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t. The performan
e of a 
omputer system depends on the 
har-a
teristi
s of the workload it must serve: for example, if work is evenlydistributed performan
e will be better than if it 
omes in unpredi
tablebursts that lead to 
ongestion. Thus performan
e evaluations require theuse of representative workloads in order to produ
e dependable results.This 
an be a
hieved by 
olle
ting data about real workloads, and 
re-ating statisti
al models that 
apture their salient features. This survey
overs methodologies for doing so. Emphasis is pla
ed on problemati
 is-sues su
h as dealing with 
orrelations between workload parameters anddealing with heavy-tailed distributions and rare events. These 
onsider-ations lead to the notion of stru
tural modeling, in whi
h the generalstatisti
al model of the workload is repla
ed by a model of the pro
essgenerating the workload.1 Introdu
tionThe goal of performan
e evaluation is often to 
ompare di�erent system designsor implementations. The evaluation is expe
ted to bring out performan
e di�er-en
es that will allow for an edu
ated de
ision regarding what design to employor what system to buy. Thus it is impli
itly assumed that observed performan
edi�eren
es indeed re
e
t important di�eren
es between the systems being stud-ied.However, performan
e di�eren
es may also be an artifa
t of the evaluationmethodology. The performan
e of a system is not only a fun
tion of the systemdesign and implementation. It may also be a�e
ted by the workload to whi
hthe system is subje
ted. For example, 
ommuni
ation networks have often beenanalyzed using Poisson-related models of traÆ
, whi
h indi
ated that the vari-an
e in load should smooth out over time and when multiple data sour
es are
ombined. But in 1994 Leland and 
o-workers showed, based on extensive obser-vations and measurements, that this does not happen in pra
ti
e [52℄. Instead,they proposed a self-similar traÆ
 model that 
aptures the burstiness of networktraÆ
 and leads to more realisti
 evaluations of required bu�er spa
e and otherparameters [24℄.Analyzing network traÆ
 was easy, in a sense, be
ause all pa
kets are of equalsize and the only 
hara
teristi
 that required measurement and modeling was



2the arrival pro
ess. But if we 
onsider a 
omplete 
omputer system, the problembe
omes more 
omplex [13, 11℄. For example, a 
omputer program may require a
ertain amount of CPU time, memory, and I/O, and these resour
e requirementsmay be interleaved in various ways during its exe
ution. In addition there areseveral levels at whi
h we might model the system: we 
an study the fun
tionalunits used by a stream of instru
tions, the subsystems used by a job during itsexe
ution, or the requirements of jobs submitted to the system over time. Ea
hof these s
ales is relevant for the design and evaluation of di�erent parts of thesystem: the CPU, the hardware 
on�guration, or the operating system.The main domain used as a sour
e of examples in this survey is that of paral-lel job s
heduling. Workloads in this �eld are interesting due to the 
ombinationof being relatively small and at the same time relatively 
omplex. The size oftypi
al workloads is tens of thousands of jobs, as opposed to millions of pa
ketsin 
ommuni
ation workloads. These workloads are 
hara
terized by a large num-ber of fa
tors, in
luding the job sizes, runtimes, runtime estimates, and arrivalpatterns. The 
omplexity derives not only from the multiple fa
tors themselves,but from various 
orrelations between them. Resear
h on these issues is fa
ili-tated by the availability of data and models in the Parallel Workloads Ar
hive[60℄. In addition, there are several do
umented 
ases of how workload parametersin
uen
e the out
omes of performan
e evaluation studies [53, 57, 25℄.2 Data Sour
esThe suggestion that workload modeling should be based on measurements isnot new [32, 4℄. However, for a long time relatively few models based on a
tualmeasurements were published. As a result, many performan
e studies did notuse experimental workload models at all (and don't to this day).It is true that real-world data is not always available, or may be hard toobtain. But not using real data may lead to 
awed evaluations [26℄. This real-ization has led to a new wave of workload analyses in various �elds of systemdesign in re
ent years. Maybe the most prominent are the study of Internet traf-�
 patterns [52, 62, 75℄ and world-wide web traÆ
 patterns, with the intent ofusing the knowledge to evaluate server performan
e and 
a
hing s
hemes [5, 18,6℄. Other examples in
lude studies of pro
ess arrivals and runtimes [12, 37℄, �lesystems [36℄, and video streams [48℄. In the area of parallel systems, des
rip-tive studies of workloads have only started to appear in re
ent years [29, 76, 58,27, 14℄. There are also some attempts at modeling [10, 28, 21, 41, 23, 54, 15℄ andon-line 
hara
terization [34℄.But where does the data 
ome from? There are two main options: use datathat is available anyway, or 
olle
t data spe
i�
ally for the workload model.The latter 
an be done in two ways: a
tive or passive instrumentation. Impor-tantly, 
olle
ted data 
an and should be made publi
ly available for use by otherresear
hers [60, 33℄.



32.1 Using A

ounting and A
tivity LogsThe most readily available sour
e of data is a

ounting or a
tivity logs. Su
hlogs are kept by the system for auditing, and re
ord sele
ted attributes of alla
tivities. For example, many 
omputer systems keep a log of all exe
uted jobs.In large s
ale parallel systems, these logs 
an be quite detailed and are a ri
hsour
e of information for workload studies [60℄. Another example is web servers,that are often 
on�gured to log all requests.A good example is provided by the analysis of three months of a
tivity onthe 128-node NASA Ames iPSC/860 hyper
ube super
omputer. This analysisprovided the following data [29℄:{ The distribution of job sizes (in number of nodes) for system jobs, and foruser jobs 
lassi�ed a

ording to when they ran: during the day, at night, oron the weekend.{ The distribution of total resour
e 
onsumption (node se
onds), for the samejob 
lassi�
ations.{ The same two distributions, but 
lassifying jobs a

ording to their type:those that were submitted dire
tly, bat
h jobs, and Unix utilities.{ The 
hanges in system utilization throughout the day, for weekdays andweekends.{ The distribution of multiprogramming level seen during the day, at night,and on weekends. This also in
luded the measured down time (a spe
ial 
aseof 0 multiprogramming).{ The distribution of runtimes for system jobs, sequential jobs, and paralleljobs, and for jobs with di�erent degrees of parallelism. This in
luded a 
on-ne
tion between 
ommon runtimes and the queue time limits of the bat
hs
heduling system.{ The 
orrelation between resour
e usage and job size, for jobs that ran duringthe day, at night, and over the weekend.{ The arrival pattern of jobs during the day, on weekdays and weekends, andthe distribution of interarrival times.{ The 
orrelation between the time of day a job is submitted and its resour
e
onsumption.{ The a
tivity of di�erent users, in terms of number of jobs submitted, andhow many of them were di�erent.{ Pro�les of appli
ation usage, in
luding repeated runs by the same user andby di�erent users, on the same or on di�erent numbers of nodes.{ The dispersion of runtimes when the same appli
ation is exe
uted manytimes.Note, however, that a

ounting logs do not always exist at the desired levelof detail. For example, even if all 
ommuni
ation on a web server is logged,this is at the request level, not at the pa
ket level. To obtain pa
ket-level data,spe
ialized instrumentation is needed.



42.2 Passive and A
tive InstrumentationIf data is not readily available, it should be 
olle
ted. This is done by instrument-ing the system with spe
ial fa
ilities that re
ord its a
tivity. A major problemwith this is being unobtrusive, and not modifying the behavior of the systemwhile we measure it.Passive instrumentation refers to designs in whi
h the system itself is notmodi�ed. The instrumentation is done by adding external 
omponents to thesystem, that monitor system a
tivity but do not interfere with it. This approa
his 
ommonly used is studies of 
ommuni
ation, where it is relatively easy to adda node to a system that only listens to the traÆ
 on the 
ommuni
ation network[52, 73, 35℄. A more extreme example is a proposal to add a shadow parallelma
hine to a produ
tion parallel ma
hine, with ea
h shadow node monitoringthe 
orresponding produ
tion node, and all of them 
ooperating to �lter andsummarize the data [66℄.A
tive instrumentation refers to the modi�
ation of the system so that it will
olle
t data about its a
tivity. This 
an be integrated with the original systemdesign, as was done for example in the RP3 [43℄. However, it is more 
ommonlydone after the fa
t, when a need to 
olle
t data about a spe
i�
 system arises.A good example is the Charisma proje
t, whi
h set out to 
hara
terize the I/Opatterns on parallel ma
hines [59℄. This was done by instrumenting the I/Olibrary and requesting users to re-link their appli
ations; when running with theinstrumented library, all I/O a
tivity was re
orded for subsequent analysis.Obviously, instrumenting a system to 
olle
t data at runtime 
an a�e
t thesystems behavior and performan
e. This may not be very troublesome in the
ase of I/O a
tivity, whi
h su�ers from high overhead anyway, but may be veryproblemati
 for the study of �ne grain events related to 
ommuni
ation, syn
hro-nization, and memory usage. One possible solution to this problem is to modelthe e�e
t of the instrumentation, thereby enabling it to be fa
tored out of themeasurement results [55℄. This leads to results that re
e
t real system behavior(that is, una�e
ted by the instrumentation), but leaves the problem of perfor-man
e degradation while the measurements are being taken. An alternative isto sele
tively a
tivate only those parts of the instrumentation that are neededat ea
h instant, rather than 
olle
ting data about the whole system all the time.Remarkably, this 
an be done eÆ
iently by modifying the system's obje
t 
odeas it runs [38℄.2.3 Data SanitationBefore data 
an be used to 
reate a workload model, it has to be 
leaned up.This has several aspe
ts.One important aspe
t is the handling of outliers. Workload logs sometimesin
lude un
ommon events that \don't make sense". Examples in
lude{ In the two-year log of jobs run on the LANL CM-5 parallel ma
hine, thereis a 10-day stret
h in whi
h a single user ran about 5000 instan
es of a jobthat exe
uted in 1{2 se
onds on 128 nodes.



5{ In the two-year log of jobs run on the SDSC Paragon parallel ma
hine, thereis a large 
on
entration of short jobs that arrive at 3:30 AM on di�erentdays. This is probably due to periodi
 invo
ation of administrative s
ripts.{ In the two-year log of jobs run on the SDSC SP2 parallel ma
hine, there isa single hour in whi
h a single user submitted some 580 similar jobs.Of 
ourse, the de
ision that something is \un
ommon" is subje
tive. The puristapproa
h would be to leave everything in, be
ause in fa
t it did happen in areal system. But on the other hand, while strange things may happen, it isdiÆ
ult to argue for a spe
i�
 one; if we leave it in the workload that is used toanalyze systems, we run the risk of promoting systems that spe
i�
ally 
ater fora singular unusual 
ondition that is unlikely to ever o

ur again.A pro
edure that was advo
ated by Cirne and Berman is to use 
lustering asa means to distinguish between \normal" and \abnormal" data [15℄. Spe
i�
ally,they 
hara
terize days in a workload log by an n-valued ve
tor, and 
luster theseve
tors into two 
lusters in Rn. If the 
lustering pro
edure distinguishes a singleday and puts it in a 
luster by itself, this day is removed and the pro
edure isrepeated with the data that is left. Note, however, that this has its risks: �rst,abnormal behavior may span more than a single day, as the above examples show;moreover, removing days may taint other data, e.g. when interarrival times are
onsidered.Another aspe
t of workload sanitation involves errors. Workload logs may
ontain data about a
tivities that failed to 
omplete su

essfully, e.g. jobs thatwere submitted and either failed or were killed by the user. Should these jobs bein
luded or deleted from the data? On one hand, they represent work that thesystem had to handle, even if nothing 
ame of it. On the other hand, they do notrepresent useful work, and may have been submitted again later. An interesting
ompromise is to keep su
h data, and expli
itly in
lude it in the workload model[15℄. This will enable the study of how failed work a�e
ts system utilization andthe performan
e of \good" work.Finally, an important issue is determining the degree to whi
h data is gener-ally representative. One problem is that data may be a�e
ted by lo
al pro
eduresand 
onstraints where it was 
olle
ted. For example, data on programs run ona ma
hine equipped with only 32MB memory will show that programs do nothave larger resident sets, but this is probably an artifa
t of this limit, and not areal 
hara
teristi
 of general workloads. A more striking example is provided bythe NASA iPSC log mentioned above. In this log a full 57% of the jobs are in-vo
ations of the Unix pwd 
ommand on various nodes, whi
h was the te
hniqueused by system personnel to verify that the system was working [29℄. Anotherproblem is that workloads may evolve with time [39℄, espe
ially on large andunique installations su
h as parallel super
omputers. It is therefore importantto 
apture data from a mature system, and not a new (or old) one.



63 Workload ModelingThere are two 
ommon ways to use a measured workload to analyze or evaluatea system design [32℄: (1) use the tra
ed workload dire
tly to drive a simulation,or (2) 
reate a model from the tra
e and use the model for either analysis orsimulation. For example, tra
e-driven simulations based on large address tra
esare often used to evaluate 
a
he designs [45, 42℄. But models of how appli
ationstraverse their address spa
e have also been proposed, and provide interestinginsights into program behavior [71, 72℄.3.1 Why ModelThe advantage of using a tra
e dire
tly is that it is the most \real" test of thesystem; the workload re
e
ts a real workload pre
isely, with all its 
omplexities,even if they are not known to the person performing the analysis.The drawba
k is that the tra
e re
e
ts a spe
i�
 workload, and there is al-ways the question of whether the results generalize to other systems or load
onditions. In parti
ular, there are 
ases where the workload depends on thesystem 
on�guration, and therefore a given workload is not ne
essarily represen-tative of workloads on systems with other 
on�gurations. Obviously, this makesthe 
omparison of di�erent 
on�gurations problemati
. In addition, tra
es are of-ten misleading if we have in
omplete information about the 
ir
umstan
es whenthey were 
olle
ted. For example, workload tra
es often 
ontain intervals whenthe ma
hine was down or part of it was dedi
ated to a spe
i�
 proje
t, but thisinformation may not be available.Workload models have a number of advantages over tra
es [70℄.{ It is possible to 
hange model parameters one at a time, in order to inves-tigate the in
uen
e of ea
h one, while keeping other parameters 
onstant.This allows for dire
t measurement of system sensitivity to the di�erent pa-rameters. It is also possible to sele
t model parameters that are expe
ted tomat
h the spe
i�
 workload at a given site.In general it is not possible to manipulate tra
es in this way, and even whenit is possible, it 
an be problemati
. For example, it is 
ommon pra
ti
e toin
rease the modeled load on a system by redu
ing the average interarrivaltime. But this pra
ti
e has the undesirable 
onsequen
e of shrinking thedaily load 
y
le as well. With a workload model, we 
an 
ontrol the loadindependent of the daily 
y
le.{ Using a model, it is possible to repeat experiments under statisti
ally similar
onditions that are nevertheless not identi
al. For example, a simulation 
anbe run several times with di�erent seeds for the random number generator.This is needed in order to 
ompute 
on�den
e intervals.{ Logs may not represent the real workload due to various problems: a limitof 4 hours may for
e users to break long jobs into multiple short jobs, jobskilled by the system may be repeated, et
. If taken at fa
e value this maybe misleading, but the problem is that often we do not know about su
hproblems.



7Conversely, a modeler has full knowledge of model workload 
hara
teristi
s.For example, it is easy to know whi
h workload parameters are 
orrelatedwith ea
h other be
ause this information is part of the model.{ Finally, modeling in
reases our understanding, and 
an lead to new designsbased on this understanding. For example, identifying the repetitive natureof job submittal 
an be used for learning about job requirements from history.One 
an design a resour
e management poli
y that is parameterized by aworkload model, and use measured values for the lo
al workload to tune thepoli
y.The main problem with models, as with tra
es, is that of representativeness.That is, to what degree does the model represent the workload that the systemwill en
ounter in pra
ti
e? The answer depends in part on the degree of detailthat is in
luded. As noted above, ea
h job is 
omposed of pro
edures that arebuilt of instru
tions, and these intera
t with the 
omputer at di�erent levels.One option is to model these levels expli
itly, 
reating a hierar
hy of interlo
kedmodels for the di�erent levels [13, 10, 64℄. This has the obvious advantage of
onveying a full and detailed pi
ture of the stru
ture of the workload. In fa
t,it is possible to 
reate a whole spe
trum of models spanning the range from
ondensed rudimentary models to dire
t use of a detailed tra
e.For example, the sizes of a sequen
e of jobs need not be modeled indepen-dently. Rather, they 
an be derived from a lower-level model of the jobs' stru
-tures [30℄. Hen
e the 
ombined model will be useful both for evaluating systemsin whi
h jobs are exe
uted on prede�ned partitions, and for evaluating systemsin whi
h the partition size is de�ned at runtime to re
e
t the 
urrent load andthe spe
i�
 requirements of jobs.The drawba
k of this approa
h is that as more detailed levels are added, the
omplexity of the model in
reases. This is detrimental for three reasons. First,more detailed tra
es are needed in order to 
reate the lower levels of the model.Se
ond, it is 
ommonly the 
ase that there is wider diversity at lower levels.For example, there may be many jobs that use 32 nodes, but at a �ner detail,some of them are 
oded as data parallel with serial and parallel phases, whereasothers are written with MPI in an SPMD style. Creating a representative modelthat 
aptures this diversity is hard, and possibly arbitrary de
isions regardingthe relative weight of the various options have to be made. Third, it is harderto handle su
h 
omplex models. While this 
onsideration 
an be mitigated byautomation [70, 44℄, it leaves the problem of having to 
he
k the importan
e andimpa
t of very many di�erent parameters.3.2 How to ModelThe most 
ommon approa
h used in workload modeling is to 
reate a statisti
alsummary of an observed workload. This is applied to all the workload attributes,e.g. 
omputation, memory usage, I/O behavior, 
ommuni
ation, et
. [46℄. It istypi
ally assumed that the longer the observation period, the better. Thus we
an summarize a whole year's workload by analyzing a re
ord of all the jobs



8that ran on a given system during this year. A syntheti
 workload 
an thenbe generated a

ording to the model, by sampling from the distributions that
onstitute the model.The question of what exa
tly to model, and at what degree of detail, is ahard one. On one hand, we want to fully 
hara
terize all important workloadattributes. On the other hand a parsimonious model is more manageable, asthere are less parameters whose values need to be assessed and whose in
uen
eneeds to be studied. Also, there is a danger of over-�tting a parti
ular workloadat the expense of generality.Fitting Distributions The goal of a model is to be able to 
reate a syn-theti
 workload that mimi
s the original (possibly with 
ertain modi�
ations,a

ording to the e�e
ts we wish to study). The statisti
al summary is thereforea distribution, or 
olle
tion of distributions for various workload attributes. Bysampling from these distributions we then 
reate the model workload [49℄.
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Fig. 1. Distributions of runtimes for di�erent ranges of job sizes, in two workload logsand two models of parallel jobs.One way to sele
t suitable distributions is based on moments, and espe
iallythe mean and the varian
e of the sample data [23℄. For example, these statisti
sindi
ate that the distribution of job runtimes has a wide dispersion, leading toa preferen
e for a hyper-exponential model over an exponential one. Jann et al.



9have used hyper-Erlang distributions to 
reate models that mat
h the �rst 3moments of a distribution [41℄. However, su
h summaries may be misleading,be
ause they may not represent the shape of the distribution 
orre
tly. Spe
i�-
ally, in the Jann models, the distributions be
ome distin
tly bimodal, whereasthe original data is mu
h more 
ontinuous (Figure 1). The Feitelson model,whi
h uses a three-stage hyper-exponential distribution, more 
losely resemblesthe original data in this respe
t.The use of distributions with the right shape is not just an estheti
 is-sue. Some 25 years ago Lazowska showed that using models based on a hyper-exponential distribution with mat
hing moments to evaluate a simple queueingsystem leads to ina

urate results [50℄, and advo
ated the use of distributionswith mat
hing per
entiles instead. He also noted that a hyper-exponential distri-bution has three parameters, whereas the mean and standard deviation of dataonly de�ne two, so many di�erent hyper-exponential distributions that mat
hthe �rst two moments are possible | and lead to di�erent results.Re
's omitted statisti
 (% 
hange)(% of total) mean [se
℄ CV median [se
℄0 (0%) 9371 3.1 5525 (0.01%) 9177 (-2.1%) 2.2 (-29%) 551 (-0.2%)10 (0.02%) 9094 (-3.0%) 2.0 (-35%) 551 (-0.2%)20 (0.04%) 9023 (-3.7%) 1.9 (-39%) 551 (-0.2%)40 (0.08%) 8941 (-4.6%) 1.9 (-39%) 550 (-0.4%)80 (0.16%) 8834 (-5.7%) 1.8 (-42%) 549 (-0.5%)160 (0.31%) 8704 (-7.1%) 1.8 (-42%) 546 (-1.1%)Table 1. Sensitivity of statisti
s to the largest data points. Data regarding runtimeson the CTC SP2 ma
hine from [23℄ 
ourtesy of Allen Downey.Another problem with using statisti
s based on high moments of the data isthat they are very sensitive to rare large samples [23℄. Table 1 shows data basedon the runtimes of 50866 parallel jobs from the CTC SP2 ma
hine. Removing justthe top 5 values 
auses the mean to drop by 2%, and the 
oeÆ
ient of variation(the standard deviation divided by the mean) to drop by 29%. The median, asa representative of order statisti
s, only 
hanges by 0.2%. As the extreme valuesobserved in a sample are not ne
essarily representative, this implies that themodel may be largely governed by a small number of unrepresentative samples.Finding a distribution that mat
hes given moments is relatively easy, be-
ause it 
an be done based on inverting equations that relate a distribution'sparameters to its moments. Finding a distribution that �ts a given shape is typ-i
ally harder [54℄. One possibility is to use a maximum likelihood method, whi
h�nds the parameters that most likely gave rise to the observed data. Anotheroption is to use an iterative method, in whi
h the goodness of �t at ea
h stageis quanti�ed using the Chi-square test, the Kolmogorov-Smirnov test, or the



10Anderson-Darling test (whi
h is like the Kolmogorov-Smirnov test but pla
esmore emphasis on the tail of the distribution).Correlations Modeling the distribution of ea
h workload attribute in isola-tion is not enough. An important issue that has to be 
onsidered is possible
orrelations between di�erent attributes.Correlations are important be
ause they 
an have a dramati
 impa
t onsystem behavior. Consider the s
heduling of parallel jobs on a massively parallelma
hine as an example. Su
h s
heduling is akin to 2D bin pa
king: ea
h job isrepresented by a re
tangle in pro
essors�time spa
e, and these re
tangles haveto be pa
ked as tightly as possible. Assuming that when ea
h job is submittedwe know how many pro
essors it needs, but do not know for how long it will run,it is natural to do the pa
king a

ording to size. Spe
i�
ally, pa
king the biggerjobs �rst may be expe
ted to lead to better performan
e [16℄. But what if thereis a 
orrelation between size and running time? If this is an inverse 
orrelation,we �nd a win-win situation: the larger jobs are also shorter, so pa
king them�rst is statisti
ally similar to using SJF (shortest job �rst) [47℄. But if size andruntime are 
orrelated, and large jobs run longer, s
heduling them �rst may
ause signi�
ant delays for subsequent smaller jobs, leading to dismal averageperforman
e [53℄. System CorrelationCTC SP2 �0:029KTH SP2 0.011SDSC SP2 0.145LANL CM-5 0.211SDSC Paragon 0.305Table 2. Correlation 
oeÆ
ient of runtime and size for di�erent parallel super
omputerworkloads.Establishing whether or not a 
orrelation exists is not always easy. The 
om-monly used 
orrelation 
oeÆ
ient only yields high values if a strong linear rela-tionship exists between the variables. In the example of the size and runtime ofparallel jobs, the 
orrelation 
oeÆ
ient is typi
ally rather small (Table 2), and as
atter plot shows no signi�
ant 
orrelation either (Figure 2). However, these twoattributes are a
tually 
orrelated with ea
h other, as seen from the distributionsfor the CTC and SDSC logs in Figure 1. In both of these, the distribution ofruntimes for ranges of larger job-sizes distin
tly favors longer runtimes, whereassmaller jobs sizes favor short runtimes1.A 
oarse way to model 
orrelation, whi
h avoids this problem altogether, is torepresent the workload as a set of points in a multidimensional spa
e, and apply1 The only ex
eption is the serial jobs on the CTC ma
hine, whi
h have very longruntimes; but this anomaly is unique to the CTC workload.
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Fig. 2. The 
orrelation between job sizes and runtimes on parallel super
omputers.The s
atter-plot data is from the SDSC Paragon parallel ma
hine.
lustering [13℄. For example, ea
h job 
an be represented by a tuple in
luding itsruntime, its size, its memory usage, and so on. By 
lustering we 
an then sele
ta small number of representative jobs, as use them as the basis of our workloadmodel; ea
h su
h job 
omes with a 
ertain (representative) 
ombination of valuesfor the di�erent attributes. However, many workloads do not 
luster ni
ely |rather, attribute values 
ome from 
ontinuous distributions, and many di�erent
ombinations are all possible.The dire
t way to model a 
orrelation between two attributes is to use thejoint distribution of the two attributes. This su�ers from two problems. One isthat it may be expe
ted to be hard to �nd an analyti
al distribution fun
tionthat mat
hes the data. The other is that for a large part of the range, the datamay be very sparse. For example, most parallel jobs are small and run for ashort time, so we have a lot of data about small short jobs. But we may nothave enough data about large long jobs to say anything meaningful about thedistribution | we just have a small set of unrelated samples.The typi
al solution is therefore to divide the range of one attribute intosub-ranges, and model the distribution of the other attribute for ea
h su
h sub-range. For example, the Jann model of super
omputer workloads divides the jobsize s
ale a

ording to powers of two, and 
reates an independent model of theruntimes for ea
h range of sizes [41℄. As 
an be seen in Figure 1, these modelsare 
ompletely di�erent from ea
h other. An alternative is to use the same modelfor all subranges, and de�ne a fun
tional dependen
y of the model parameterson the subrange. For example, the Feitelson model �rst sele
ts the size of ea
hjob a

ording to the distribution of job sizes, and then sele
ts a runtime from adistribution of runtimes that is 
onditioned on the sele
ted size [28℄. Spe
i�
ally,the runtime is sele
ted from a two-stage hyperexponential distribution, and theprobability for using the exponential with the higher mean is linearly dependenton the size: p(n) = 0:95� 0:2(n=N)



12Thus, for small jobs (the job size n is small relative to the ma
hine size N) theprobability of using the exponential with the smaller mean is 0.95, and for largejobs this drops to 0.75.Stationarity A spe
ial type of 
orrelation is 
orrelation with time. This meansthat the workload 
hanges with time: it is not stationary.On short time s
ales, the most 
ommonly en
ountered non-stationary phe-nomenon is the daily work 
y
le. In many systems, the workload at night isquite di�erent from the workload during the day. Many workload models ignorethis and fo
us on the daytime workload, assuming that it is stationary. How-ever, when the workload in
ludes items whose duration is on the s
ale of hours(su
h as parallel jobs), the daily 
y
le 
annot be ignored. There are two typi
always for dealing with it. One is to divide the day into a number of ranges, andmodel ea
h one separately assuming that it is stationary [14℄. The other is touse parameterized distributions, and model the daily 
y
le by showing how theparameters 
hange with time of day [54℄.Over long ranges, a non-stationary workload 
an be the result of 
hangingusage patterns as users get to know the system better. It 
an also result from
hanging missions, e.g. when one proje
t ends and another takes its pla
e. Su
he�e
ts are typi
ally not in
luded in workload models, but they 
ould a�e
t thedata on whi
h models are based. We return to this issue in Se
tion 5.Assumptions An important point that is often overlooked in workload model-ing is that everything has to be modeled. It is not good to model one attributewith great pre
ision, but use unbased assumptions for the others.The problem is that assumptions 
an be very tempting and reasonable, butstill be totally untrue. For example, it is reasonable to assume that parallel jobsare used for speedup, that is, to 
omplete the 
omputation faster. After all, thisis the basis for Amdahl's Law. But other possibilities also exist | for example,parallelism 
an be used to solve the same problem with greater pre
ision ratherthan faster. The problem is that assuming speedup is the goal leads to a modelin whi
h parallelism is inversely 
orrelated with runtime, and this has an e�e
ton s
heduling [53, 26℄. Observations of real workloads indi
ate that this is notthe 
ase, as shown above.Another reasonable assumption is that users will provide the system witha

urate estimates of job runtimes when asked to. At least on large s
ale parallelsystems, users indeed spend signi�
ant e�ort tuning their appli
ations, and maybe expe
ted to have this information. Also, ba
k�lling s
hedulers reward lowestimates but penalize underestimates, leading to a 
onvergen
e towards a

urateestimates. Nevertheless, studies of user estimates reveal that they are often highlyina

urate, and often represent an overestimate by a full order of magnitude [57℄.Surprisingly, this 
an sway results 
omparing s
hedulers that use the estimatesto de
ide whether to ba
k�ll jobs (that is, to use them to �ll holes in an existings
hedule) [25℄.



134 Heavy Tails, Self Similarity, and BurstinessA major problem with applying the te
hniques des
ribed in the previous se
tiono

urs when the data is \bad" [3℄. This is best explained by an example. If thedata �ts, say, an exponential distribution, then a running average of growingnumbers of data samples qui
kly 
onverges to the mean of the distribution. Butbad data is ill-behaved: it does not 
onverge when averaged, but rather 
ontinuesto grow and 
u
tuate. Su
h e�e
ts have re
eived 
onsiderable attention lately, asmany di�erent data sets were found to display them. For more te
hni
al detailon this topi
, see [62, 61℄.4.1 Distributions with Heavy TailsA very 
ommon situation is that distributions have many small elements, andfew large elements. For example, there are many small �les and few large �les;many short pro
esses and few long pro
esses. The question is how dominant arethe large elements relative to the small ones. In heavy-tailed distributions, therare large elements (from the tail of the distribution) dominate.In general, the relative importan
e of the tail 
an be 
lassi�ed into one ofthree 
ases [62℄. Consider trying to estimate the length of a pro
ess, given thatwe know that it has already run for a 
ertain time, and that the mean of thedistribution of pro
ess lengths is m.{ If the distribution of pro
ess lengths has a short tail, than the more we havewaited already, the less additional time we expe
t to wait. The mean of thetail is smaller than m. For example, this would be the 
ase if the distributionwas uniform over a 
ertain range.{ If the distribution is memoryless, the expe
ted additional time we need towait for the pro
ess to terminate is independent of how long we have waitedalready. The mean length of the tail is always the same as the mean lengthof the whole distribution. This is the 
ase for the exponential distribution.{ But if the distribution is heavy tailed, the additional time we may expe
t towait till the pro
ess terminates grows with the time we have already waited.The mean of the tail is larger than m, the mean of the whole distribution.An example of this type is the Pareto distribution.An important 
onsequen
e of heavy tailed distributions is the mass disparity phe-nomenon: a small number of samples a

ount for the majority of mass, whereasall small samples a

ount for negligible mass [17℄. Conversely, a typi
al sampleis small, but a typi
al unit of mass 
omes from a large sample. Using 
on
reteexamples from 
omputers, a typi
al pro
ess is short, but a typi
al se
ond ofCPU a
tivity is part of a long pro
ess; a typi
al �le is small, but a typi
al byteof storage belongs to a large �le (Figure 3). This disparity is sometimes referredto as the \mi
e and elephants" phenomenon. But this metaphor may 
onjurethe image of a bimodal distribution2, whi
h 
ould be misleading: in most 
ases,the distribution is 
ontinuous.2 A typi
al mouse weighs about 28 grams, whereas an elephant weighs 3 to 6 tons,depending on whether it is Indian or Afri
an. Cats, dogs, and zebras, whi
h fall in
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Fig. 3. The distribution of �le sizes, from a 1993 survey of 12 million Unix �les [40℄.Left: 90% of the �les are less than 16KB long, and use only some 10% of the totaldisk spa
e. Half the disk spa
e is o

upied by a very small fra
tion of large �les. Right:log-log 
omplementary distribution plot, with possible Pareto model of the tail; seeEquation (2).Formally, it is 
ommon to de�ne heavy tailed distributions to be those whosetails de
ay like a power law | the probability of sampling a value larger than xis proportional to one over x raised to some power [62℄:�F (x) = Pr[X > x℄ � x�a 0 < a < 2 (1)where �F (x) is the survival fun
tion (that is, �F (x) = 1�F (x)), and �means \hasthe same distribution". This is a very strong statement. Consider an exponentialdistribution. The probability of sampling a value larger than say 100 times themean is e�100, whi
h is totally negligible for all intents and purposes. But for aPareto distribution with a = 2, this probability is 1=40000: one in every 40000samples will be bigger than 100 times the mean. While rare, su
h events 
an
ertainly happen. When the shape parameter is a = 1:1, and the tail is heavier,this probability in
reases to one in 2216 samples.An important 
hara
teristi
 of heavy tailed distributions is that some of theirmoments may be unde�ned. Spe
i�
ally, using the above de�nition, if a � 1 themean will be unde�ned, and if a � 2 the varian
e will be unde�ned. But whatdoes this mean? Consider a Pareto distribution with a = 1, whose probabilitydensity is proportional to x�2. Trying to evaluate its mean leads toE[x℄ = Z 
x 1x2 dx = 
 lnxso the mean is in�nite. But for any �nite number of samples, the mean obviouslyexists. The answer is that the mean grows logarithmi
ally with the number ofobservations. However, this statement is misleading, as the running mean doesbetween, are missing from this pi
ture.
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tually resemble the log fun
tion. In fa
t, it grows in big jumps every time alarge observation from the tail of the distribution is sampled, and then it slowlyde
ays again towards the log fun
tion (Figure 4).The de�nition (1) 
an also be used to determine if a given data set is heavytailed. Taking the log from both sides we observe thatlog �F (x) = logx�a = �a logx (2)So plotting log �F (x) (the log of the fra
tion of observations larger than x) as afun
tion of log x should lead to a straight line with slope �a (this is sometimes
alled a \log-log 
omplementary distribution plot", or LLCD, see Figure 3).This te
hnique 
an be further improved by aggregating su

essive observa-tions (that is, repla
ing ea
h sequen
e of k observations by their sum). Distribu-tions for whi
h su
h aggregated random variables have the same distribution asthe original are 
alled stable distributions. The Normal distribution is the onlystable distribution with �nite varian
e. Heavy tailed distributions (a

ording tode�nition (1)) are also stable, but have an in�nite varian
e. Thus the 
entrallimit theorem does not apply, and the aggregated random variables do not havea Normal distribution. Rather, they have the same heavy-tailed distribution.This 
an be veri�ed by 
reating LLCD plots of the aggregated samples, and
he
king that they too are straight lines with the same slope as the original [19,18℄. If the distribution is not heavy tailed, the aggregated samples will tend tobe Normally distributed (the more so as the level of aggregation in
reases), andthe slopes of the LLCD plots will in
rease with the level of aggregation.Using these and other pro
edures, the following have been argued to be heavytailed:{ Pro
ess runtimes on general purpose workstations [51, 37℄. Note that thisonly applies to the tail of the distribution, i.e. to pro
esses longer than a
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ertain threshold. Measurements show the power to be 
lose to 1.Pr[T > t℄ = t�k model tail k[51℄ ('86) > 3s 1.05{1.25[37℄ ('96) > 1s 0.78{1.29{ File sizes on a general purpose system (Figure 3), again limited to the tailof the distribution. There has been some dis
ussion on whether this is bestmodeled by a Pareto or a lognormal distribution, but at least some data setsseem to �t a Pareto model better, and in any 
ase they are highly skewed[22℄.{ Various aspe
ts of Internet traÆ
, spe
i�
ally [62, 69℄� Flow sizes� FTP data transfer sizes� TELNET pa
ket interarrival times{ Various aspe
ts of web server load, spe
i�
ally [18, 6℄� The tail of the distribution of �le sizes on a server� The distribution of request sizes� The popularity of the di�erent �les (this is a Zipf distribution | seebelow)� The distribution of o� times (between requests)� The distribution of the number of embedded referen
es in a web page{ The popularity of items (e.g. pages on the web) is often found to follow Zipf'sLaw [77℄, whi
h is also a power law [7℄. Assume a set of items are ordereda

ording to their popularity 
ounts, i.e. a

ording to how many times ea
hwas sele
ted. Zipf's Law is that the 
ount y is inversely proportional to therank r a

ording to y � r�b b � 1 (3)This means that there are r items with 
ount larger than y, orPr[Y > y℄ = r=N (4)where N is the total number of items. We 
an express r as a fun
tion of yby inverting the original expression (3), leading to r � y�1=b; substitutingthis into (4) gives a power-law tailPr[Y > y℄ = C � y�amoreover, b � 1 implies a � 1 [2℄.The problem with pro
edures su
h as plotting log �F (x) as a fun
tion of logxand measuring the slope of the line is that data regarding the tail is sparse byde�nition. When applying an automati
 
lassi�
ation pro
edure, a single largesample may sway the de
ision is favor of \heavy". But is this the 
orre
t general-ization? The question is one of identifying the nature of the underlying distribu-tion, without having adequate data. Claiming a truly heavy tailed distribution isalmost always unfounded, be
ause su
h a 
laim means that unbounded samples



17should be expe
ted as more and more samples are generated. In all real 
ases,samples must be bounded by some number (a pro
ess 
annot run for longer thanthe uptime of the 
omputer; a �le 
annot be larger than the total available diskspa
e).One simple option is to postulate a 
ertain upper bound on the distribution,but this does not really solve the problem be
ause the question of where topla
e the bound remains unanswered. Another option is to try �tting alternativedistributions for whi
h all moments 
onverge. For example, there have beensu

essful attempts to model �le sizes using a lognormal distribution rather thana Pareto distribution [22℄. This has the additional bene�t of �tting the wholedistribution rather than just the tail.A more general approa
h is to use phase-type distributions, whi
h employa mixture of exponentials. Consider a simple example, in whi
h N samples aredrawn from an exponential distribution, and one additional sample is a far out-lier. This 
an be modeled as a hyperexponential distribution, with probabilityN=(N + 1) to sample from the main exponential, and probability 1=(N + 1) tosample from a se
ond exponential distribution with a mean equal to the outliervalue. In general, it is possible to 
onstru
t mixtures of exponentials to �t anyobserved distribution [9℄. This is espe
ially important for analyti
al modeling, asdistributions with in�nite moments 
ause severe problems for su
h analysis. Forsimulation the exa
t de�nition is somewhat less important, as long as signi�
antmass is 
on
entrated in the tail.4.2 The Phenomena of Self SimilaritySelf similarity refers to situations in whi
h a phenomenon has the same general
hara
teristi
s at di�erent s
ales [56, 67℄. In parti
ular, parts of the whole maybe s
aled-down 
opies of the whole, as in well known fra
tals su
h as the Cantorset and the Sierpi�nski triangle. In natural phenomena we 
annot expe
t perfe
t
opies of the whole, but we 
an expe
t the same statisti
al properties. A wellknown natural fra
tal is the 
oast of Britain [56℄. Workloads often also displaysu
h behavior.The �rst demonstrations of self similarity in 
omputer workloads were forInternet traÆ
, and used a striking visual demonstration. A time series rep-resenting the number of pa
kets transmitted during su

essive time units wasre
orded. At a �ne granularity, i.e. when using small time unites, this was seento be bursty. But the same bursty behavior persisted also when the time serieswas aggregated over several orders of magnitude, by using larger and larger timeunits. This 
ontradi
ted the 
ommon Poisson model of pa
ket arrivals, whi
hpredi
ted that the traÆ
 should average out when aggregated.Similar demonstrations have sin
e been done for other types of workloads.Figure 5 gives an example from jobs arriving at a parallel super
omputer. Selfsimilarity has also been shown in �le systems [36℄ and in web usage [18℄.The mathemati
al des
ription of self similarity is based on the notion of long-range 
orrelations. A
tually, there are 
orrelations at many di�erent time s
ales:self similarity implies that the workload at a 
ertain instant is similar to the
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da
ys

timeFig. 5. Burstiness of job arrivals to the SDSC Paragon parallel super
omputer at dif-ferent time s
ales. Left: jobs per time unit. Right: pro
esses per time unit (ea
h paralleljob is 
omposed of multiple pro
esses). In all the graphs time is in se
onds; the durationof the log is two years, whi
h is about 63 million se
onds.workload at other instants at di�erent s
ales, starting with a short time s
ale,through medium time s
ales, and up to long time s
ales. But the strength of the
orrelation de
reases as a power law with the time s
ale.A model useful for understanding the 
orrelations leading to self similarity isprovided by random walks. In a one-dimensional random walk, ea
h step is eitherto the left or to the right with equal probabilities. It is well known that after nsteps the expe
ted distan
e from the origin is pn, or n0:5. But what happens ifthe steps are 
orrelated with ea
h other? If ea
h step has a probability higherthan 12 of being in the same dire
tion as the previous step, we 
an expe
t slightlylonger stret
hes of steps in the same dire
tion. But this is not enough to 
hangethe expe
ted distan
e from the origin after n steps | is stays n0:5. This remainstrue also if ea
h step is 
orrelated with all previous steps with exponentiallyde
reasing weights. In both these 
ases, the 
orrelation only has a short range,



19and the e�e
t of ea
h step de
ays to zero very qui
kly.But if a step is 
orrelated with previous steps with polynomially de
reasingweights, meaning that the weight of the step taken k steps ba
k is proportionalto k�a, stret
hes of steps in the same dire
tion be
ome mu
h longer. And theexpe
ted distan
e from the origin is found to behave like nH , with 0:5 < H < 1.H is 
alled the Hurst parameter [63℄. The 
loser it is to 1, the more self-similarthe walk.One way of 
he
king whether a pro
ess is self similar is dire
tly based on theabove: measure the range 
overed after n steps, and 
he
k the exponent thatrelates it to n. Assume you start with a time series x1; x2; : : :. The pro
edure isas follows [63℄:1. Normalize it subtra
ting the mean �x from ea
h sample, giving zi = xi � �x.The mean of the new series is obviously 0.2. Cal
ulate the distan
e 
overed after j steps:yj = jXi=1 zi3. The range 
overed after n steps is the maximum distan
e that has o

urred:Rn = maxj=1:::n yj � minj=1:::n yj4. Res
ale this by dividing by the standard deviation of the original data.5. The model is that the res
aled range, R=s, should grow like 
nH . To 
he
kthis take the log leading tolog�Rs �n = log 
+H lognIf the pro
ess is indeed self similar, we expe
t to see a straight line, and theslope of the line gives H .If a long time series is given, the 
al
ulation for small values of n is repeatedfor non-overlapping sub-series of length n ea
h, and the average is used. Anexample of the results of doing so is given in Figure 6, based on the data showngraphi
ally in Figure 5.Other ways of 
he
king for self similarity are based on the rate in whi
h thevarian
e de
ays as observations are aggregated, or on the de
ay of the spe
traldensity, possibly using wavelet analysis [1℄. Results of the Varian
e-time methodare also shown in Figure 6. This is based on aggregating the original time series(that is, repla
ing ea
h m 
onse
utive values by their average) and 
al
ulatingthe varian
e of the new series. This de
ays polynomially with a rate of ��,leading to a straight line with this slope in log-log axes. The Hurst parameter isthen given by H = 1� (�=2)
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Fig. 6. The (R=s)n and varian
e-time methods for measuring self similarity, applied tothe data in Figure 5. A Poisson pro
ess with no self-similarity is in
luded as referen
e,as well as linear regression lines.4.3 Modeling Self-SimilarityHeavy tailed distributions and self similarity are intimately tied to ea
h other,and the modeling of self-similar workloads depends on this. As noted above,self similarity is a result of long-range 
orrelation in the workload. By usingheavy tailed distributions to 
reate a workload model with the desired longrange 
orrelation, we get a model that also displays self similarity.The idea is that the workload is not uniform, but rather generated by mul-tiple on-o� pro
esses [75, 18, 36℄. \On" periods are a
tive periods, in whi
h theworkload arrives at the system at a 
ertain rate (jobs per hour, pa
kets per se
-ond, et
). \O�" periods are ina
tive periods during whi
h no load is generated.The 
omplete workload is the result of many su
h on-o� pro
esses.The 
rux of the model is the distributions governing the lengths of the on ando� periods. If these distributions are heavy tailed, we get long-range 
orrelation:if a unit of work arrives at time t, similar units of work will 
ontinue to arrive forthe duration d of the on period to whi
h it belongs, leading to a 
orrelation withsubsequent times up to t + d. As this duration is heavy tailed, the 
orrelation
reated by this burst will typi
ally be for a short d; but o

asionally a long onperiod will lead to a 
orrelation over a long span of time. As many di�erentbursts may be a
tive at time t, what we a
tually get is a 
ombination of su
h
orrelations for durations that 
orrespond to the distribution of the on periods.But this is heavy tailed, so we get a 
orrelation that de
ays polynomially | along range dependen
e.In some 
ases, this type of behavior is built in, and a dire
t result of theheavy tailed nature of 
ertain workload parameters. For example, given thatweb server �le sizes are heavy tailed, the distribution of servi
e times will also



21be heavy tailed (as the time to serve a �le is proportional to its size). During thetime a �le is served, data is transmitted at a 
onstant rate. This is 
orrelatedwith later transmittals a

ording to the heavy-tailed distribution of sizes andtransmission times, leading to long range 
orrelation and self similarity [18℄.5 Workload Dynami
s and Stru
tural ModelingThe on-o� pro
ess used for modeling self-similar workloads has another veryimportant bene�t. It provides a me
hanism for introdu
ing lo
ality into theworkload, so that not only the statisti
s will be modeled, but also the dynami
s.5.1 User BehaviorThe pro
edure for workload modeling outlined in Se
tion 3.2 was to analyze realworkloads, re
over distributions that 
hara
terize them, and then sample fromthese distributions. The main problem with this pro
edure is that is loses allstru
tural information.A real workload is not a random sampling from a distribution. For example,the load on a server used by students at a university 
hanges from week to week,depending on the assignments that are due ea
h time. In ea
h week, everybodyis working on the same task, so the workload is 
omposed of many jobs that arestatisti
ally similar. The next week all the jobs are similar to ea
h other again,but they are all di�erent from the jobs of the previous week. Over the whole yearwe indeed observe a wide distribution with many job types, but at any giventime we do not see a representative sampling of this distribution. Instead, weonly see samples 
on
entrated in a small part of the distribution (Figure 7). Theworkload displays a \lo
ality of sampling"3.The 
ommon way to model workload dynami
s is with a user behavior graph[31℄. This is a graph whose nodes represent states. In ea
h state, the user exe-
utes a 
ertain job with 
hara
teristi
s drawn from a 
ertain distribution. Thear
s denote the probability of moving from state to state. The graph thereforeen
odes a Markovian model of the workload dynami
s. A random walk on thegraph, subje
t to the model's transition probabilities, 
reates a random workloadsequen
e su
h that the probability of ea
h job mat
hes the limiting probabilityof that job's state, but it also abides by the model of whi
h jobs 
ome after ea
hother, and how many times a job may be repeated (using self-looping ar
s in thegraph) [64℄. However, this needs to be adjusted in order to 
reate heavy taileddistributions.In a university it may be plausible to argue that all students should bemodeled using the same user behavior graph. But in a produ
tion environmentone would expe
t di�erent users, with di�erent levels of a
tivity and di�erentbehaviors. In addition, the a
tive population 
hanges with time (Figure 7) [23℄.3 The existen
e of su
h lo
al repetitiveness in workloads was suggested to me by LarryRudolph over ten years ago.
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Fig. 7. The dynami
s of workloads. Left: the a
tive set of users grows with the obser-vation window. Right: so does the diversity of the workload, in this 
ase representedby the number of di�erent job sizes observed. Note that the x s
ale is not linear.Thus what we a
tually need is not one user behavior graph, but a model of theuser population as a whole: how the population of users 
hanges, and what userbehavior graph ea
h one should have. Using su
h a model has two importantadvantages. First, it has built-in support for generating self-similar workloads(assuming users have long-tailed on and o� a
tivity times). Se
ond, it provides agood way to 
ontrol load without modifying the underlying distributions: simply
hange the number of users [6℄.Another aspe
t of user behavior, whi
h is not 
aptured by the user behav-ior graph, is the feedba
k from the system performan
e to the generation ofnew work. Real users are not oblivious to the system's behavior: They typi
allysubmit additional work only when existing work is �nished. Thus, if the userpopulation is bounded, the system's 
urrent performan
e modulates the o�eredload, automati
ally redu
ing it when 
ongestion o

urs, and spreading the loadmore evenly over time. But adding this integrates the workload model with thesystem, and prevents the use of an independent workload model.5.2 Internal Stru
tureUser modeling implants a stru
ture on the workload. But it does not by itselfde�ne the basi
 building blo
ks of the workload | the jobs that are submittedto the system.One approa
h is to use a des
riptive model. For example, modeling of parallelappli
ations requires a fun
tional relationship between the number of pro
essorsand the runtimes | in short, a speedup fun
tion of the appli
ation. A modelof speedups based on the average parallelism and its varian
e was proposed byDowney [21℄. Another model, based on the parallel and sequential parts of theappli
ation and on the overheads of parallelization, was proposed by Sev
ik [68℄.An alternative is to model the appli
ation's internal stru
ture. It is 
om-mon pra
ti
e to measure systems using parameterized syntheti
 appli
ations [8℄.



23Su
h appli
ations typi
ally involve several nested loops that mimi
 the behaviorof iterative appli
ations, and perform di�erent amounts of 
omputations, I/Ooperations, and memory a

esses. The number of iterations, types of operations,and spread of addresses are all parameters, thus allowing a single simple andgeneri
 ben
hmark to mimi
 many di�erent appli
ations.A similar approa
h 
an be used to generate a syntheti
 workload: use aparameterized program, sele
ting the parameters from suitable distributions inorder to 
reate the desired mix of behaviors. For example, Rudolph and Feitelsonhave proposed a model of parallel appli
ations with relatively few parameters,in
luding the total work done, the average size of work units and its variability,the way in whi
h these work units are partitioned into threads, and the numberof barriers by whi
h they are syn
hronized [30℄.The question is what distributions to use. While there has been some workdone on 
hara
terizing spe
i�
 appli
ations [20, 74, 65℄, there has been little ifany work on 
hara
terizing the mix of appli
ation 
hara
teristi
s in a typi
alworkload. A rather singular example is the Charisma proje
t, in whi
h a wholeworkload was measured [59℄. Interestingly, this requires the same statisti
al te
h-niques des
ribed in Se
tion 3.2, just applied to a di�erent level. Indeed, su
h hier-ar
hi
al stru
turing of workloads has been re
ognized as an important workloadstru
turing tool [64℄.Naturally, all this applies to pra
ti
ally all types of workloads, and not onlyto jobs on (parallel) ma
hines. For example, web workloads 
an be viewed assessions that ea
h in
lude a sequen
e of requests for pages that ea
h have severalembedded 
omponents; database workloads in
lude transa
tions that 
ontain anumber of embedded database operations, and so on.6 Con
lusionsPerforman
e evaluation depends on workload modeling. We have outlined the
on
eptual framework of su
h modeling, starting with simple statisti
al 
hara
-terization, 
ontinuing with the handling of self similarity, and ending with theneed to also model user behavior. But all this is useless without real measureddata from whi
h distributions and parameters 
an be learned. One of the mostimportant tasks is to 
olle
t large amounts of high resolution data about thebehavior of workloads, and to share this data to fa
ilitate the 
reation of betterworkload models.Apart from 
olle
ting data, there are also many methodologi
al issues thatbeg for additional work. These in
lude te
hniques to analyze and 
hara
terizeworkloads, evaluations of the relative importan
e of di�erent workload parame-ters, and demonstrations of how workloads a�e
t system performan
e. In all ofthese, emphasis should be pla
ed on the dynami
s of workloads. And as with theworkload data, it is important to share the programs that perform the analysisand implement the models | both to fa
ilitate the dissemination and use of newte
hniques, and to help ensure that resear
hers use 
ompatible methodologies.
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