
analso be
hanged dynami
ally | redu
es the need for syn
hronization and
oordinationduring the a

ess. Some
ontrol over the layout of data is also provided, so the layout
an be mat
hed with the anti
ipated a

ess patterns.The system is fully implemented, and forms the basis for the AIX Parallel I/OFile System on the IBM SP2. The implementation does not
ompromise s
alability orparallelism. In fa
t, all data a

esses are done dire
tly to the I/O node that
ontains therequested data, without any indire
tion or a

ess to shared metadata. Disk mappingand
a
hing fun
tions are
on�ned to ea
h I/O node, so there is no need to keepdata
oherent a
ross nodes. Performan
e measurements show good s
alability within
reased resour
es. Moreover, di�erent a

ess patterns are shown to a
hieve similarperforman
e.1 Introdu
tionThe
ontinued improvements in mi
ropro
essors and memory systems have exposed I/Oas a major bottlene
k [35, 22℄. This is true in both unipro
essor and parallel systems.But I/O in parallel systems is more
hallenging, owing to the inherent intera
tions amongmultiple pro
esses in the same job that all perform I/O operations. The Vesta parallel �lesystem proje
t has fo
used on designing interfa
es and abstra
tions to make su
h intera
tionsmanageable, while a
hieving high eÆ
ien
y on parallel I/O hardware.I/O may be done for several purposes, in
luding I/O to a swap devi
e used to implementvirtual memory, I/O to spe
ial graphi
 devi
es, and I/O to on-line and o�-line persistentParts of this resear
h have appeared in [7, 18℄.�Current address: Institute of Computer S
ien
e, The Hebrew University, 91904 Jerusalem, Israel.1

node
compute

node
compute

node
compute

node
compute

node
compute

node
compute

node
compute

node
compute

in
te

rc
on

ne
ct

io
n

ne
tw

or
k

I/O node

I/O node

I/O node

I/O node

Figure 1: Generi
 multi
omputer ar
hite
ture with parallel I/O.storage, typi
ally disks and tapes. Vesta deals ex
lusively with persistent on-line storage of�les. It is best suited for short and medium-term on-line storage of frequently used �les,parti
ularly those that must be a

essed by parallel appli
ations.The I/O subsystem ar
hite
tures of most parallel super
omputers are remarkably similar[16℄. A generi

on�guration is shown in Fig. 1. The nodes of the ma
hine are divided intotwo sets:
ompute nodes and I/O nodes. Compute nodes are used to run user jobs. I/O nodes
ontain disks for on-line storage, and run the parallel �le system. These nodes
onstitutea shared resour
e that is a

essible by all the di�erent jobs running on the
ompute nodes.Examples of parallel ma
hines that use this design in
lude the Conne
tion Ma
hine CM-5,the Intel iPSC and Paragon, and the nCUBE. Other systems, su
h as the Meiko CS-2 andIBM SP2, have both dedi
ated I/O nodes and optional additional I/O devi
es
onne
ted tothe
ompute nodes. These additional devi
es are typi
ally used for swapping, s
rat
h spa
e,and storing operating system �les rather than for persistent storage of appli
ation data.The analogy between dedi
ated I/O nodes and �le servers on a LAN is obvious. However,there are important di�eren
es. LAN �le servers usually operate in a Unix environment andprovide the Unix �le system interfa
e, but typi
ally with weaker
on
urren
y semanti
s thanprovided by the base Unix �le system [28℄. This is perfe
tly adequate for supporting a set ofworkstations with a
onventional Unix workload, but it is unsuitable for supporting parallelappli
ations. The problem is that parallel appli
ations involve multiple pro
esses operatingin
on
ert, whereas Unix was originally designed as an environment for single-pro
ess jobs.As a result, most distributed �le systems have little or no provision for
oordinating shared�le a

ess by multiple
ooperating pro
esses. In fa
t, the semanti
s of
on
urrent a

ess aresometimes left unde�ned. For example, NFS [41℄ may produ
e in
onsistent results when a�le is write-shared by a number of pro
esses. Those �le systems that do provide Unix write-write and read-write sharing semanti
s among
on
urrently exe
uting pro
esses on di�erentnodes implement this sharing through a
ostly
a
he
oheren
e proto
ol [33℄.The inadequa
y of
urrent distributed �le systems for parallel systems has led to the2

design of various parallel �le systems [37, 12, 30℄. In this paper, we des
ribe the VestaParallel File System, �rst introdu
ed in [6℄. Vesta introdu
es a new abstra
tion of parallel�les, by whi
h appli
ation programmers
an express the required partitioning of �le dataamong the pro
esses of a parallel appli
ation. This redu
es the need for syn
hronization and
on
urren
y
ontrol, and allows for a more streamlined implementation. In addition, Vestaprovides expli
it
ontrol over the way data is distributed a
ross the I/O nodes, and allowsthe distribution to be tailored for the expe
ted a

ess patterns.The next se
tion expands on the motivation and guidelines for the Vesta design. The�le abstra
tion and the Vesta interfa
e are des
ribed in Se
tion 3. Se
tion 4 then explainshow the �le system was implemented on an IBM SP1 platform. Performan
e measurementsof this system are presented in Se
tion 5. Finally, the
on
lusions of the study are drawn inse
tion 6.2 Motivation and Design GuidelinesAn appli
ation's interfa
e to a system's I/O fa
ilities is most often through a �le system.Multi
omputer �le systems make use of the parallel I/O subsystem by de
lustering �les,meaning that the blo
ks of ea
h �le are distributed a
ross distin
t I/O nodes. For example,this is done in Intel's Con
urrent File System (CFS) [37℄ and Thinking Ma
hines' S
alableFile System (sfs) [30℄. However, this feature is hidden from the users. The user interfa
eemploys the traditional notion of a �le being a linear sequen
e of bytes (or re
ords), andthe mapping to multiple disks is done beneath the
overs. Thus users are prevented fromtailoring their I/O patterns to mat
h the available disks. Users may not even know whereblo
k boundaries are, so a small a

ess might require data residing on two di�erent I/Onodes.In
ontrast, the Vesta �le system exposes the inherent parallel stru
ture of �les at theuser interfa
e [6, 10℄. While users do not have full
ontrol over the mapping of data todisks, they are able to
reate �les that are distributed so as to mat
h their appli
ations.For example, in a matrix-multiply appli
ation ea
h
ompute node only needs to a

ess aband of rows or
olumns from ea
h matrix. Vesta allows the �les
ontaining the matri
esto be partitioned into su
h bands. Furthermore, it is possible to have ea
h band stored ona distin
t I/O node. Then ea
h pro
essor only a

esses one I/O node, redu
ing interferen
eamong pro
essors and fragmentation of the data. Vesta also allows parallel �le a

ess usingmany di�erent de
ompositions of the �le data: for example, a �le that was stored as a set ofrows
an also be a

essed by
olumn. This does not require any rearrangement of the dataon the disks.The overriding goal of the Vesta �le system is to provide high performan
e for I/Ointensive s
ienti�
 appli
ations on massively parallel multi
omputers. The Vesta design wasguided by the following prin
iples:� Parallelism. The primary vehi
le for a
hieving high performan
e is parallelism. TheVesta design
onserves the parallelism from the appli
ation interfa
e down to the disks.This is done by providing a new parallel interfa
e that allows programmers to expressthe partitioning of �le data among the di�erent pro
esses. This eliminates the need3

to serialize a

esses. In parti
ular, it is easy to
reate situations in whi
h multiple
ompute nodes a

ess multiple I/O nodes at the same time, independently of ea
hother, and over separate
ommuni
ation
hannels.� S
alability. Vesta was originally started as part of the Vul
an proje
t, a system thatwas designed to s
ale up to 32K nodes, a large fra
tion of whi
h were to be dedi
atedI/O nodes. While we later shifted our fo
us to more modest sizes, the design stillpre
ludes any serial bottlene
ks or
entralized lookups in �le a

esses. Ea
h a

ess isaddressed dire
tly to the I/O node where the required data or metadata resides, withno node-to-node indire
tion. 1� Layering. Vesta is a middle layer between appli
ations and disks. As su
h, it relies onservi
es provided by lower layers, and adds well-de�ned fun
tionality in the interfa
e itprovides to higher layers. Spe
i�
ally, Vesta assumes that lower layers provide reliablemessage passing among nodes, and reliable storage on ea
h I/O node. This
an bea

omplished by using RAID devi
es in ea
h I/O node independently of other nodes,thus saving network traÆ
 [20℄. Upon this base, Vesta adds a layer that provides thenotion of parallel �les as outlined above. Vesta, in turn,
an serve as the basis for higherlevel libraries that will add additional servi
es, su
h as
olle
tive I/O operations.In addition, Vesta provides
ommonly expe
ted servi
es, su
h as a Unix-like hierar
hi
alstru
ture of dire
tories, permission bits for ea
h �le's owner, group, and others, and enfor
e-ment of quotas. It also provides some less
ommon features, in
luding support for �les largerthan 2GB, asyn
hronous I/O operations, and �le
he
kpointing. However, full
ompatibil-ity with existing systems was intentionally sa
ri�
ed whenever their features
ontradi
t thenotion of a parallel interfa
e.3 Abstra
tions and Interfa
eThe main innovation in Vesta is the fa
t that �les have a 2-dimensional stru
ture, ratherthan the
onventional 1-dimensional sequential model. The added dimension allows parallela

ess to be expressed expli
itly in terms of �le partitions. These ideas are explained indetail in the �rst two subse
tions of this se
tion. Then an example of using this abstra
tionto implement a parallel sorting algorithm is given. Finally, we
ompare this approa
h toother systems.3.1 The 2-dimensional Stru
ture of Vesta FilesThe system software on parallel super
omputers typi
ally exploits parallel I/O devi
es bystriping �le data a
ross the I/O nodes. Assuming that the number of I/O nodes is N , blo
ki of the �le is lo
ated on I/O node i mod N . Su
h striping is transparent at the �le systeminterfa
e. It a
hieves the goal of parallel a

ess to disks, but hides the details of the striping1While we do not demonstrate this degree of s
alability in the performan
e analysis in this paper, PIOFS,whi
h is based on Vesta, has proven to be s
alable to
omputers with hundreds of nodes [9℄.4

parallel viewsequential view

fd4fd3fd2fd1fd

Figure 2: A simple way to get a parallel view of a de
lustered �le.from the appli
ation. A simple way to provide a parallel view of su
h a striped �le is to
onsider the blo
ks on ea
h I/O node as a separate sequen
e (Fig. 2), e�e
tively dividing the�le into sub�les a

essible in parallel by di�erent pro
esses of a parallel appli
ation.Vesta goes two steps beyond this simple approa
h. First, it abstra
ts away from a dire
tdependen
y on the number of I/O nodes. Se
ond, it allows a variety of partitioned viewsof the data, in addition to partitioning a

ording to the physi
al distribution of data to theI/O nodes. All these parallel views partition the �le into disjoint sub�les, that are typi
allya

essed by di�erent pro
esses of a parallel appli
ation. This guarantees that the a

essesby the di�erent pro
esses are non-overlapping at the byte level, and therefore the �le systemdesign
an be optimized to avoid the e�e
ts of false sharing of data at the blo
k level,while maintaining
onsisten
y of the data. Moreover, it simpli�es the programming e�ortby allowing ea
h pro
ess to a

ess its data dire
tly, without requiring
ompli
ated indexings
hemes so as to skip parts of the data that belong to other pro
esses.Abstra
ting away from I/O nodes is done by introdu
ing the notion of
ells2. It is bestto think of
ells as
ontainers where data
an be deposited, or alternatively, as virtual I/Onodes that are then mapped to the available physi
al I/O nodes. When a �le is
reated, thenumber of
ells it will use is given as a parameter. If the number of
ells is no more than thenumber of I/O nodes, then ea
h
ell will reside on a di�erent I/O node. If there are more
ells than I/O nodes, the
ells will be distributed to the I/O nodes in round-robin manner.The number of
ells therefore sets the maximal degree of parallelism in a

ess to the �le. Itis expe
ted that the best performan
e will be obtained by having the same number of
ellson ea
h I/O node, but this is not a requirement. Thus it is possible to use a di�erent numberof
ells if it is more
onvenient in terms of program stru
ture or portability.Be
ause of the
ell abstra
tion, Vesta �les have a two-dimensional stru
ture. One di-mension is the
ell dimension, whi
h spe
i�es the parallelism in a

essing the data (the\horizontal" dimension). The other dimension is data within the
ells (the \verti
al" di-mension). In most
ases, all
ells will have the about same amount of data in them, butthis is not a requirement. The data in ea
h
ell is viewed as a sequen
e of basi
 stripingunits (BSUs). These are used as the basi
 building blo
ks for the partitioning s
heme, asexplained below. The BSU size
an be an arbitrary number of bytes, and should be
hosento re
e
t the minimal unit of data a

ess.2The terminology used here is di�erent from that used in the original Vesta papers [6, 10℄, as manypeople found the original terminology
onfusing. Thus \physi
al partitions" are now
alled \
ells", \logi
alpartitions" are now
alled \sub�les", and \re
ords" are now \BSUs".5

The number of
ells and the BSU size are the two parameters that de�ne the stru
tureof a Vesta �le. They are de�ned when the �le is
reated, and
annot be
hanged thereafter.These parameters are instrumental in
al
ulating the lo
ation of data, and therefore mustbe known before data
an be a

essed. As a
onsequen
e, appli
ations must obtain theparameter values before they
an a

ess the �le. To do so, Vesta introdu
es a new
allnamed atta
h. Every pro
ess in the appli
ation must atta
h every �le it uses before it
anopen the �le. The atta
hment stays valid throughout the exe
ution of the parallel programor until the �le is deta
hed, even if the �le is
losed.3.2 Partitioning Files for Parallel A

essThe data in
ells is viewed as a byte sequen
e divided into groups of basi
 striping units(BSUs). For �les that have more than one
ell, we have in e�e
t a 2-dimensional matrixof su
h BSUs. Vesta allows this matrix to be partitioned in mu
h the same way that 2-dimensional arrays are partitioned in High-Performan
e Fortran (HPF) [29℄: partitions
an
orrespond to
olumns (i.e.
ells), to rows (e.g. the �rst BSU from ea
h
ell), or to blo
ks(e.g. the �rst 5 BSUs from the �rst 3
ells). Su
h partitions are
alled sub�les. The open
all in
ludes parameters that de�ne a partitioning s
heme, and returns a �le des
riptor thatallows a

ess to a single sub�le, not to the whole �le.Two spe
ial
ases of partitioning
orrespond to the simple views des
ribed in Fig. 2. Itis possible to
reate a single sub�le that spans the whole �le, where data is striped a
ross allthe
ells in units of one or more BSUs. This is the preferred approa
h to
reating �les thatare also a

essed from external �le systems, or that are the targets of existing appli
ations.Likewise, it is possible to
reate a parallel view with sub�les that
orrespond to
ells. If thenumber of
ells is equal to the number of I/O nodes, this essentially provides an interfa
ewith dire
t mapping to the underlying hardware.In general, a Vesta partitioning s
heme is de�ned by four parameters, V bs, V n, Hbs,and Hn, that partition the �le into disjoint sub�les, with a �fth parameter spe
ifying whi
hsub�le is being opened. The two parameters V bs and Hbs de�ne the size of a blo
k of BSUsthat serves as the basi
 building blo
k of the partitioning s
heme. V bs, whi
h stands for\verti
al blo
k size", spe
i�es how many
onse
utive BSUs are taken from ea
h
ell, andHbs,whi
h stands for \horizontal blo
k size", spe
i�es how many
onse
utive
ells are spanned.The other two parameters spe
ify how many su
h blo
ks there are in di�erent sub�les. V nspe
i�es how many sub�les are interleaved in the verti
al dimension (within ea
h
ell), andHn spe
i�es how many are interleaved in the horizontal dimension (a
ross
ells). These
on
epts are illustrated in Fig. 3.To put things on a more solid basis, here are a set of equations that des
ribe how parti-tioning is done. Let
 be the smallest multiple of Hbs�Hn that is larger than or equal tothe number of
ells, that is
 = &num of
ellsHbs�Hn '�Hbs�HnThen BSU number j in
ell number i (where numbering is zero-based) belongs to sub�les+ t�Hn, where 6

...

6?Vbs=3BSU
s6?Vn=2

?repea
tedto
over
alldata

� -Hbs=2
ells� -Hn=3� -repeated to
over all
ells

ellsXXXy� ������9 BSU�6?

Figure 3: The Vesta �le partitioning parameters. Sub�les are identi�ed by di�erent shadesof gray. s = $ i mod (Hbs�Hn)Hbs % t = $j mod (V bs� V n)V bs %s and t are simply the x and y
oordinates on the sub�le's blo
k in the Hn by V n template.Within that sub�le, it is BSU number�� jV bs� V n��
Hbs�Hn + � iHbs�Hn���V bs�Hbs+(i mod Hbs)�V bs+ j mod V bsThe square bra
kets are the number of full blo
ks (ea
h with V bs�Hbs BSUs) before it inthe sub�le. This is the sum of two terms: jV bs�V n full bands of blo
ks a
ross all the
ells,ea
h with
Hbs�Hn blo
ks, and then a few more in the same band as the BSU in question.The terms after the square bra
kets a

ount for the BSU's position within its blo
k.We note in passing, for the bene�t of readers familiar with the HPF data de
ompositions
heme, that the four parameters used by Vesta have the same roles as parameters used byHPF. In HPF, the de
omposition is done in two stages. First, a 2-dimensional template is
reated with the PROCESSORS dire
tive. This is analogous to de�ning the template of Vestasub�les, whi
h is done by the V n and Hn parameters. In terms of HPF dire
tives, this isexpressed as!HPF$ PROCESSORS P(Vn,Hn) 7

The se
ond stage is de�ning the blo
k size used to distribute the data. This is done bya DISTRIBUTE dire
tive, whi
h also spe
i�es the template upon whi
h the data is beingdistributed. In terms of Vesta parameters, this is done by V bs and Hbs as in!HPF$ DISTRIBUTE D(CYCLIC(Vbs),CYCLIC(Hbs)) ONTO PHandling awkward
asesThe des
ription so far has fo
used on the regular and simple
ases. These probably in
ludeall of the useful and understandable variations. It is also possible to de�ne patterns that arehighly irregular, but that must be handled
onsistently. This subse
tion explains what Vestadoes in su
h pe
uliar
ases, even if we do not expe
t them to be very useful or
ommon inpra
ti
e.First, note that
 may be larger than the a
tual number of
ells in the �le, but theequation for numbering BSUs in sub�les assumes

ells. Hen
e if
 is indeed larger than thenumber of
ells, some extra
ells are implied. The extra
ells that are added to make thetotal a multiple of Hbs�Hn are
alled ghost
ells. Naturally, the ghost
ells do not
ontaindata. Attempting to write to an o�set in the sub�le that falls in a ghost
ell will not produ
eany e�e
t: Vesta silently
opies the data nowhere. Likewise, attempting to read from ano�set in a ghost
ell does not
ause any
hange in the bu�er used to re
eive the data.The reason for this behavior is that it is
onvenient for single program, mulitple data(SPMD) programs, where ea
h pro
ess a

esses a di�erent sub�le. In su
h an environment,Vesta allows all the pro
esses to use identi
al
ode, and perform I/O operations that suppos-edly a

ess the same amount of data. However, the returned
ount of how mu
h data wasa
tually moved will only in
lude real data. Data read from or written to ghost
ells (beyondthe bounds of the array, as it were) is not
ounted.It is believed that most appli
ations will
reate and manipulate Vesta �les with
ells thathave equal lengths. However, this is not a prerequisite for using Vesta. It is
ertainly possibleto
reate �les with
ells that have di�erent lengths, by writing more data into some sub�les.In addition, it is possible to seek ahead and write some data in some remote lo
ation, leavinga hole in the middle of a
ell.Partitioning �les with irregular stru
tures follows the same prin
iple as partitioning �leswhere Hbs�Hn does not divide the number of
ells. In general, sub�les may have holes inthem when they in
lude data from both short and long
ells. To distinguish between ghostsand holes: ghosts result from missing
ells in a partitioning, holes result from missing dataat the end of a
ell (
ompared to other
ells in the same sub�le). Writing to a hole
ausesit to be �lled with valid data. Reading from a hole
an either return a zero-�lled bu�er, orelse it will have no e�e
t. A zero-�lled bu�er will be returned if there is some valid data ata further o�set in the
ell. No e�e
t will be experien
ed if the read is from an o�set beyondthe end of the
ell. In this
ase, the returned
ount will indi
ate that data was not moved.The main
onsequen
e of allowing holes and ghosts is that it is hard to �nd the end ofa sub�le. For example, if a sub�le has a hole in it that results from the sub�le
ontainingdata from both long and short
ells, reading a small
hunk from a hole will return a
ount ofzero, indi
ating that no data was a
tually read. If the sub�le is known not to have holes, areturned
ount of zero indi
ates the end of the sub�le. But if it does have holes, a returned8

olumn-major...
012345

67891011
121314151617

181920212223 row-major...
048 159 2610 3711121620 131721 141822 151923 Vesta default...

012 345 678 91011121314 151617 181920 212223
Figure 4: Options for byte ordering within a sub�le.
ount of zero only indi
ates that this read did not en
ounter any valid data. This
ould bebe
ause there is no more valid data (i.e. the end of the sub�le was rea
hed), or be
ause thisis a hole. Thus if you want to read the whole sub�le and you do not know how mu
h datait
ontains in advan
e, you need to
all the Vesta stat fun
tion to �nd how mu
h data is
ontained in the whole �le. This is an upper bound on the size of any parti
ular sub�le.Data orderingThe most striking
onsequen
e of partitioning �les is that the data in a �le no longer has aunique sequen
e. This makes it hard to interfa
e Vesta with other, traditional �le systems.For example, if Vesta is mounted on a Unix �le system, what byte order should sequentialUnix appli
ations see? Obviously, the software used to implement the mounting
an desig-nate a
anoni
al order, e.g. round-robin striping of BSUs a
ross all the
ells. But if datawas written into the �le in parallel using some other partitioning s
heme, this order mightbe meaningless.Not only does data not have a single sequential order, but there are also a number ofpossibilities for ordering bytes within a given sub�le. An obvious
hoi
e would be
olumn-major ordering, as in Fortran 2-dimensional arrays. In Vesta,
olumn-major would meanthat all the bytes in the �rst
ell spanned by the sub�le
ome �rst, then all those in these
ond
ell, and so on. However, this is impra
ti
al be
ause
ells have unbounded depth, asopposed to
olumns in a 2-dimensional array that have prede�ned depth. If the amount ofdata in one
ell
hanges be
ause additional data is written, the o�sets of bytes in subsequent
ells
hange. Also,
ells
an have di�erent depths, so �nding a
ertain o�set into the sub�lewould require the
urrent lengths of all
ells to be known. The Vesta implementation of
olumn-major order is therefore quali�ed by the o�set into the sub�le and the amount ofdata a

essed. Essentially, these parameters are used to identify the data being a

essed,using the default Vesta ordering des
ribed below, then this data is re-ordered in
olumn-major. The example in Fig. 4 is for a

ess to 24 BSUs, starting from the beginning of thesub�le.The other obvious
hoi
e is row-major, with round-robin interleaving of BSUs among the
ells spanned by the sub�le. In this
ase adding data to one
ell does not
ause
hanges to theo�sets in another, so dire
t a

ess is possible. However, the opportunity for large sequential9

a

esses to disk is redu
ed, be
ause striping a
ross I/O nodes is done with a smaller stripingunit.The default ordering for Vesta is a
ompromise: it is
olumn-major within blo
ks of thepartitioning s
heme, but row-major among blo
ks. This is the ordering des
ribed by theequations given above. The obvious drawba
k of this ordering is that it does not
orrespondto the normal orders in 2-dimensional de
ompositions. Using row-major order instead willonly result in redu
ed performan
e in a

esses that are smaller than the amount of datain a band of blo
ks a
ross all the
ells used by the sub�le (12 BSUs in Fig. 4). Using
olumn-major may be
onfusing unless the o�sets and
ounts are multiples of this size.3.3 Example: FastMeshSortThere are many possible appli
ations of logi
al partitioning of �les [34, 44℄. One interestingappli
ation whi
h demonstrates the power of dynami
 repartitioning of �les is parallel sorting.We shall use the FastMeshSort algorithm [11℄, whi
h is based on Bat
her's Bitoni
 Sortingalgorithm [1℄. The implementation using Vesta �le partitioning operations is given in Fig. 5.FastMeshSort iteratively sorts short bitoni
 sequen
es into su

essively longer bitoni
sequen
es. The implementation des
ribed here works on a two-dimensional mesh of re
ordsmapped onto a Vesta �le with 2n
ells. The
ells are of arbitrary but equal lengths. Thealgorithm employs 2n
ompute pro
esses, preferably running on distin
t
ompute nodes. niterations are performed. In ea
h iteration, the pro
esses ea
h open a sub�le of the �le that
orresponds to the
ell with the same serial number as the
ompute pro
ess (numbered from0 to 2n�1 within the appli
ation), and then a sub�le that in
ludes re
ords that span multiple
ells of the �le. The number of
ells spanned doubles with ea
h iteration.The algorithm uses the subroutine Window Sort(sfd, dir, wndw siz), whi
h sortsre
ords in a sub�le. The re
ords are sorted within windows of length wndw siz, and re
ordsare not moved between windows. If wndw siz is given as 0, the entire sub�le is sorted frombeginning to end. The re
ords are sorted in the spe
i�ed dire
tion, with DOWN moving thelargest re
ords toward the end of the window, and UP toward the beginning. For exam-ple, if sub�le i initially
ontained re
ords in sequen
e (3; 4; 1; 6; 2; 5; 8; 7) then the result of
alling Window Sort(i, DOWN, 4) would be (1; 3; 4; 6; 2; 5; 7; 8) and the result of
allingWindow Sort(i, UP, 0) would be (8; 7; 6; 5; 4; 3; 2; 1).In two dimensions, FastMeshSort works by alternately sorting data along
olumns (within
ells), and then along rows (a
ross
ells). When the algorithm
ompletes, the sorted �le
anbe read out by
on
atenating the
ells. The
ode in Fig. 5 uses a
tual Vesta system
alls, butdoes not in
lude
ode for the subroutine Window Sort, whi
h
an use any external sortingalgorithm. Note that the same �le
an be opened simultaneously by the same pro
esswith di�erent logi
al partitionings. Proper syn
hronization of the pro
esses is ne
essaryto properly exe
ute the algorithm. This syn
hronization is performed by a Barrier Syn
fun
tion whi
h
oordinates the
ompute pro
esses. This is not a Vesta fun
tion; we assumethat it is provided by a parallel
ommuni
ation library.Fig. 6 shows a simple example of the algorithm with 4
ells of length 8. The main point ofthis example is not to demonstrate parallel sorting, but to show how the parallel �le systeminterfa
e
an greatly simplify writing parallel programs that use �le I/O. The single node10

Sort File() fint sfd
ol, sfd span;int i, Vbs, Vn, Hbs, Hn, tnum;/* Identify pro
ess number */tnum = whi
h pro
ess am i();/* Atta
h the �le for read and write a

ess */Vesta Atta
h("datafile", READjWRITE);/* Open the �le into sub�les that
orrespond to the
ells */Vbs=1; Vn=1; Hbs=1; Hn=2n;Vesta Open("datafile", &sfd
ol, Vbs, Vn, Hbs, Hn, tnum);/* Now sort the
olumns and then merge the
olumns in ea
h iteration */for (i=0 ; i<n ; i++) f/* Sort the
olumns up or down */if (tnum & 2i == 0)Window Sort(sfd
ol, DOWN, 0);elseWindow Sort(sfd
ol, UP, 0);Barrier Syn
();/*Now window sort a
ross the
olumns with a window size equal to thenumber of
olumns spanned. At ea
h iteration, the �le is openedwith sub�les that span su

essively larger groups of
olumns */Vbs=1; Vn=2i+1; Hbs=2i+1; Hn=2n�1�i;Vesta Open("datafile", &sfd span, Vbs, Vn, Hbs, Hn, tnum);Window Sort (sfd span, DOWN, 2i+1);Vesta Close(sfd span);Barrier Syn
();g/* Finally sort all the
olumns down */Window Sort(sfd
ol, DOWN, 0);Vesta Close(sfd
ol);Vesta Deta
h("datafile");g Figure 5: Implementation of FastMeshSort using logi
al partitioning.
ode of this fairly
omplex parallel algorithm is very
ompa
t. The burden of
al
ulatingindi
es and o�sets into one large �le to try to a
hieve some parallel disk a
tivity is removedfrom the user. This is the primary di�eren
e in the user's interfa
e between a parallel �lesystem, and a
onventional �le system.A more optimal version of this algorithm has been implemented on Vesta, using theasyn
hronous I/O fa
ility provided by Vesta. Performan
e measurements are given in Se
tion5.6. 11

8241162229219
91183130161020

32842715122114
17523321326725

(a)
originaldata

? 6 ? 62681119222429
31302018161091

34121415212728
32262523171375

(b)
Vbs = 1Vn = 1Hbs = 1Hn = 4- -26811161091

3130201819222429
341214151375

3226252317212728
(
)
Vbs = 1Vn = 2Hbs = 2Hn = 2

? ? 6 612689101116
1819202224293031

151413127543
3228272625232117

(d)
Vbs = 1Vn = 1Hbs = 1Hn = 4-12687543

151413129101116
1819202224232117

3228272625293031
(e)
Vbs = 1Vn = 4Hbs = 4Hn = 1

? ? ? ?12345678
910111213141516

1718192021222324
2526272829303132

(f)
Vbs = 1Vn = 1Hbs = 1Hn = 4Figure 6: Example of using sub�les to implement FastMeshSort on a �le with four
ells andeight re
ords in ea
h.3.4 Comparison with Other SystemsThe role of a �le system is to
reate the abstra
tion of �les (named persistent data sets)and to implement this abstra
tion using available storage devi
es. In a parallel system,the features that distinguish one system from another are the form of the abstra
tion, theinterfa
e used to a

ess it, and how it is laid out on the parallel hardware.As for layout, most �le systems designed for parallel ma
hines stripe data transparentlya
ross the available I/O devi
es. Examples in
lude the Bridge �le system [14℄, Intel's CFSon the iPSC [37℄ and PFS on the Paragon [21℄, the sfs �le system on the CM-5 [30℄, thenCUBE system software [12℄, and the Meiko parallel �lesystem. Unlike Vesta, these systemsdo not expose the underlying parallelism expli
itly in their interfa
es, and thereby pre
ludeany optimization of the a

ess patterns from di�erent pro
esses. Vesta is the only system12

to date that provides a measure of support for expli
it mapping of data to the hardware.PIOFS, the parallel �le system of the IBM SP-2
omputer, is based on Vesta, and presentsmost of the same features as Vesta in its interfa
e (however, the performan
e and designdis
ussion in this paper should not be inferred by the reader to ne
essarily apply to PIOFS)[9℄. It is possible to implement mu
h of the unique fun
tion of Vesta in a library, and not inthe �le system. However, this leads to large ineÆ
ien
ies when implemented over standard�le system interfa
es su
h as POSIX. Individual read and write
alls made to a Vesta-likelibrary
ould turn into tens or hundreds of individual I/O operations, in
urring the systemoverhead of pro
essing I/O
alls ea
h time. However, it is possible to extend the standard�le system interfa
e to enable it to support Vesta-like �le partitioning through an interfa
ethat allows multiple strided �le regions to be a

essed with one
all. Su
h operations areintrinsi
 to the internals of Vesta, and we did eventually expose these operations throughnew API
alls. There are advantages in having �le partitioning and
he
kpointing integratedinto the �le system, as they are in Vesta. For example, maintenan
e of �le o�sets and �lesizes is
onsistent a
ross the system.Vesta is also unique in terms of the abstra
tion it provides | the 2-dimensional stru
tureof BSUs within
ells. Partitioning is also an innovative feature. The only other systemsthat have similar fun
tionality are those that support I/O operations on distributed arrays,in
luding the nCUBE system software [12℄ and a
ouple of experimental libraries [4, 2℄.However, in these systems the partitioning is limited to the
ontext of a
olle
tive operationthat a

esses a whole array. Other systems use �le modes to de�ne the semanti
s of parallela

ess [17℄. Some of the modes a
tually
reate an impli
it partitioning, as when di�erentpro
esses a

ess a sequen
e of data items in the �le in the order of their pro
ess IDs. Forexample, this feature is available in the Express Cubix model [40℄ and in Intel's CFS and PFS.In Vesta, the partitioning is de�ned in advan
e, and then pro
esses
an perform independenta

esses to any part of their partition (sub�le). The proposed MPI-IO standard is similar toVesta in this respe
t, although the me
hanism for expressing partitioning is quite di�erent[5℄.4 ImplementationFile systems are part of the system software, and must be mat
hed to ar
hite
tural featuresin order to obtain optimal performan
e. In the
ase of parallel I/O, the main options areatta
hing disks to the pro
essing nodes, or
reating dedi
ated I/O nodes that are a sharedresour
e and are not used to run appli
ations. Vesta assumes the latter approa
h [16℄. It istherefore implemented in two sub-units: a
lient library that is linked with appli
ation
oderunning on the
ompute nodes, and a server that runs on the I/O nodes.The
apability to perform dire
t a

ess from a
ompute node to the I/O node
ontainingthe required data, without referen
ing any
entralized metadata, is a key feature of the Vestadesign. This is a
hieved by a
ombination of means. First, �le metadata is distributed amongall the I/O nodes, and is found by hashing
omplete �le and Xref (dire
tory) pathnames.The �le metadata obtained by the
lient is small, and need be a

essed by the
lient onlyon
e when the �le is �rst atta
hed to the appli
ation. Thereafter,
ompute nodes
an identify13

63 48 32 16 8 0node entry uniq level| {z }hashed from obje
t nameFigure 7: Stru
ture of the 64-bit internal ID of Vesta obje
ts.the I/O nodes that
ontain a

essed data using a
ombination of the metadata they haveobtained, parameters of the parallel view of the �le that they are using, and the o�set (withinthe sub�le) and
ount of data to a

ess. Blo
k lists for the �le are maintained on ea
h I/Onode independently for the
ells stored on that node. Vesta stripes blo
ks a
ross multipledisks at ea
h I/O node transparently to the
lient. Data is not
a
hed on
ompute nodes.This is possible due to the relatively low laten
y of the multi
omputer's inter
onne
tionnetwork, espe
ially when
ompared to disk a

ess times.4.1 A

ess to MetadataVesta obje
ts in
lude �les,
ells, and Xrefs (
ross-referen
e lists). These are not obje
ts inthe sense of obje
t-oriented programming, but are simply logi
al items stored in Vesta. Xrefsserve in pla
e of Unix dire
tories, as des
ribed below. Ea
h I/O node maintains the Vestaobje
ts residing on itself in a memory-mapped table. The I/O nodes themselves are logi
allynumbered in a
ontiguous integer sequen
e.Obje
t IDsVesta does not use a name server to lo
ate �les, in
ontrast with systems like Intel's CFS[37℄. Rather, the full pathname of the �le is hashed into a 48-bit value. These 48 bits formthe basis for a 64-bit internal ID (Fig. 7). 16 of these 48 bits are further hashed to identifythe I/O node that serves as a master node for this �le. This is more dire
t than the two-stage mapping used in VAX
lusters, where obje
t names are hashed to a dire
tory node thatmay not be the master node [27℄. The master node is the lo
us of the �le obje
t, but notne
essarily of any part of the �le data. Another 16-bit �eld of the original 48 bits is furtherhashed to �nd the �le in the obje
t table on the master node.Ea
h entry in the table
ontains information su
h as the 64-bit system-wide unique ID, the�le name, its owner ID, group, and a

ess permissions,
reation, a

ess, and last modi�
ationtimes, the number of
ells, the BSU size, the base and highest numbered I/O nodes used,and the
urrent �le status. The
ells themselves are allo
ated in round-robin manner to I/Onodes starting with the base node, and wrapping around to the lowest numbered I/O nodewhenever the maximum node is rea
hed (the base node
an be spe
i�ed by the user whenthe �le is
reated, or else it is pseudo-randomly
hosen by the system). The
urrent statusindi
ates whether the �le is atta
hed for read-only a

ess or read-write a

ess, to whi
hparallel program(s), and the
urrent a

ess key(s). Note that the �le obje
t does not in
ludeany blo
k list or any dire
t referen
e to the data itself. In this respe
t it di�ers from thetraditional Unix inode. Cells and Xrefs also have entries in the obje
t table, with slightlydi�erent data. 14

If two �les or Xrefs with di�erent names happen to hash to the same 48-bit value, thiswill be dete
ted by the master I/O node that is
ommon to both when the se
ond one is
reated. The master node then uses the uniqui�er �eld in the ID to distinguish betweenthe two. This �eld has 7 bits, so up to 128 obje
ts that hash to the same 48-bit pattern
an be tolerated. The hashing algorithm was designed to give a psuedorandom jump toa di�erent point in the 48-bit spa
e for ea
h small
hange in the input, with an averagejump length of 24-bits. It was also designed to have a minimum
y
le length that, for anyinput sequen
e, is mu
h longer than the maximum �le path length. Psuedo-randomness wasveri�ed by measuring the statisti
s of a large �le system for a uniform distribution over the48-bit spa
e, with no frequently o

uring patterns. We have
he
ked a �le system with over150000 names and found no
ollisions, and a uniform distribution of hash values, with notenden
y to any parti
ular bit patterns.Another single-bit �eld of the 64-bit ID is used to distinguish �les from Xrefs. The last8 bits are used to number
ells of a �le on a given I/O node, starting from 1 (
ells share theother 56 bits of their ID with the �le to whi
h they belong). This �eld,
alled the level, isset to 0 in the �le obje
t itself and in all Xref obje
ts. Thus ea
h �le
an have up to 255
ells on ea
h I/O node.File and Xref names are stored in a separate string table, indexed by a �eld within theobje
t des
riptor. This is done to save disk spa
e in the �le system metadata.Atta
hing and openingIn order to a

ess �le data, the Vesta
lient linked with an appli
ation pro
ess must knowon what I/O node(s) the data resides. This is
al
ulated based on
ertain �elds in themetadata, notably the base and maximal I/O nodes, the number of
ells, and the BSU size.This information has to be obtained before the �le
an be a

essed.Opening a Vesta �le is divided into two phases. First, the �le is atta
hed to the appli-
ation. In this phase, the metadata is a

essed and the required parameters are obtained.This
an be done by ea
h appli
ation pro
ess individually, or else it is possible to
onstru
tdistribution trees su
h that only the roots atta
h the �le, and then the obtained data ispropagated to other nodes. The latter approa
h helps to ensure the ultimate s
alability ofthe �le system, and is espe
ially suitable for the implementation of a higher level librarywith a
olle
tive atta
h operation.The se
ond phase is to open a sub�le. Opening is a lo
al operation that does not involveany
ommuni
ation, unless the sub�le is being opened with a shared o�set pointer. The mainfun
tion of the open
all is to set the partitioning parameters that de�ne whi
h sub�le is beinga

essed. Vesta does not enfor
e all the pro
esses of a parallel program to open a �le withthe same partitioning parameters. The issue of guaranteeing a
onsistent s
heme is left tothe dis
retion of the user, or to a higher level
olle
tive I/O library. At the Vesta interfa
e,users have full
exibility in
luding the option to simultaneously use di�erent partitionings
hemes for di�erent pro
esses, even with overlapping sub�les.
15

Dire
tory stru
tureAs noted above, Vesta �les are a

essed dire
tly by hashing their pathnames. This is in
ontrast with the namei fun
tion used to parse pathnames in Unix systems. Due to thehashing, Vesta does not need to maintain dire
tories to �nd �les. However, a hierar
hi
alstru
ture of dire
tories is emulated using Xrefs so as to enable users to organize their �lesand list subsets of �les. Xrefs simply
ontain lists of internal IDs of �les and other Xrefs.When a new �le is
reated, it is listed in the Xref that has the same name ex
ept for thelast /-separated
omponent. If su
h an Xref does not exist, the �le
reation fails.Hashing pathnames is intended to redu
e
on
i
ts in a

ess to the top levels in thedire
tory hierar
hy, helping to ensure the s
alability of the �le system. This enables veryeÆ
ient atta
hing with only one �le-system request per �le atta
hed, even in very largesystems. However, the use of hashing has the following
onsequen
es:� There is no
ontrol over a

ess using dire
tory permission bits, be
ause a

ess does notgo through the dire
tories.� There are no hard links: �les and Xrefs
an only have one name. Soft links
ould beprovided easily, but we did not implement them.� Renaming a dire
tory is a lot of work, be
ause the pathnames (and hashing) of all �lesand dire
tories below it in the hierar
hy
hange, requiring relo
ation of most of theirmetadata. The
ells of �les that are renamed are not moved, even if the �le metadatais moved.� If the
on�guration
hanges (i.e. if I/O nodes are added or deleted permanently, asopposed to transient failures) all obje
ts have to be relo
ated.One alternative is to use a separate name server module, possibly with a distributed imple-mentation, and normal parsing of the path to look up �le IDs given the full pathname of a�le.Another problem with this design is the handling of multi-phase operations (e.g.
reatinga �le, whi
h involves
reating a lo
ked �le obje
t, listing it in the appropriate Xref, and thenunlo
king it). In the
urrent Vesta implementation, su
h operations are handled by the
lient
ode, and ea
h phase is a separate request dire
tly to the a�e
ted I/O node. This simpli�esthe design of the server
ode, so that I/O nodes are relatively independent and oblivious ofea
h other. However, it risks leaving the system in an in
onsistent state if the
lient node
rashes in the middle of a multi-phase operation. We
orre
t these infrequently o

uringproblems with an fs
k utility that is designed to re
over the metadata to a
onsistent statewithout dis
arding valid �le data.4.2 A

ess to File DataOn
e a �le is atta
hed and opened, a
ompute node has all the information required inorder to a

ess data. A

ess is done by providing a byte o�set and a byte
ount, just as intraditional �le systems. The di�eren
e is that the o�set is interpreted in the
ontext of a
ertain spe
i�ed sub�le, rather than relative to the whole �le.16

I/O nodespartitioningÆ
��2
omputeinterleaving
omputenode

6Æ
��1 get andupdate o�set
o�setmaintainshared o�set

�������
�������7

����������:ZZZZZZZZZZ~
Æ
��3a

ess I/Onodes

ZZZZZZ} Æ
��4s
hedule a
k blo
klistÆ
��5 lookup anda

ess disk

blo
klistÆ
��5 lookup anda

ess disk

blo
klistÆ
��5 lookup anda

ess disk

I/O nodeswith
ells
?
?

Æ
��
Æ
��
4
4

s
hedule
s
hedule

Figure 8: The di�erent stages of a �le a

ess. Steps j1 and j4 are optional.The steps performed in data a

ess are des
ribed in Fig. 8. First, the o�set into thesub�le is obtained if it is shared j1 . (if not, it is available in the a

essing node's �le table).Then the o�set and
ount relative to the sub�le are translated into o�sets and
ounts relativeto one or more
ells, based on the partitioning parameters given when the �le was opened j2 .Next, messages are sent to the I/O nodes responsible for the relevant
ells, with requests toa

ess the data in those
ells j3 . If
on
urren
y
ontrol is required, the I/O nodes
oordinatethe s
heduling of I/O operations j4 . Finally, the data is a

essed j5 .It should be noted that all the
omputations relating to the pattern in whi
h data isinterleaved in and among
ells are done at the
ompute nodes that perform the a

ess. TheI/O nodes only re
eive requests to a

ess
ells that reside on them. Thus the servi
e providedby I/O nodes is similar to that in traditional �le systems. The main addition is that thedata a

essed from ea
h
ell may be a strided ve
tor, rather than being
ontiguous, due tobeing interleaved with other sub�les. All the data in su
h ve
tors is
ompa
ted and sent inone message. Thus the total number of messages per a

essed
ell is 2 for a read (requestfrom
ompute node to I/O node, and then data plus a
knowledgment
oming ba
k), and 3for a write (request followed by data one way, and a
knowledgment the other way).A separate request
omponent is generated for ea
h
ell a

essed, even if multiple
ells17

reside on the same I/O node. It would be possible to
ombine the request
omponents, aswell as the data transfers, resulting in message passing overhead that is proportional to thenumber of I/O nodes a

essed, rather than to the number of
ells a

essed. However, sin
ethe number of
ells per I/O node is typi
ally
lose to 1, we de
ided that this additional
omplexity was not warranted.Vesta does not have a separate seek fun
tion. Instead, seek is in
orporated into theread and write fun
tions. The reason for this approa
h is that when an o�set is shared bymultiple pro
esses, the interleaving of independent seek and a

ess operations may lead tounexpe
ted results. A pure seek
an still be performed by a read of zero bytes. In orderto de�ne the semanti
s of asyn
hronous operations, Vesta updates the system's �le pointerwhen an I/O operation is initiated, rather than waiting for it to
omplete. This risks endingup with an in
orre
t value if the a

ess does not
omplete su

essfully, but it allows multipleoperations (even from di�erent pro
esses) to pro
eed in parallel in the normal
ase. It isnot possible to seek to EOF, be
ause information regarding sub�les' EOF is not maintained.Maintaining su
h information would require extensive
ommuni
ation whenever any sub�lein the �le is enlarged.An important di�eren
e between Vesta and most distributed �le systems is that �ledata is not
a
hed on
ompute nodes. As a result there are no problems of keeping
a
heddata
onsistent when some data is repli
ated in a number of
a
hes, and write a

essesare performed. Also, there is no problem of false sharing at the blo
k level, whi
h is a
ommon o

urren
e in parallel I/O work loads [25, 38℄. Ca
hing on
ompute nodes
an stillbe done by a higher-level library built above Vesta, based on knowledge that the data is notwrite-shared.The pri
e of giving up bu�ering on the
ompute nodes is that all a

esses must traversethe multi
omputer's network to be servi
ed by the appropriate I/O node. Given the tightly-
oupled ar
hite
tures of multi
omputers, this is not su
h a high pri
e. The laten
y of thenetwork is three orders of magnitude less than typi
al disk laten
ies. The extra networklaten
y
an be more than o�set if data sharing among
ompute pro
esses results in a higher�le bu�er
a
he hit rate at the I/O node [25℄. This is espe
ially true if the I/O nodes are
on�gured with relatively large amounts of memory. In
ontrast to Vesta, distributed �lesystems must
a
he data at the
lient nodes be
ause a

essing the servers for every a

esswould result in intolerable laten
ies. This is an a

eptable solution for distributed �le systemsbe
ause of the low amount of �le sharing among
on
urrently exe
uting serial appli
ations.Vesta provides three me
hanisms for redu
ing the detrimental e�e
ts of a

ess laten
y,in
luding both network and disk laten
y. The �rst is the use of bu�er
a
hes on the I/Onodes, as mentioned above. In addition, Vesta provides two spe
ial servi
es at the userinterfa
e. One is asyn
hronous I/O operations, whi
h allow the appli
ation to post an I/Ooperation, and poll or wait for its
ompletion at some later time. The other is expli
itprefet
h and
ush operations. This allows required data to be preloaded or marked forrepla
ement in the bu�er
a
hes at the I/O nodes.
18

4.3 SharingFile systems are often
onsidered to be a medium that enables sharing of data among appli
a-tions. In parallel systems, sharing
an also o

ur among the pro
esses of a single appli
ation.Vesta supports sharing in two main ways. One is by partitioning the �le into disjoint sub�les,that
an be a

essed with no syn
hronization among the sharing pro
esses. The other is bysharing a sub�le.When a sub�le is shared by multiple pro
esses, the sub�le pointer
an be maintained intwo ways. Ea
h pro
ess
an have an independent �le pointer into the shared sub�le, or elsethey
an share a single pointer. Any
ombination of shared and private �le pointers into thesame sub�le is allowed.When an appli
ation pro
ess opens a sub�le for the �rst time, it gets a lo
al, privatepointer. This pointer
an subsequently be shared with other pro
esses. When a pointer isshared for the �rst time, a random I/O node is
hosen, and the pointer is moved to that I/Onode. The identity of this node and the pointer's ID on that node are passed to all pro
essesthat share its use. When a data a

ess based on a shared pointer is performed, the a

essingnode �rst
ommuni
ates with the I/O node holding the pointer (step j1 in Fig. 8). In this
ommuni
ation, the
urrent pointer value is returned to the a

essing node, and the pointerstored at the I/O node is in
remented by the amount of data to be a

essed. Note that thepointer is in
remented before the a

ess is a
tually performed, so as not to serialize a

essesfrom di�erent pro
esses. If a read hits EOF, or a write runs out of disk spa
e, this
an leadto the pointer pointing to an o�set that is beyond the end of the sub�le.Con
urren
y
ontrolCon
urren
y
ontrol is required in order to ensure proper semanti
s if an appli
ation's pro-
esses write data to a shared sub�le or to overlapping sub�les using independent o�sets. Itis also required if an appli
ation interleaves �le metadata operations that also a�e
t the �ledata, su
h as resize or delete, with data a

ess requests, or if one appli
ation writes a �lewhile others read it. Vesta uses a fast token-passing me
hanism among the I/O nodes toguarantee
on
urren
y atomi
ity of requests that span multiple I/O nodes, and to providesequential
onsisten
y and linearizability among requests (step j4 in Fig. 8). Con
urren
yatomi
ity implies that data a

ess requests and metadata operations are sequen
ed in thesame order on all a�e
ted
ells. It does not imply rollba
k semanti
s in
ase of failure. TheVesta algorithm is felt to be superior to systems like OSF/1 AD, whi
h a
hieves the sameresult by passing a token among the
lient nodes, serializing the servi
ing of the requests[39℄, and also superior to the lo
k-based
on
urren
y
ontrol in PIOUS, whi
h requires moremessages and is sus
eptible to deadlo
k unless deadlo
k avoidan
e measures are taken [32℄.A

ess to data in a �le either a�e
ts all the �le's
ells, or a subset (not ne
essarily
on-tiguously numbered) of them. Metadata operations, su
h as delete, resize, and
he
kpoint,always a�e
t all the
ells of the �le. In general, requests to the same �le do not ne
essarily
over the same subset of
ells, and so may also
over a di�erent subset of the I/O nodes.We refer to the part of a data a

ess request that is dire
ted to one
ell, as well as the partof a metadata operation that a�e
ts one
ell, as a
omponent of that request. A
omponentis
onsidered to be s
heduled on
e it is known at the I/O node in what order it should be19

performed relative to other
omponents a�e
ting the same �le. For ea
h
omponent, it isonly ne
essary to know if there are any outstanding
omponents that must be performedbefore it. Components a�e
ting di�erent �les
an be performed in any relative order withoutany risk of in
onsisten
y.It is ne
essary to ensure two properties to guarantee sequential
onsisten
y, linearity, and
on
urren
y atomi
ity of a

ess requests and metadata operations. First,
ontrol must notbe returned to the user appli
ation until it is known at the
lient node that all
omponents ofthe request have been s
heduled. This ensures that one or more
lients
annot issue multipleasyn
hronous requests that are improperly interleaved at the I/O nodes. Note that thisenfor
es a stronger ordering of asyn
hronous I/O requests than is enfor
ed by many Unixsystems, whi
h do not guarantee that asyn
hronous requests are performed in the orderissued. Se
ond, the
omponents of ea
h pair of requests to a �le must be s
heduled in thesame relative order at ea
h I/O node. Consider two requests, Ra and Rb, to the same �le.On ea
h I/O node, the
omponents of Ra (if there are more than one)
an be s
heduled inany order relative to ea
h other, but all of them must be s
heduled either before or after all
omponents of Rb. In addition, whatever order is established between Ra and Rb must bepreserved between any
omponents of these requests on all the I/O nodes a�e
ted by bothrequests. In pra
ti
e, Vesta �rst s
hedules all requests, and then ea
h server independently
he
ks for
on
i
ts before issuing the requests to the bu�er
a
he I/O module in a greedyfashion, enfor
ing the s
heduled order only where
on
i
ts exist.The me
hanism to determine a s
hedule is based on tokens that
arry sequen
e numbers.For ea
h a

ess, a token is passed on
e from the lowest numbered I/O node a

essed (wherenumbering is relative to the �le's base node) through all intermediate nodes (even if nota

essed) to the highest numbered node a

essed. When the token rea
hes the last I/Onode, it sends an a
knowledgment to the requesting
ompute node. Control
an then bereturned to the appli
ation program in the
ompute node's appli
ation thread.Ea
h I/O node maintains a set of 64 token bu
kets, ea
h with an in
ounter and an out
ounter. Ea
h �le is assigned to one bu
ket of the set. This is done
onsistently a
ross all I/Onodes by hashing the �le ID. At ea
h I/O node, ea
h token sent is given the
urrent valueof the out
ounter of the bu
ket that �le is assigned to. This
ounter is then in
remented.When a node re
eives a token, it �rst tries to mat
h the token's value with the value of thebu
ket's in
ounter. Tokens that do not mat
h are delayed until other tokens that shouldbe pro
essed before them arrive, and in
rement the in
ounter. This me
hanism is onlyne
essary for networks that may reorder messages between a pair of nodes. Mat
hing andrelaying tokens is done independently for ea
h bu
ket, to redu
e false dependen
ies amonga

esses to di�erent �les.If the node
ontains data that is being a

essed (as identi�ed by a bitmap generatedin the
lient, and propagated in the token), the a

ess represented by the token
an bes
heduled on
e the token mat
hes the bu
ket's in
ounter. This is done by mat
hing thetoken with in
oming request
omponent messages, and entering these request
omponentsinto the s
heduled request queue. Request
omponents in this queue are exe
uted as soonas there are no
on
i
ting requests pre
eding them in the s
heduled request queue. If thenode does not
ontain su
h data, the token is just forwarded to the next node.Metadata operations are initiated by a token only, with no in
oming message from the20

63 24 16 064-bit o�set0 0 0 0 0 0 0 0 6 E 8 B 9 A 3 3| {z }bran
hing in tree pppppppppblo
kin node pppppppppo�setin blo
k ptrsto blks0 toFF��-0 ��������������91 �����������)2 ����	5 ?6ZZZZZ~7PPPPPPPPPPPqEXXXXXXXXXXXXXXzFptrsto blks100 to1FF ptrsto blks200 to2FF q q q ptrsto blks500 to5FF ptrsto blks600 to6FF ptrsto blks700 to7FF q q q ptrsto blksE00 toEFF ptrsto blksF00 toFFF��������0

�1 BBBBNEQQQQQQsFptrsto blks6000 to60FF ptrsto blks6100 to61FF q q q 0027A30C6?8B ptrsto blks6F00 to6FFFFigure 9: Example of lo
ating a data byte from its 64-bit o�set. It turns out to be at o�set9A33 into logi
al blo
k 0027A30C.
lient node to mat
h. These operations are s
heduled lo
ally as soon as the token
ountermat
hes the appropriate in
ounter. They are exe
uted on
e the s
heduled request queue
ontains no
on
i
ting a

esses to the a�e
ted �le. This ensures proper interleaving of dataa

ess requests and �le metadata operations that a�e
t the �le data.At the appli
ation's dis
retion, it is possible to turn the
on
urren
y
ontrol o� for dataa

esses, thus eliminating the token-passing overhead. This is
alled the re
kless a

essmode, as opposed to the
autious a

ess mode that uses
on
urren
y
ontrol. Re
kless modeis useful if the data is a
tually not shared, if it is only read but not written, or if all writes tothe data are known to be disjoint, and are otherwise
oordinated with reads and metadataoperations performed by the appli
ation. In pra
ti
e, the overhead for
autious mode is small.Vesta will automati
ally turn on
on
urren
y
ontrol in
ases where di�erent appli
ationsare sharing a �le, even when one of those appli
ations has requested that
on
urren
y
ontrolbe turned o�.4.4 Stru
tures for Storing DataAs noted above, data is not
a
hed on
ompute nodes. As a result, the
ompute nodes haveno knowledge whatsoever about the mapping of data blo
ks to a
tual disks. Blo
klists for
ells are maintained ex
lusively at the I/O nodes. All I/O node metadata, in
luding theblo
k lists, are pinned into memory. For the
urrent Vesta
on�guration, allowing up to 16Kobje
ts (
ells, �les, or Xrefs) per I/O node, this requires less than 2MB of physi
al memory.This is a small fra
tion of the total memory expe
ted to be available on typi
al I/O nodes.Ea
h Vesta data blo
k is 64KB large. The disk spa
e on an I/O node is organized by21

striping su
h 64KB blo
ks a
ross all the available disks, and regarding them as a singlelogi
al disk indexed by 32-bit logi
al blo
k numbers. Thus, the
urrent implementation ofVesta allows byte addressing of up to 232+16 = 256 TB at ea
h I/O node. The blo
k numbersare stored in blo
k lists, one per
ell, indexed by the high-order 48 bits of the 64 bit �leo�sets.In the
urrent Vesta implementation, the blo
k list of ea
h
ell is organized as a 16-arytree. This tree is balan
ed rather than skewed, as opposed to Unix �le inode blo
k lists.Ea
h node of the blo
k list tree
ontains 256 logi
al blo
k addresses and 16
hild pointers.The blo
k list nodes are stored in a �xed size table, and are allo
ated and deallo
ated to andfrom
ells as needed. Logi
al blo
k addresses are translated into a physi
al devi
e numberand a physi
al blo
k address by modulo arithmeti
. An example of how a 64-bit
ell o�setis translated into a blo
k index and o�set is given in Fig. 9. As
an be seen, the blo
k listtree
an be traversed by doing simple shifts and masks of the
ell o�set.Note that this level of mapping just maps
ells to a single sequen
e of blo
ks in a logi
aldevi
e, that is itself mapped to the a
tual devi
es available on the I/O node. This lower-level mapping, as well as the disk s
heduling, are left to lower layers of the system. In fa
t,there are two Vesta implementations: the �rst used
onventional AIX �les as disks, and
ounted on AIX to perform all disk a

ess and to maintain the bu�er
a
he. The se
ondimplementation in
ludes bu�er
a
he management within Vesta (as des
ribed below), anduses the AIX logi
al volume layer to perform the a
tual disk mapping and a

ess.4.5 Bu�er Ca
he ManagementBlo
ks that are a

essed are kept in a 32 MB bu�er
a
he on ea
h I/O node (the size isa system
on�guration parameter). An a

ess
ounter is maintained for ea
h blo
k. This
ounter re
ords the number of bytes that have been read from or written to the blo
k, modulothe blo
k size3. Two queues are maintained to determine the repla
ement priority of blo
ksin the bu�er
a
he. Whenever the
ounter of bytes read or written is less than the blo
k size,the blo
k is pla
ed on a hold queue. Blo
ks being held have low priority for repla
ement.Blo
ks that have been entirely read or written are pla
ed on the repla
e queue. These blo
kshave a higher priority for repla
ement. When the
ounter indi
ates that the whole blo
kwas written, it is written asyn
hronously to disk. This is known as the WriteFull poli
y[24℄. The blo
k will remain in the
a
he until its
a
he slot is needed by the repla
ementalgorithm. Blo
ks may move from the repla
e queue to the hold queue if they are againfra
tionally read or written after they have been
ompletely read or written. This poli
y is agood heuristi
 to apply in the parallel environment, where blo
ks are not ne
essarily read orwritten sequentially, but they are often
ompletely read or written within a short time in theaggregate by several pro
esses of a parallel appli
ation. Dirty blo
ks are also written to diskif a low-water-mark of free bu�er slots is rea
hed, or if load on the node is low, regardless ofwhether or not they have been
ompletely overwritten.The Vesta servers also implement a prefet
hing me
hanism for sequentially a

essed data.This is appli
able both for reading and for writing in units smaller than the blo
k size,3Bytes that are written twi
e will be
ounted twi
e, resulting in false assumptions that the blo
k hasbeen fully written, but this sort of behavior hardly o

urs in pra
ti
e.22

be
ause then the blo
ks must be read into the bu�er
a
he before they
an be modi�ed.The sequential a

ess patterns are re
ognized based on a tra
e of the last 32 distin
t blo
ksthat were a

essed. When a
ell blo
k B is a

essed, this tra
e is s
anned for
ell blo
ksB � 1, B � 2, and so on down to B � 8. The prefet
h size is then de�ned to be the largestn su
h that blo
ks B � 1 through B � n were found in the tra
e. This
auses blo
ks B + 1through B + n to be prefet
hed. This me
hanism in
reases the prefet
hing size up to amaximum of 512 KB depending on the length of the previously a

essed
ontiguous data.All the spe
i�
 values here are parameters of the �le system, and
an be modi�ed to tune fora parti
ular environment. This s
heme automati
ally redu
es the prefet
hing size if multipleindependent �les are being a

essed, leading to
on
i
ts in the bu�er
a
he. Therefore,it is a self-regulating prefet
h s
heme that heuristi
ally re
ognizes the aggregate sequentialpatterns typi
al of a parallel I/O workload.4.6 Additional Servi
esChe
kpointingOne of the unique features of Vesta is the ability to
he
kpoint �les. Su
h
he
kpointingis a
omponent of
he
kpointing appli
ation state, be
ause when an appli
ation is rolledba
k to a previous state its open �les should also be rolled ba
k to the
orresponding state.Che
kpointing is supported by maintaining two versions of ea
h Vesta �le: the a
tive versionand the
he
kpoint version. Write operations
an only a�e
t the a
tive version, whereas readoperations
an be dire
ted at either the a
tive or the
he
kpoint version. Thus it is possibleto take a
he
kpoint and then
opy it to another �le in the ba
kground, while
ontinuing toupdate the a
tive version.Che
kpoints are implemented by keeping double blo
k lists for every
ell in the �le.Thus the blo
k lists in the tree des
ribed above a
tually
ontain two pointers for ea
h blo
k.Taking a
he
kpoint
onsists of simply
opying the a
tive list to the
he
kpoint list (naturally,
are must be taken to release blo
ks from a previous
he
kpoint that is overwritten, andthat outstanding reads against any overwritten
he
kpoint blo
k are
ompleted before the
he
kpoint is allowed to
omplete). No data is
opied, so this is a very fast operation. Afterthe
he
kpoint is taken, the a
tive version may diverge from the
he
kpoint version whenevernew data is written, using a
opy-on-write me
hanism. This uses the minimal disk spa
eneeded, be
ause all those blo
ks that are not
hanged are shared by both versions of the �le.Rollba
k is implemented by
opying the
he
kpoint list onto the a
tive list.Import and ExportThe unique semanti
s of Vesta �les (2-dimensional stru
ture with unspe
i�ed linear order)imply that they
annot be a

essed dire
tly through a
onventional �le system interfa
e. Inparti
ular, Vesta is not mountable as a Unix virtual �le system. Therefore some me
hanismis needed to transfer �les between Vesta and other �le systems, network interfa
es, or storagedevi
es.The model for import and export is that there are
ertain gateway nodes that have a

essboth to Vesta and to the external �le system (these
ould be normal
ompute nodes). These23

nodes run a parallel import/export daemon that
an
opy data from one �le system to theother [9℄. The partitioning parameters used by the daemons to open the Vesta �les determinewhat part of the data is a�e
ted, and in what serial order the data will appear.5 Performan
eThis se
tion des
ribes performan
e experiments designed to test Vesta and the degree towhi
h it utilizes the underlying hardware.5.1 Experimental SettingVesta is implemented on an IBM SP1 platform. This is a distributed-memory MIMD ma-
hine. Ea
h node is fun
tionally equivalent to an IBM RS/6000 model 370 workstation,rated at 125 MFlops peak. The nodes are
onne
ted by a multistage network with 40 MB/sduplex links [42℄. The network adapters use programmed I/O rather than DMA, so heavymessage passing a
tivity
omes at the expense of pro
essing power. The adapters also havelimited bandwidth, substantially lower than the network itself (this has been
orre
ted inthe newer SP2 model).The installation we used for the experiments is a 16-node ma
hine. Ea
h node has 128MB lo
al memory and a 1GB disk. In the experiments, we load the test program onto onesubset of nodes, whi
h assume the role of
ompute nodes. The Vesta server
ode is loadedonto the other nodes, whi
h assume the role of I/O nodes. The instantaneous transferrate of the disks is 3.0 MB/s, but when various software and hardware overheads are takeninto a

ount (in
luding
opying data, se
tor and tra
k overhead for ECC, bad se
tors, SCSI
ommand exe
ution, et
.) this drops to about 2.26 MB/s for reads and 1.52 MB/s for writes.These numbers were measured using a test program that a

essed an AIX logi
al volumeusing the same asyn
hronous I/O
alls used by Vesta.The system software
onsists of a full AIX running on ea
h node. Message passing a
rossthe high-performan
e swit
h is provided by the EUI-H pa
kage (also known as the AIXMessage Passing Library prototype/6000). Loading and exe
uting appli
ations, in
ludingsetting up the
onne
tion between the test program and the Vesta server, is done by theMPX pa
kage, whi
h we also developed at IBM Resear
h. This allows multiple parallel
lientpartitions to
onne
t to the same parallel server.The results shown are the best measurements we obtained, typi
ally on an unloadedsystem. The number of measurements done for ea
h data point ranged from 2-3 up toabout 20, with higher numbers being used mainly in the
ase of large a

ess sizes that wereexpe
ted to drive the hardware to its limits. In many
ases there was only a small (<10%)varian
e among the di�erent measurements, but in some
ases the varian
e was signi�
ant.In these
ases there was typi
ally a
luster of measurements that gave near-peak results,while the other measurements were spread relatively widely down to as low as 15{20%of peak performan
e. The reason for su
h low performan
e was interferen
e from otherjobs and system a
tivity beyond our
ontrol. A
hara
teristi
 of the SP-1 was that AIXdaemons were run unsyn
hronized on the multiple di�erent nodes of the
omputer; hen
e,if the AIX s
heduler for one of the servers involved in a performan
e run de
ided to run a24

0

1

2

3

4

5

6

7

8

9

16 64 256 1K 4K 16K 64K 256K

ba
nd

w
id

th
 [M

B
/s

]

data size

piped mp
rd mp
wr mp

rd mp+cp
wr mp+cp

rd small
1st wr small

2nd wr small
rd big

1st wr big
2nd wr big

Figure 10: Bandwidth as a fun
tion of data size, for message passing and Vesta.daemon pro
ess during the run, the performan
e of that experiment was adversely a�e
ted,often dramati
ally. Detailed analysis of su
h phenomena, and indeed of system performan
eunder load
onditions, depends on the spe
i�

hara
teristi
s of the interfering workload.Su
h analysis is beyond the s
ope of this paper. Complete statisti
s of all of the hundredsof experiments are available from the authors.5.2 Message-Passing Performan
eThe purpose of this experiment is to
hara
terize the message-passing performan
e of Vesta,and the additional overhead above that to a
tually ship the data a
ross the network. This isdone by a set of measurements involving one
ompute node and one I/O node. The followingdes
ription mat
hes the order of the graphs in Fig. 10 from top-left to bottom-right4.� piped mp | unidire
tional pipelined message passing using EUI-H.� rd mp and wr mp | message passing patterns that emulate Vesta read and writea
tivity, without running any of the a
tual Vesta
ode. For reads, there is a small
onstant-size request message, and then the data
omes ba
k with an a
knowledgmentin the same message (so the a
tual transfer is slightly larger than just the data). Forwrites, there is a small
onstant-size request message, then the data is sent in a se
ondmessage, and �nally an a
knowledgment
omes ba
k. These patterns are ex
hangedbetween the two nodes, using the
orre
t sizes for the requests and the a
knowledgment,and the same data sizes as those used above. Note the added laten
y for the ba
k-and-forth patterns relative to the pipelined unidire
tional messages shown before.4When measuring rates, MB/s stands for one Million Bytes per se
ond. When measuring �le and a

esssizes, powers of two are used. Thus a 1 K blo
k is 1024 Bytes.25

operation C Bpiped mp 0.067 0.000115rd mp 0.143 0.000115wr mp 0.143 0.000116rd mp+
p 0.139 0.000129wr mp+
p 0.143 0.000129rd small 0.353 0.0001441st wr small 0.489 0.000141rd big -1.04 0.0004891st wr big -0.02 0.000658Table 1: Parameters in
ost of operations, in ms.� mp+
p | Vesta message passing is further
hara
terized by use of I/O ve
tors with2-dimensional elements. This allows multiple data elements that are not
ontiguous ineither the
ells or the sub�le to be sent in a single message, but requires an additional
opy and degrades the a
hieved bandwidth for large data sizes.� small | the full Vesta
ode path when reading and writing small �les (16MB) that�t into the bu�er
a
he memory. 1st wr is writing to a new �le, 2nd wr is overwritingexisting data, whi
h hits the bu�er
a
he, and rd is reading, again from the bu�er
a
he.Both laten
y and bandwidth are degraded, partly due to another
opy operation.� big | Vesta on big �les (128MB) that do not �t in the bu�er
a
he. Here bandwidthis limited by the disk. Writes a
hieve a bandwidth of about 1.5 MB/s, and reads abandwidth of about 2.2 MB/s, both of whi
h are the same as the bandwidths a
hievedby AIX-JFS. It is very noti
eable that the se
ond write of blo
ks smaller than 64 KBa
hieves only about half the bandwidth of the �rst write. This is be
ause the Vestablo
k size is 64 KB, and writing less than a blo
k requires it to be read o� the diskbefore being modi�ed.The results indi
ate a linear relation between the time of an I/O operation and theamount of data being a

essed, i.e. T = C + B � n, where C is a
onstant overhead peroperation and B is a
ost-per-byte. A least-squares �t leads to the values for C and B thatare shown in Table 15.5.3 Bu�er Ca
he and Disk Syn
hronizationOne of the e�e
ts of the bu�er
a
he is that data
an be stored in memory on the I/O nodes,without any a

ess to the disks. This in
reases the e�e
tive bandwidth to that of memorytransfer, as shown in the previous se
tion. This is espe
ially relevant for write operations,be
ause write-behind is always used, whereas reads must go to disk if the data is not alreadyin the bu�er
a
he. We therefore
on
entrate on write operations in this se
tion.5The negative values for C are artifa
t of doing a least-squares �t of a line with a large slope and somedata points with very large values: a far-out data point whi
h is a bit above the line pushes the interse
tionwith the y axis down. 26

0

1

2

3

4

5

6

7

8

1 4 16 64 256

ba
nd

w
id

th
 [M

B
/s

]

file size [MB]

buffer
cache

size

disk bandwidth

measured
model

Figure 11: Write bandwidth as a fun
tion of dataset size.Even when the total amount of data written is larger than the bu�er
a
he, part of itmay be left in memory while the rest is transferred to disk. The observed bandwidth willtherefore be a weighted average of the memory and disk bandwidths. The model is that ifthe dataset size is less than or equal to the bu�er
a
he size, it stays in memory. Only whenthe dataset size is larger, then we need to wait for part of it to be
opied to disk to makeroom for the rest. A
tually, writeba
k begins immediately, so the smallest �le size wherewe begin to have to wait for the disk to
omplete I/O is somewhat larger than the bu�er
a
he. Denote by t the time to write the data. Assuming a memory transfer bandwidth of6.7 MB/s, a disk bandwidth of 1.5 MB/s, and a bu�er
a
he of 32 MB, the amount of datatransferred out of the
ompute node is t � 6:7, and the amount stored in the I/O node is32 + t� 1:5. By equating the two we get t = 6:15 se
onds, and the threshold dataset size ist�6:7 = 41:23 MB. Denoting the dataset size by DS, the model for the observed bandwidthis therefore BW = 8>>>><>>>>: 6:7 if DS � 41:23MBDS6:15 + DS�41:231:5 otherwiseThis approa
hes the disk bandwidth of 1.5 MB/s for large datasets. As shown in Fig. 11, itis in ex
ellent agreement with the measurements (using writes of 64 KB ea
h).To avoid measuring the e�e
t of deferred write-behind, all subsequent measurementsin
lude a
all to the Vesta syn
 fun
tion, so that all data is a
tually transferred to disk.Su
h
alls were also used in the disk a

ess measurements in the previous se
tion, but notin the bu�er
a
he a

ess measurements.
27

5.4 Parallel A

ess and S
alabilityThe purpose of this experiment is to demonstrate and quantify the performan
e impa
t ofparallel I/O. This is done by a

essing di�erent numbers of I/O nodes, and measuring theresulting bandwidth.In order to allow parallel use of all the I/O nodes, a separate bu�er is used to a

essea
h one, and the I/O operations are done asyn
hronously. The �le size is also in
reased inproportion to the number of I/O nodes. The results are shown in Fig. 12. It is apparent thatthe bandwidth s
ales with the number of I/O nodes used, up to the limit set by the
omputenode's network adapter. For writes, an inversion is observed for small a

ess sizes. The
auseof this inversion is unknown. In the se
ond write, a

ess sizes smaller than 64 KB a
hieveabout 0.9 MB/s per I/O node a

essed, be
ause the data has to be read o� disk beforebeing modi�ed. Above 64 KB, writes a
hieve about 1.5 MB/s per I/O node a

essed. Readsa
hieve about 2.1 MB/s per I/O node a

essed. It is interesting to note that, given enoughI/O nodes, writes a
tually a
hieve a higher bandwidth than reads. This might be be
ausethe
ompute node's network port is used more eÆ
iently when data is being transmitted,be
ause then the
ompute node has the initiative. When data is being re
eived, messagesfrom the di�erent I/O nodes
on
i
t in the
ommuni
ations network when they
onverge onthe
ompute node [3, 43℄.A drawba
k of this experiment is the limited bandwidth of the network adapter of thesingle
ompute node. This prevents
he
king s
alability beyond about 6 I/O nodes. Toaddress this issue, we
ondu
ted another experiment where the whole system was s
aled.Based on the results in Fig. 12, we
hose a ratio of 3 I/O nodes for ea
h
ompute node.With this ratio, the adapter bandwidth is suÆ
ient for both reads and writes. The results ofthis experiment are shown in Fig. 13, where an a

ess size of 64 KB is used. The aggregatebandwidth of the system s
ales linearly with system size.5.5 Orthogonal Logi
al ViewsA major feature of Vesta is the ability to partition �le data and a

ess it in various ways.Two experiments were designed for the purpose of
omparing the performan
e of di�erenta

ess patterns. The �rst is based on a single
ompute node that stripes data a
ross
ellsin di�erent ways. The se
ond
ompares the performan
e of parallel a

ess to sub�les that
orrespond to
ells with the performan
e of a

ess to sub�les that span multiple
ells.In the �rst experiment, one
ompute node and four I/O nodes are used. A �le withone 128MB
ell on ea
h I/O node is
reated. The basi
 striping unit (BSU) is set to onefourth of the a

ess size in ea
h measurement, whi
h ranges from 256 bytes to 1 MB. Threea

ess patterns are
ompared: using a striping unit of one BSU (so ea
h a

ess
overs allfour I/O nodes), using a striping unit of 4 BSUs (ea
h a

ess is
ontained in a single
ell,but su

essive a

esses hit all
ells in a
y
li
 pattern), and using a striping unit of 128 MB(so ea
h
ell is
ompletely a

essed before the next one).The results are shown in Fig. 14. The
urves for writing are for the �rst write, to avoidthe update e�e
t for small sizes. When the
ells are a

essed sequentially, the bandwidth isessentially that of a single disk (write bandwidth is higher than 1.5 MB/s be
ause we only28

1st write

0

1

2

3

4

5

6

7

8

9

1K 4K 16K 64K 256K

ba
nd

w
id

th
 [M

B
/s

]

access size

7 I/O nodes
6 I/O nodes
5 I/O nodes
4 I/O nodes
3 I/O nodes
2 I/O nodes
1 I/O node

2nd write

0

1

2

3

4

5

6

7

8

9

1K 4K 16K 64K 256K

ba
nd

w
id

th
 [M

B
/s

]

access size

7 I/O nodes
6 I/O nodes
5 I/O nodes
4 I/O nodes
3 I/O nodes
2 I/O nodes
1 I/O node

read

0

1

2

3

4

5

6

7

8

9

1K 4K 16K 64K 256K

ba
nd

w
id

th
 [M

B
/s

]

access size

6 I/O nodes
5 I/O nodes
4 I/O nodes
3 I/O nodes
2 I/O nodes
1 I/O node

Figure 12: Bandwidth as a fun
tion of a

ess size and number of I/O nodes, for multipleasyn
hronous a

esses. 29

0

5

10

15

20

25

30

1/3 2/6 3/9 4/12

ba
nd

w
id

th
 [M

B
/s

]

compute nodes / I/O nodes

read
write

Figure 13: Bandwidth as a fun
tion of system size, using a
onstant ratio of
ompute nodesto I/O nodes.

0

1

2

3

4

5

6

7

8

256 1K 4K 16K 64K 256K 1M

ba
nd

w
id

th
 [M

B
/s

]

access size

rd across
wr across

rd cyclic
wr cyclic

rd cells
wr cells

Figure 14: Bandwidth as fun
tion of a

ess size for di�erent a

ess patterns, with a single
ompute node and four I/O nodes. 30

01234567
01234567

01234567
01234567

0 1 2 34 5 6 70 1 2 34 5 6 70 1 2 34 5 6 70 1 2 34 5 6 7Figure 15: Two ways to partition a Vesta �le: sub�les
orrespond to
ells, or they are stripeda
ross
ells.syn
 to disk after writing the whole �le, not after ea
h
ell). When ea
h a

ess is stripeda
ross all four I/O nodes, the bandwidth is quadrupled due to the parallelism.The most interesting
ase is the
y
li
 pattern, where ea
h a

ess is to a di�erent I/Onode. Given that syn
hronous I/O operations were used, one might expe
t the bandwidth tobe that of a single disk. However, the results indi
ate that the bandwidth is typi
ally mu
hhigher. This is a result of the bu�er
a
he management. Writes a
hieve a higher bandwidthdue to the use of write-behind. This allows the a
tual disk a

ess to be overlapped witha

ess to subsequent I/O nodes, and e�e
tively leads to parallel usage of the disks. Readsalso a
hieve a higher bandwidth than a single disk, due to readahead. Again, this overlapsthe prefet
h disk operations with a

ess to other I/O nodes, so when the data is a
tuallyrequested it is already in memory. However, if the request is for more than the amountprefet
hed, the request is delayed until the missing data is obtained. This is the reason forthe drop in performan
e when the a

ess size is above 512 KB.The se
ond experiment is designed to investigate what happens when multiple
omputenodes a
tually a

ess disjoint sub�les simultaneously. This experiment is
onstru
ted asfollows. Four
ompute nodes and four I/O nodes are used. A �le with 4
ells is
reated,with one
ell on ea
h I/O node. The size of the �le is 512 MB (i.e. 128 MB per I/O node).The whole �le is written twi
e and read, as in previous experiments, but in this
ase the �leis �rst partitioned into four disjoint sub�les, and ea
h
ompute node handles one of thesesub�les. All four
ompute nodes syn
hronize at the end, to ensure that the measurementre
e
ts the slowest
ompute node (this is equivalent to the \minimum sustained aggregaterate" in the terminology of Fren
h et al. [19℄). In ea
h
ase the �le is
reated with a basi
striping unit (BSU) that is one fourth of the a

ess size.The pattern of writing and reading the �le is repeated twi
e. In the �rst
ase, ea
h sub�le
orresponds to a separate
ell. In the se
ond, sub�les are striped a
ross
ells (Fig. 15). Theresults are shown in Fig. 16. When ea
h
ompute node a

esses a separate
ell, the resultsare essentially the same as in Fig. 10 (one
ompute node to one I/O node) multiplied by 4.When the a

ess is striped a
ross
ells, the e�e
tive a

ess size to ea
h
ell is 1/4 the a

esssize from the
ompute node (be
ause ea
h a

ess is divided among the 4
ells). Thereforewe would expe
t the bandwidth observed for a

esses of b bytes using striping to be roughlythe same as that for a

essing b=4 bytes from a single
ell. The results are a
tually better:when a

essing b striped bytes, the observed bandwidth is that of a

essing b=2 bytes from31

0

2

4

6

8

10

256 1K 4K 16K 64K 256K

ba
nd

w
id

th
 [M

B
/s

]

access size

rd cells
wr cells

rd across
wr across

Figure 16: Bandwidth as fun
tion of a

ess size for di�erent partitioning s
hemes, with four
ompute nodes and four I/O nodes.a single
ell. This indi
ates that a large part of the overhead is global overhead for ea
hoperation, and does not depend on the data transfer size.It is instru
tive to
ompare our results for Vesta with measurements done with otherparallel �le systems. The only other system that provides data de
omposition like Vesta isthe nCUBE system [12℄. Detailed measurements of various a

ess patterns are presented in[13℄. These measurements indi
ate that when an a

ess in
ludes transposition (e.g. a

essby rows to data that is stored by
olumns) the degradation in performan
e
an be verylarge. Their proposed solution is to use two-phase a

ess. For example, a two-phase read isimplemented by �rst a

essing the disks in parallel and reading the data as it is stored, andthen using message passing among the
ompute nodes to redistribute it as desired. Vestaa
hieves the same e�e
t more dire
tly, and without requiring extra bu�ers and
opying onthe
ompute nodes. Data is read o� the disk and
a
hed in the memory of the I/O nodes,and then it is redistributed when it is sent from the I/O nodes to the
ompute nodes.Another problem in supporting data de
omposition o

urs when the a

esses from thedi�erent pro
esses are not part of the same
olle
tive I/O operation. In Vesta, pro
essesde�ne the sub�le that they wish to a

ess when it is opened, and then ea
h pro
ess
ana

ess its sub�le asyn
hronously, i.e. without
oordination with other pro
esses. As a result,requests may arrive at the I/O nodes in an arbitrary order. In parti
ular, the order ofrequests may be di�erent from the sequential order of data on the disk, leading to ex
essiveseeking. Our results indi
ate that the Vesta bu�er
a
he management algorithms are e�e
tivein over
oming out-of-order requests. Writes that arrive out of order are bu�ered and writtenlater by the write-behind me
hanism. Read requests that arrive out of order are neverthelessre
ognized as sequential in the aggregate, and thereby a
tivate the prefet
hing me
hanism.The prefet
hing reads the data o� disk sequentially, so when the requests a
tually arrive32

0

1

2

3

4

5

6

7

8

9

1 2 4 8

sp
ee

du
p

number of I/O nodes

512
2K
8K

16K

0

50

100

150

200

250

300

1 2 4 8

ex
ec

ut
io

n
tim

e
[s

]

number of I/O nodes

512
2K
8K

16K

Figure 17: Speedup and timing for FastMeshSort on 8
ompute nodes and di�erent numbersof I/O nodes.they are satis�ed from memory.To summarize, our results indi
ate that the Vesta bu�er
a
he management is an im-portant
ontributor to performan
e. This
orroborates independent studies that anti
ipatedthe advantages of
a
hing based on analysis of appli
ations [31, 25℄. It also shows that withregular a

ess patterns all pro
esses bene�t from the prefet
hing, thus refuting the anxietyraised in [26℄ regarding this issue.5.6 Performan
e of Sorting Appli
ationSyntheti
 ben
hmarks that gauge a system's peak performan
e are important, but they donot provide a full pi
ture. It is also important to investigate the degree to whi
h appli
a-tions
an translate the performan
e �gures into real bene�ts. We use an out-of-
ore sortingappli
ation as an example, and spe
i�
ally, the FastMeshSort algorithm des
ribed in Se
tion3.3.The results are shown in Fig. 17. The �le being sorted had one million integer re
ords.This �le was small enough that it would always be resident in the I/O node bu�er
a
he, evenon one I/O node. Therefore, no superlinear speedup e�e
ts were expe
ted. Four versionsof the program were tested, with di�erent sizes for the basi
 blo
ks of data that are loadedinto memory for sorting. The smaller the blo
k size, the more iterations that are neededto
omplete the sorting, and the more I/O intensive the appli
ation be
omes. The
ase of512 elements in the blo
k is very I/O intensive, and exhibits ex
ellent speedup as more I/Onodes are added. When larger blo
k sizes are used, the speedup is somewhat smaller. Notethat the speedups are taken relative to the exe
ution with a single I/O node, for the sameappli
ation.While the speedup results are very promising, they don't tell the whole story. The totaltime required to sort the �le is a
tually more important. This data is also shown in Fig. 17(right), and indi
ates that the version with the largest blo
k size (16K) is the most eÆ
ient.This means that for this spe
i�
 appli
ation, it is better to use large blo
k sizes, despite thefa
t that the speedup with added I/O nodes is then smaller. It does not mean that the parallel33

I/O provided by Vesta is useless; on the
ontrary, the results show that doubling the numberof I/O nodes used provides a larger bene�t than doubling the blo
k size. Furthermore, itis not always possible to modify the
ompute-to-I/O ratio of an appli
ation, as it is donehere by
hanging the blo
k size. Parallel I/O
an only improve the performan
e of the I/O
omponent of an appli
ation. If this
omponent is small, parallel I/O will not help, as aresult of Amdahl's law. But if the I/O
omponent is large, as it is for the 512-element blo
ksin FastMeshSort, then parallel I/O provides very signi�
ant bene�ts.6 Con
lusionsThe Vesta parallel �le system has introdu
ed a new approa
h to parallel I/O that embodiesa signi�
ant departure from previous systems. At the basis of this approa
h is the expli
itre
ognition of the 2-dimensional stru
ture of Vesta �les, where one dimension represents theparallelism and the other represents sequential data as in
onventional systems. On top ofthis stru
ture, Vesta introdu
es the notion of partitioning the data in various ways to mapthe appli
ation's a

ess pattern to the layout of the data on the parallel I/O hardware.The system
ontains 67 fun
tions for metadata a

ess and manipulation, �le a

ess, dataa

ess, Xref operations, import from and export to external systems, and system adminis-tration [8℄. All but two (prefet
h and
ush) are fully implemented on an IBM SP1 multi-
omputer, using the EUI-H message passing library and the MPX job
ontrol fa
ility. Thesystem provides the base te
hnology for the AIX Parallel I/O File System re
ently releasedfor use with the IBM SP2 and future generations [9℄.Lessons learnedOur experien
e in designing and implementing Vesta, and in trying to establish support forits ideas, has taught us many important lessons. Here are some ideas about what we mightdo di�erently if we were to design another parallel �le system.A major problem in the Vesta design was the de
ision to sa
ri�
e Unix
ompatibility.While this opened the door to innovative ideas relating to abstra
tions and interfa
e design,it redu
ed the system's appeal to real users who were more interested in getting real workdone. Indeed, a signi�
ant part of the e�ort in
reating the AIX Parallel I/O File Systemprodu
t was devoted to
oupling the Vesta implementation with a Unix �le system interfa
e,to allow the system to be part of a
onventional Unix �le system [9℄. This allows users toa

ess �les as if they were normal sequential �les, using a set of default layout parameters.Only users who a
tually want to invest the e�ort need know about the option to partition�les and
ontrol the layout. In retrospe
t, we feel that the de
ision was the
orre
t one inthe
ontext of a resear
h proje
t, but that we
ould have demonstrated many of the
on
eptsof parallel I/O under an extended Unix interfa
e. Taking this approa
h would have led toan easier e�ort to produ
e a produ
t �le system.At a more detailed te
hni
al level, there are a number of things that might be donedi�erently. One is the use of a name server rather than the hashing s
heme used in Vesta.Given that the largest
omputers Vesta will ever be run on have several hundreds of nodes,and that most of these
omputers have only tens of nodes, a
entralized name server would34

suÆ
e. Su
h a design would break the Vesta server into two more manageable and largelyindependent modules.Another possible
hange would be to add
olle
tive I/O operations at the low-level userinterfa
e. In Vesta, we de
ided to make the lowest level fun
tions independent, meaning thatea
h pro
ess
ould
all the fun
tions with no implied
oordination or temporal alignment withother pro
esses. Colle
tive operations, where a set of pro
esses parti
ipate and syn
hronizewith ea
h other, were left for higher level libraries. The problem with this approa
h is thatif a

esses from the di�erent pro
esses are interleaved at the I/O nodes, important semanti
information (that
ould be used to optimize the disk a

esses) is lost. The system
an makeup for this to some degree by using appropriate prefet
hing and write-behind with the bu�er
a
he, as done in Vesta. However, optimizations based on expli
it information about howa

esses from the di�erent nodes intera
t should also be
onsidered [23, 36℄.In Vesta, �le data is only
a
hed at the I/O nodes, to obviate the issue of maintaining
oheren
e of a distributed
a
he. A re
ent study of appli
ation I/O behavior shows thatthis may be an overly restri
tive solution. Spe
i�
ally, limited
lient-side
a
hing
an behighly bene�
ial for a

ess patterns involving many small operations, and does not requireany measures for
oheren
e if the data is only being read [25℄. In Vesta, this
an be extendedto writing as well, if the pro
esses are writing to disjoint sub�les. The sub�ling interfa
e ofVesta provides important information to the �le system that will allow it to make de
isionsabout
a
hing of data at the
lients.Vesta is vulnerable to
lient failures when multi-phase operations are performed, be
auseit trusts the
lient to
omplete all phases of the operation. A better design would be to spawno� a server thread that will take
are of all the phases, and limit the intera
tion with the
lient to a single ba
k-and-forth message pattern. This was not done in Vesta be
ause theenvironment we worked in did not support threads, and the alternative would have resultedin greatly in
reased
omplexity of the server
ode.Finally, a major problem has been understanding the behavior of the system. Pra
ti
allynone of the performan
e experiments worked as expe
ted the �rst time around. Understand-ing the system's behavior would have been easier if we had pla
ed more monitoring hooks inthe
ode, and if we had an environment that supported
onvenient debugging and observa-tion of parallel programs. A small step in this dire
tion was our use of the Vul
an terminalI/O fa
ility [15℄, whi
h was available as part of the virtual-vul
an unipro
essor environmentwhen we started the implementation.A
knowledgmentsThe authors would like to a
knowledge the
ontributions of Jean-Pierre Prost, Sandra John-son Baylor, Yarsun Hsu, Mar
 Snir, Tony Bolmar
i
h, and Julian Satran to the total e�ortrelated to the Vesta proje
t at IBM Resear
h.
35

Referen
es[1℄ K. E. Bat
her, \Sorting networks and their appli
ations". In AFIPS Spring JointComput. Conf., pp. 307{314, 1968.[2℄ R. Bordawekar, A. Choudhary, and J. M. del Rosario, \An experimental performan
eevaluation of Tou
hstone Delta Con
urrent File System". In Intl. Conf. Super
omputing,pp. 367{376, 1993.[3℄ E. A. Brewer and B. C. Kuszmaul, \How to get good performan
e from the CM-5 datanetwork". In 8th Intl. Parallel Pro
essing Symp., pp. 858{867, Apr 1994.[4℄ P. Brezany, M. Gerndt, P. Mehrotra, and H. Zima, \Con
urrent �le operations in a highperforman
e FORTRAN". In Super
omputing '92, pp. 230{237, Nov 1992.[5℄ P. Corbett, D. Feitelson, S. Fineberg, Y. Hsu, B. Nitzberg, J-P. Prost, M. Snir,B. Traversat, and P. Wong, \Overview of the MPI-IO parallel I/O interfa
e". In IPPS'95 Workshop on I/O in Parallel and Distributed Systems, pp. 1{15, Apr 1995.[6℄ P. F. Corbett, S. J. Baylor, and D. G. Feitelson, \Overview of the Vesta parallel �lesystem". In Pro
. IPPS '93 Workshop on I/O in Parallel Computer Systems, pp. 1{16,Apr 1993. (Reprinted in Comput. Ar
h. News 21(5), pp. 7{14, De
 1993).[7℄ P. F. Corbett and D. G. Feitelson, \Design and implementation of the Vesta parallel�le system". In S
alable High-Performan
e Comput. Conf., pp. 63{70, May 1994.[8℄ P. F. Corbett and D. G. Feitelson, Vesta File System Programmer's Referen
e, Version1.01. Resear
h Report RC 19898 (88058), IBM T. J. Watson Resear
h Center, O
t1994.[9℄ P. F. Corbett, D. G. Feitelson, J-P. Prost, G. S. Almasi, S. J. Baylor, A. S. Bolmar
i
h,Y. Hsu, J. Satran, M. Snir, R. Colao, B. D. Herr, J. Kavaky, T. R. Morgan, andA. Zlotek, \Parallel �le systems for the IBM SP
omputers". IBM Syst. J. 34(2),pp. 222{248, 1995.[10℄ P. F. Corbett, D. G. Feitelson, J-P. Prost, and S. J. Baylor, \Parallel a

ess to �les inthe Vesta �le system". In Super
omputing '93, pp. 472{481, Nov 1993.[11℄ P. F. Corbett and I. D. S
herson, \Sorting in mesh
onne
ted multipro
essors". IEEETrans. Parallel & Distributed Syst. 3(5), pp. 626{632, Sep 1992.[12℄ E. DeBenedi
tis and J. M. del Rosario, \nCUBE parallel I/O software". In 11th Intl.Phoenix Conf. Computers & Communi
ations, pp. 117{124, Apr 1992.[13℄ J. M. del Rosario, R. Bordawekar, and A. Choudhary, \Improved parallel I/O via atwo-phase run-time a

ess strategy". In Pro
. IPPS '93 Workshop on I/O in ParallelComputer Systems, pp. 56{70, Apr 1993. (Reprinted in Comput. Ar
h. News 21(5),pp. 31{38, De
 1993). 36

[14℄ P. C. Dibble, M. L. S
ott, and C. S. Ellis, \Bridge: a high-performan
e �le system forparallel pro
essors". In 8th Intl. Conf. Distributed Comput. Syst., pp. 154{161, 1988.[15℄ D. G. Feitelson, \Terminal I/O for massively parallel systems". In S
alable High-Performan
e Comput. Conf., pp. 263{270, May 1994.[16℄ D. G. Feitelson, P. F. Corbett, S. J. Baylor, and Y. Hsu, \Parallel I/O subsystemsin massively parallel super
omputers". IEEE Parallel & Distributed Te
hnology 3(3),pp. 33{47, Fall 1995.[17℄ D. G. Feitelson, P. F. Corbett, Y. Hsu, and J-P. Prost, \Parallel I/O systems andinterfa
es for parallel
omputers". InMultipro
essor Systems | Design and Integration,C-L. Wu (ed.), World S
ienti�
, 1995.[18℄ D. G. Feitelson, P. F. Corbett, and J-P. Prost, \Performan
e of the Vesta parallel �lesystem". In 9th Intl. Parallel Pro
essing Symp., pp. 150{158, Apr 1995.[19℄ J. C. Fren
h, T. W. Pratt, and M. Das, \Performan
e measurement of the Con
ur-rent File System of the Intel iPSC/2 hyper
ube". J. Parallel & Distributed Comput.17(1&2), pp. 115{121, Jan/Feb 1993.[20℄ M. Holland and G. A. Gibson, \Parity de
lustering for
ontinuous operation in redun-dant disk arrays". In 5th Intl. Conf. Ar
hite
t. Support for Prog. Lang. & OperatingSyst., pp. 23{35, Sep 1992.[21℄ Intel Super
omputer Systems Division, Paragon User's Guide. Order number 312489-003, Jun 1994.[22℄ R. H. Katz, G. A. Gibson, and D. A. Patterson, \Disk system ar
hite
tures for highperforman
e
omputing". Pro
. IEEE 77(12), pp. 1842{1858, De
 1989.[23℄ D. Kotz, \Disk-dire
ted I/O for MIMD multipro
essors". In 1st Symp. Operating Sys-tems Design & Implementation, pp. 61{74, USENIX, Nov 1994.[24℄ D. Kotz and C. S. Ellis, \Ca
hing and writeba
k poli
ies in parallel �le systems". J.Parallel & Distributed Comput. 17(1&2), pp. 140{145, Jan/Feb 1993.[25℄ D. Kotz and N. Nieuwejaar, \Dynami
 �le-a

ess
hara
teristi
s of a produ
tion parallels
ienti�
 workload". In Super
omputing '94, pp. 640{649, Nov 1994.[26℄ D. F. Kotz and C. S. Ellis, \Prefet
hing in �le systems for MIMD multipro
essors".IEEE Trans. Parallel & Distributed Syst. 1(2), pp. 218{230, Apr 1990.[27℄ N. P. Kronenberg, H. M. Levy, and W. D. Stre
ker, \VAX
lusters: a
losely-
oupleddistributed system". ACM Trans. Computer Systems 4(2), pp. 130{146, May 1986.[28℄ E. Levy and A. Silbers
hatz, \Distributed �le systems:
on
epts and examples". ACMComput. Surv. 22(4), pp. 321{374, De
 1990.37

[29℄ D. B. Loveman, \High Performan
e Fortran". IEEE Parallel & Distributed Te
hnology1(1), pp. 25{42, Feb 1993.[30℄ S. J. LoVerso, M. Isman, A. Nanopoulos, W. Nesheim, E. D. Milne, and R. Wheeler,\sfs: a parallel �le system for the CM-5". In Pro
. Summer USENIX Conf., pp. 291{305,Jun 1993.[31℄ E. L. Miller and R. H. Katz, \Input/output behavior of super
omputing appli
ations".In Super
omputing '91, pp. 567{576, Nov 1991.[32℄ S. A. Moyer and V. S. Sunderam, \S
alable
on
urren
y
ontrol for parallel �le systems".In IPPS '95 Workshop on I/O in Parallel and Distributed Systems, pp. 90{106, Apr1995.[33℄ M. N. Nelson, B. B. Wel
h, and J. K. Ousterhout, \Ca
hing in the Sprite network �lesystem". ACM Trans. Comput. Syst. 6(1), pp. 134{154, Feb 1988.[34℄ M. H. Nodine and J. S. Vitter, \Large-s
ale sorting in parallel memories". In 3rd Symp.Parallel Algorithms & Ar
hite
tures, pp. 29{39, Jul 1991.[35℄ Y. N. Patt, \The I/O subsystem: a
andidate for improvement". Computer 27(3),pp. 15{16, Mar 1994. (guest editor's introdu
tion to spe
ial issue).[36℄ R. H. Patterson and G. A. Gibson, \Exposing I/O
on
urren
y with informed prefet
h-ing". In 3rd Intl. Conf. Parallel & Distributed Information Syst., pp. 7{16, Sep 1994.[37℄ P. Pier
e, \A
on
urrent �le system for a highly parallel mass storage subsystem". In4th Conf. Hyper
ubes, Con
urrent Comput., & Appl., vol. I, pp. 155{160, Mar 1989.[38℄ A. Purakayastha, C. S. Ellis, D. Kotz, N. Nieuwejaar, and M. Best, \Chara
terizing par-allel �le-a

ess patterns on a large-s
ale multipro
essor". In 9th Intl. Parallel Pro
essingSymp., pp. 165{172, Apr 1995.[39℄ P. J. Roy, \Unix �le a

ess and
a
hing in a multi
omputer environment". In USENIXMa
h III Symp., pp. 21{37, Apr 1993.[40℄ J. Salmon, \CUBIX: programming hyper
ubes without programming hosts". In Hyper-
ube Multipro
essors 1987, M. T. Heath (ed.), pp. 3{9, SIAM, 1987.[41℄ R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon, \Design and imple-mentation of the Sun network �lesystem". In Pro
. Summer USENIX Te
hni
al Conf.,pp. 119{130, Jun 1985.[42℄ C. B. Stunkel, D. G. Shea, D. G. Gri
e, P. H. Ho
hs
hild, and M. Tsao, \The SP1high-performan
e swit
h". In S
alable High-Performan
e Comput. Conf., pp. 150{157,May 1994.[43℄ J. Torrellas and Z. Zhang, \The performan
e of the Cedar multistage swit
hing net-work". In Super
omputing '94, pp. 265{274, Nov 1994.38

[44℄ J. S. Vitter and E. A. M. Shriver, \Optimal disk I/O with parallel blo
k transfer". In22nd Ann. Symp. Theory of Computing, pp. 159{169, May 1990.

39

