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Abstract. The performance of a computer system depends on the char-
acteristics of the workload it must serve: for example, if work is evenly
distributed performance will be better than if it comes in unpredictable
bursts that lead to congestion. Thus performance evaluations require the
use of representative workloads in order to produce dependable results.
This can be achieved by collecting data about real workloads, and cre-
ating statistical models that capture their salient features. This survey
covers methodologies for doing so. Emphasis is placed on problematic is-
sues such as dealing with correlations between workload parameters and
dealing with heavy-tailed distributions and rare events. These consider-
ations lead to the notion of structural modeling, in which the general
statistical model of the workload is replaced by a model of the process
generating the workload.

1 Introduction

The goal of performance evaluation is often to compare different system designs
or implementations. The evaluation is expected to bring out performance differ-
ences that will allow for an educated decision regarding what design to employ
or what system to buy. Thus it is implicitly assumed that observed performance
differences indeed reflect important differences between the systems being stud-
ied.

However, performance differences may also be an artifact of the evaluation
methodology. The performance of a system is not only a function of the system
design and implementation. It may also be affected by the workload to which
the system is subjected. For example, communication networks have often been
analyzed using Poisson-related models of traffic, which indicated that the vari-
ance in load should smooth out over time and when multiple data sources are
combined. But in 1994 Leland and co-workers showed, based on extensive obser-
vations and measurements, that this does not happen in practice [52]. Instead,
they proposed a self-similar traffic model that captures the burstiness of network
traffic and leads to more realistic evaluations of required buffer space and other
parameters [24].

Analyzing network traffic was easy, in a sense, because all packets are of equal
size and the only characteristic that required measurement and modeling was



the arrival process. But if we consider a complete computer system, the problem
becomes more complex [13,11]. For example, a computer program may require a
certain amount of CPU time, memory, and I/O, and these resource requirements
may be interleaved in various ways during its execution. In addition there are
several levels at which we might model the system: we can study the functional
units used by a stream of instructions, the subsystems used by a job during its
execution, or the requirements of jobs submitted to the system over time. Each
of these scales is relevant for the design and evaluation of different parts of the
system: the CPU, the hardware configuration, or the operating system.

The main domain used as a source of examples in this survey is that of paral-
lel job scheduling. Workloads in this field are interesting due to the combination
of being relatively small and at the same time relatively complex. The size of
typical workloads is tens of thousands of jobs, as opposed to millions of packets
in communication workloads. These workloads are characterized by a large num-
ber of factors, including the job sizes, runtimes, runtime estimates, and arrival
patterns. The complexity derives not only from the multiple factors themselves,
but from various correlations between them. Research on these issues is facili-
tated by the availability of data and models in the Parallel Workloads Archive
[60]. In addition, there are several documented cases of how workload parameters
influence the outcomes of performance evaluation studies [53,57, 25].

2 Data Sources

The suggestion that workload modeling should be based on measurements is
not new [32,4]. However, for a long time relatively few models based on actual
measurements were published. As a result, many performance studies did not
use experimental workload models at all (and don’t to this day).

It is true that real-world data is not always available, or may be hard to
obtain. But not using real data may lead to flawed evaluations [26]. This real-
ization has led to a new wave of workload analyses in various fields of system
design in recent years. Maybe the most prominent are the study of Internet traf-
fic patterns [52,62,75] and world-wide web traffic patterns, with the intent of
using the knowledge to evaluate server performance and caching schemes [5, 18,
6]. Other examples include studies of process arrivals and runtimes [12,37], file
systems [36], and video streams [48]. In the area of parallel systems, descrip-
tive studies of workloads have only started to appear in recent years [29, 76, 58,
27,14]. There are also some attempts at modeling [10, 28, 21,41, 23, 54, 15] and
on-line characterization [34].

But where does the data come from? There are two main options: use data
that is available anyway, or collect data specifically for the workload model.
The latter can be done in two ways: active or passive instrumentation. Impor-
tantly, collected data can and should be made publicly available for use by other
researchers [60, 33].



2.1 Using Accounting and Activity Logs

The most readily available source of data is accounting or activity logs. Such
logs are kept by the system for auditing, and record selected attributes of all
activities. For example, many computer systems keep a log of all executed jobs.
In large scale parallel systems, these logs can be quite detailed and are a rich
source of information for workload studies [60]. Another example is web servers,
that are often configured to log all requests.

A good example is provided by the analysis of three months of activity on
the 128-node NASA Ames iPSC/860 hypercube supercomputer. This analysis
provided the following data [29]:

— The distribution of job sizes (in number of nodes) for system jobs, and for
user jobs classified according to when they ran: during the day, at night, or
on the weekend.

— The distribution of total resource consumption (node seconds), for the same
job classifications.

— The same two distributions, but classifying jobs according to their type:
those that were submitted directly, batch jobs, and Unix utilities.

— The changes in system utilization throughout the day, for weekdays and
weekends.

— The distribution of multiprogramming level seen during the day, at night,
and on weekends. This also included the measured down time (a special case
of 0 multiprogramming).

— The distribution of runtimes for system jobs, sequential jobs, and parallel
jobs, and for jobs with different degrees of parallelism. This included a con-
nection between common runtimes and the queue time limits of the batch
scheduling system.

— The correlation between resource usage and job size, for jobs that ran during
the day, at night, and over the weekend.

— The arrival pattern of jobs during the day, on weekdays and weekends, and
the distribution of interarrival times.

— The correlation between the time of day a job is submitted and its resource
consumption.

— The activity of different users, in terms of number of jobs submitted, and
how many of them were different.

— Profiles of application usage, including repeated runs by the same user and
by different users, on the same or on different numbers of nodes.

— The dispersion of runtimes when the same application is executed many
times.

Note, however, that accounting logs do not always exist at the desired level
of detail. For example, even if all communication on a web server is logged,
this is at the request level, not at the packet level. To obtain packet-level data,
specialized instrumentation is needed.



2.2 Passive and Active Instrumentation

If data is not readily available, it should be collected. This is done by instrument-
ing the system with special facilities that record its activity. A major problem
with this is being unobtrusive, and not modifying the behavior of the system
while we measure it.

Passive instrumentation refers to designs in which the system itself is not
modified. The instrumentation is done by adding external components to the
system, that monitor system activity but do not interfere with it. This approach
is commonly used is studies of communication, where it is relatively easy to add
a node to a system that only listens to the traffic on the communication network
[52,73,35]. A more extreme example is a proposal to add a shadow parallel
machine to a production parallel machine, with each shadow node monitoring
the corresponding production node, and all of them cooperating to filter and
summarize the data [66].

Active instrumentation refers to the modification of the system so that it will
collect data about its activity. This can be integrated with the original system
design, as was done for example in the RP3 [43]. However, it is more commonly
done after the fact, when a need to collect data about a specific system arises.
A good example is the Charisma project, which set out to characterize the I/O
patterns on parallel machines [59]. This was done by instrumenting the I/0
library and requesting users to re-link their applications; when running with the
instrumented library, all I/O activity was recorded for subsequent analysis.

Obviously, instrumenting a system to collect data at runtime can affect the
systems behavior and performance. This may not be very troublesome in the
case of 1/0 activity, which suffers from high overhead anyway, but may be very
problematic for the study of fine grain events related to communication, synchro-
nization, and memory usage. One possible solution to this problem is to model
the effect of the instrumentation, thereby enabling it to be factored out of the
measurement results [55]. This leads to results that reflect real system behavior
(that is, unaffected by the instrumentation), but leaves the problem of perfor-
mance degradation while the measurements are being taken. An alternative is
to selectively activate only those parts of the instrumentation that are needed
at each instant, rather than collecting data about the whole system all the time.
Remarkably, this can be done efficiently by modifying the system’s object code
as it runs [38].

2.3 Data Sanitation

Before data can be used to create a workload model, it has to be cleaned up.
This has several aspects.

One important aspect is the handling of outliers. Workload logs sometimes
include uncommon events that “don’t make sense”. Examples include

— In the two-year log of jobs run on the LANL CM-5 parallel machine, there
is a 10-day stretch in which a single user ran about 5000 instances of a job
that executed in 1-2 seconds on 128 nodes.



— In the two-year log of jobs run on the SDSC Paragon parallel machine, there
is a large concentration of short jobs that arrive at 3:30 AM on different
days. This is probably due to periodic invocation of administrative scripts.

— In the two-year log of jobs run on the SDSC SP2 parallel machine, there is
a single hour in which a single user submitted some 580 similar jobs.

Of course, the decision that something is “uncommon” is subjective. The purist
approach would be to leave everything in, because in fact it did happen in a
real system. But on the other hand, while strange things may happen, it is
difficult to argue for a specific one; if we leave it in the workload that is used to
analyze systems, we run the risk of promoting systems that specifically cater for
a singular unusual condition that is unlikely to ever occur again.

A procedure that was advocated by Cirne and Berman is to use clustering as
a means to distinguish between “normal” and “abnormal” data [15]. Specifically,
they characterize days in a workload log by an n-valued vector, and cluster these
vectors into two clusters in R". If the clustering procedure distinguishes a single
day and puts it in a cluster by itself, this day is removed and the procedure is
repeated with the data that is left. Note, however, that this has its risks: first,
abnormal behavior may span more than a single day, as the above examples show;
moreover, removing days may taint other data, e.g. when interarrival times are
considered.

Another aspect of workload sanitation involves errors. Workload logs may
contain data about activities that failed to complete successfully, e.g. jobs that
were submitted and either failed or were killed by the user. Should these jobs be
included or deleted from the data? On one hand, they represent work that the
system had to handle, even if nothing came of it. On the other hand, they do not
represent useful work, and may have been submitted again later. An interesting
compromise is to keep such data, and explicitly include it in the workload model
[15]. This will enable the study of how failed work affects system utilization and
the performance of “good” work.

Finally, an important issue is determining the degree to which data is gener-
ally representative. One problem is that data may be affected by local procedures
and constraints where it was collected. For example, data on programs run on
a machine equipped with only 32MB memory will show that programs do not
have larger resident sets, but this is probably an artifact of this limit, and not a
real characteristic of general workloads. A more striking example is provided by
the NASA iPSC log mentioned above. In this log a full 57% of the jobs are in-
vocations of the Unix pwd command on various nodes, which was the technique
used by system personnel to verify that the system was working [29]. Another
problem is that workloads may evolve with time [39], especially on large and
unique installations such as parallel supercomputers. It is therefore important
to capture data from a mature system, and not a new (or old) one.



3 Workload Modeling

There are two common ways to use a measured workload to analyze or evaluate
a system design [32]: (1) use the traced workload directly to drive a simulation,
or (2) create a model from the trace and use the model for either analysis or
simulation. For example, trace-driven simulations based on large address traces
are often used to evaluate cache designs [45, 42]. But models of how applications
traverse their address space have also been proposed, and provide interesting
insights into program behavior [71,72].

3.1 Why Model

The advantage of using a trace directly is that it is the most “real” test of the
system; the workload reflects a real workload precisely, with all its complexities,
even if they are not known to the person performing the analysis.

The drawback is that the trace reflects a specific workload, and there is al-
ways the question of whether the results generalize to other systems or load
conditions. In particular, there are cases where the workload depends on the
system configuration, and therefore a given workload is not necessarily represen-
tative of workloads on systems with other configurations. Obviously, this makes
the comparison of different configurations problematic. In addition, traces are of-
ten misleading if we have incomplete information about the circumstances when
they were collected. For example, workload traces often contain intervals when
the machine was down or part of it was dedicated to a specific project, but this
information may not be available.

Workload models have a number of advantages over traces [70].

— It is possible to change model parameters one at a time, in order to inves-

tigate the influence of each one, while keeping other parameters constant.
This allows for direct measurement of system sensitivity to the different pa-
rameters. It is also possible to select model parameters that are expected to
match the specific workload at a given site.
In general it is not possible to manipulate traces in this way, and even when
it is possible, it can be problematic. For example, it is common practice to
increase the modeled load on a system by reducing the average interarrival
time. But this practice has the undesirable consequence of shrinking the
daily load cycle as well. With a workload model, we can control the load
independent of the daily cycle.

— Using a model, it is possible to repeat experiments under statistically similar
conditions that are nevertheless not identical. For example, a simulation can
be run several times with different seeds for the random number generator.
This is needed in order to compute confidence intervals.

— Logs may not represent the real workload due to various problems: a limit
of 4 hours may force users to break long jobs into multiple short jobs, jobs
killed by the system may be repeated, etc. If taken at face value this may
be misleading, but the problem is that often we do not know about such
problems.



Conversely, a modeler has full knowledge of model workload characteristics.
For example, it is easy to know which workload parameters are correlated
with each other because this information is part of the model.

— Finally, modeling increases our understanding, and can lead to new designs
based on this understanding. For example, identifying the repetitive nature
of job submittal can be used for learning about job requirements from history.
One can design a resource management policy that is parameterized by a
workload model, and use measured values for the local workload to tune the
policy.

The main problem with models, as with traces, is that of representativeness.
That is, to what degree does the model represent the workload that the system
will encounter in practice? The answer depends in part on the degree of detail
that is included. As noted above, each job is composed of procedures that are
built of instructions, and these interact with the computer at different levels.
One option is to model these levels explicitly, creating a hierarchy of interlocked
models for the different levels [13,10,64]. This has the obvious advantage of
conveying a full and detailed picture of the structure of the workload. In fact,
it is possible to create a whole spectrum of models spanning the range from
condensed rudimentary models to direct use of a detailed trace.

For example, the sizes of a sequence of jobs need not be modeled indepen-
dently. Rather, they can be derived from a lower-level model of the jobs’ struc-
tures [30]. Hence the combined model will be useful both for evaluating systems
in which jobs are executed on predefined partitions, and for evaluating systems
in which the partition size is defined at runtime to reflect the current load and
the specific requirements of jobs.

The drawback of this approach is that as more detailed levels are added, the
complexity of the model increases. This is detrimental for three reasons. First,
more detailed traces are needed in order to create the lower levels of the model.
Second, it is commonly the case that there is wider diversity at lower levels.
For example, there may be many jobs that use 32 nodes, but at a finer detail,
some of them are coded as data parallel with serial and parallel phases, whereas
others are written with MPT in an SPMD style. Creating a representative model
that captures this diversity is hard, and possibly arbitrary decisions regarding
the relative weight of the various options have to be made. Third, it is harder
to handle such complex models. While this consideration can be mitigated by
automation [70,44], it leaves the problem of having to check the importance and
impact of very many different parameters.

3.2 How to Model

The most common approach used in workload modeling is to create a statistical
summary of an observed workload. This is applied to all the workload attributes,
e.g. computation, memory usage, I/O behavior, communication, etc. [46]. It is
typically assumed that the longer the observation period, the better. Thus we
can summarize a whole year’s workload by analyzing a record of all the jobs



that ran on a given system during this year. A synthetic workload can then
be generated according to the model, by sampling from the distributions that
constitute the model.

The question of what exactly to model, and at what degree of detail, is a
hard one. On one hand, we want to fully characterize all important workload
attributes. On the other hand a parsimonious model is more manageable, as
there are less parameters whose values need to be assessed and whose influence
needs to be studied. Also, there is a danger of over-fitting a particular workload
at the expense of generality.

Fitting Distributions The goal of a model is to be able to create a syn-
thetic workload that mimics the original (possibly with certain modifications,
according to the effects we wish to study). The statistical summary is therefore
a distribution, or collection of distributions for various workload attributes. By
sampling from these distributions we then create the model workload [49].
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Fig. 1. Distributions of runtimes for different ranges of job sizes, in two workload logs
and two models of parallel jobs.

One way to select suitable distributions is based on moments, and especially
the mean and the variance of the sample data [23]. For example, these statistics
indicate that the distribution of job runtimes has a wide dispersion, leading to
a preference for a hyper-exponential model over an exponential one. Jann et al.



have used hyper-Erlang distributions to create models that match the first 3
moments of a distribution [41]. However, such summaries may be misleading,
because they may not represent the shape of the distribution correctly. Specifi-
cally, in the Jann models, the distributions become distinctly bimodal, whereas
the original data is much more continuous (Figure 1). The Feitelson model,
which uses a three-stage hyper-exponential distribution, more closely resembles
the original data in this respect.

The use of distributions with the right shape is not just an esthetic is-
sue. Some 25 years ago Lazowska showed that using models based on a hyper-
exponential distribution with matching moments to evaluate a simple queueing
system leads to inaccurate results [50], and advocated the use of distributions
with matching percentiles instead. He also noted that a hyper-exponential distri-
bution has three parameters, whereas the mean and standard deviation of data
only define two, so many different hyper-exponential distributions that match
the first two moments are possible — and lead to different results.

Rec’s omitted statistic (% change)

(% of total) [mean [sec] [CV |median [sec]
0 (0%) |9371 3.1 552

5 (0.01%) 9177 (-2.1%) 2.2 (-29%)|551 (-0.2%)
10 (0.02%) 9094 (-3.0%)(2.0 (-35%)|551 (-0.2%)
20 (0.04%) 9023 (-3.7%)|1.9 (-39%)|551 (-0.2%)
40 (0.08%) |8941 (-4.6%)|1.9 (-39%)|550 (-0.4%)
80 (0.16%) (8834 (-5.7%)|1.8 (-42%)|549 (-0.5%)
160 (0.31%) |8704 (-7.1%)|1.8 (-42%)|546 (-1.1%)

Table 1. Sensitivity of statistics to the largest data points. Data regarding runtimes
on the CTC SP2 machine from [23] courtesy of Allen Downey.

Another problem with using statistics based on high moments of the data is
that they are very sensitive to rare large samples [23]. Table 1 shows data based
on the runtimes of 50866 parallel jobs from the CTC SP2 machine. Removing just
the top 5 values causes the mean to drop by 2%, and the coefficient of variation
(the standard deviation divided by the mean) to drop by 29%. The median, as
a representative of order statistics, only changes by 0.2%. As the extreme values
observed in a sample are not necessarily representative, this implies that the
model may be largely governed by a small number of unrepresentative samples.

Finding a distribution that matches given moments is relatively easy, be-
cause it can be done based on inverting equations that relate a distribution’s
parameters to its moments. Finding a distribution that fits a given shape is typ-
ically harder [54]. One possibility is to use a maximum likelihood method, which
finds the parameters that most likely gave rise to the observed data. Another
option is to use an iterative method, in which the goodness of fit at each stage
is quantified using the Chi-square test, the Kolmogorov-Smirnov test, or the
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Anderson-Darling test (which is like the Kolmogorov-Smirnov test but places
more emphasis on the tail of the distribution).

Correlations Modeling the distribution of each workload attribute in isola-
tion is not enough. An important issue that has to be considered is possible
correlations between different attributes.

Correlations are important because they can have a dramatic impact on
system behavior. Consider the scheduling of parallel jobs on a massively parallel
machine as an example. Such scheduling is akin to 2D bin packing: each job is
represented by a rectangle in processorsxtime space, and these rectangles have
to be packed as tightly as possible. Assuming that when each job is submitted
we know how many processors it needs, but do not know for how long it will run,
it is natural to do the packing according to size. Specifically, packing the bigger
jobs first may be expected to lead to better performance [16]. But what if there
is a correlation between size and running time? If this is an inverse correlation,
we find a win-win situation: the larger jobs are also shorter, so packing them
first is statistically similar to using SJF (shortest job first) [47]. But if size and
runtime are correlated, and large jobs run longer, scheduling them first may
cause significant delays for subsequent smaller jobs, leading to dismal average
performance [53].

|System |C0rrelation|
CTC SP2 —0.029
KTH SP2 0.011
SDSC SP2 0.145
LANL CM-5 0.211
SDSC Paragon 0.305

Table 2. Correlation coefficient of runtime and size for different parallel supercomputer
workloads.

Establishing whether or not a correlation exists is not always easy. The com-
monly used correlation coefficient only yields high values if a strong linear rela-
tionship exists between the variables. In the example of the size and runtime of
parallel jobs, the correlation coefficient is typically rather small (Table 2), and a
scatter plot shows no significant correlation either (Figure 2). However, these two
attributes are actually correlated with each other, as seen from the distributions
for the CTC and SDSC logs in Figure 1. In both of these, the distribution of
runtimes for ranges of larger job-sizes distinctly favors longer runtimes, whereas
smaller jobs sizes favor short runtimes’.

A coarse way to model correlation, which avoids this problem altogether, is to
represent the workload as a set of points in a multidimensional space, and apply

! The only exception is the serial jobs on the CTC machine, which have very long
runtimes; but this anomaly is unique to the CTC workload.
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Fig. 2. The correlation between job sizes and runtimes on parallel supercomputers.
The scatter-plot data is from the SDSC Paragon parallel machine.

clustering [13]. For example, each job can be represented by a tuple including its
runtime, its size, its memory usage, and so on. By clustering we can then select
a small number of representative jobs, as use them as the basis of our workload
model; each such job comes with a certain (representative) combination of values
for the different attributes. However, many workloads do not cluster nicely —
rather, attribute values come from continuous distributions, and many different
combinations are all possible.

The direct way to model a correlation between two attributes is to use the
joint distribution of the two attributes. This suffers from two problems. One is
that it may be expected to be hard to find an analytical distribution function
that matches the data. The other is that for a large part of the range, the data
may be very sparse. For example, most parallel jobs are small and run for a
short time, so we have a lot of data about small short jobs. But we may not
have enough data about large long jobs to say anything meaningful about the
distribution — we just have a small set of unrelated samples.

The typical solution is therefore to divide the range of one attribute into
sub-ranges, and model the distribution of the other attribute for each such sub-
range. For example, the Jann model of supercomputer workloads divides the job
size scale according to powers of two, and creates an independent model of the
runtimes for each range of sizes [41]. As can be seen in Figure 1, these models
are completely different from each other. An alternative is to use the same model
for all subranges, and define a functional dependency of the model parameters
on the subrange. For example, the Feitelson model first selects the size of each
job according to the distribution of job sizes, and then selects a runtime from a
distribution of runtimes that is conditioned on the selected size [28]. Specifically,
the runtime is selected from a two-stage hyperexponential distribution, and the
probability for using the exponential with the higher mean is linearly dependent
on the size:

p(n) =0.95 —0.2(n/N)
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Thus, for small jobs (the job size n is small relative to the machine size N) the
probability of using the exponential with the smaller mean is 0.95, and for large
jobs this drops to 0.75.

Stationarity A special type of correlation is correlation with time. This means
that the workload changes with time: it is not stationary.

On short time scales, the most commonly encountered non-stationary phe-
nomenon is the daily work cycle. In many systems, the workload at night is
quite different from the workload during the day. Many workload models ignore
this and focus on the daytime workload, assuming that it is stationary. How-
ever, when the workload includes items whose duration is on the scale of hours
(such as parallel jobs), the daily cycle cannot be ignored. There are two typical
ways for dealing with it. One is to divide the day into a number of ranges, and
model each one separately assuming that it is stationary [14]. The other is to
use parameterized distributions, and model the daily cycle by showing how the
parameters change with time of day [54].

Over long ranges, a non-stationary workload can be the result of changing
usage patterns as users get to know the system better. It can also result from
changing missions, e.g. when one project ends and another takes its place. Such
effects are typically not included in workload models, but they could affect the
data on which models are based. We return to this issue in Section 5.

Assumptions An important point that is often overlooked in workload model-
ing is that everything has to be modeled. It is not good to model one attribute
with great precision, but use unbased assumptions for the others.

The problem is that assumptions can be very tempting and reasonable, but
still be totally untrue. For example, it is reasonable to assume that parallel jobs
are used for speedup, that is, to complete the computation faster. After all, this
is the basis for Amdahl’s Law. But other possibilities also exist — for example,
parallelism can be used to solve the same problem with greater precision rather
than faster. The problem is that assuming speedup is the goal leads to a model
in which parallelism is inversely correlated with runtime, and this has an effect
on scheduling [53,26]. Observations of real workloads indicate that this is not
the case, as shown above.

Another reasonable assumption is that users will provide the system with
accurate estimates of job runtimes when asked to. At least on large scale parallel
systems, users indeed spend significant effort tuning their applications, and may
be expected to have this information. Also, backfilling schedulers reward low
estimates but penalize underestimates, leading to a convergence towards accurate
estimates. Nevertheless, studies of user estimates reveal that they are often highly
inaccurate, and often represent an overestimate by a full order of magnitude [57].
Surprisingly, this can sway results comparing schedulers that use the estimates
to decide whether to backfill jobs (that is, to use them to fill holes in an existing
schedule) [25].
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4 Heavy Tails, Self Similarity, and Burstiness

A major problem with applying the techniques described in the previous section
occurs when the data is “bad” [3]. This is best explained by an example. If the
data fits, say, an exponential distribution, then a running average of growing
numbers of data samples quickly converges to the mean of the distribution. But
bad data is ill-behaved: it does not converge when averaged, but rather continues
to grow and fluctuate. Such effects have received considerable attention lately, as
many different data sets were found to display them. For more technical detail
on this topic, see [62,61].

4.1 Distributions with Heavy Tails

A very common situation is that distributions have many small elements, and
few large elements. For example, there are many small files and few large files;
many short processes and few long processes. The question is how dominant are
the large elements relative to the small ones. In heavy-tailed distributions, the
rare large elements (from the tail of the distribution) dominate.

In general, the relative importance of the tail can be classified into one of
three cases [62]. Consider trying to estimate the length of a process, given that
we know that it has already run for a certain time, and that the mean of the
distribution of process lengths is m.

— If the distribution of process lengths has a short tail, than the more we have
waited already, the less additional time we expect to wait. The mean of the
tail is smaller than m. For example, this would be the case if the distribution
was uniform over a certain range.

— If the distribution is memoryless, the expected additional time we need to
wait for the process to terminate is independent of how long we have waited
already. The mean length of the tail is always the same as the mean length
of the whole distribution. This is the case for the exponential distribution.

— But if the distribution is heavy tailed, the additional time we may expect to
wait till the process terminates grows with the time we have already waited.
The mean of the tail is larger than m, the mean of the whole distribution.
An example of this type is the Pareto distribution.

An important consequence of heavy tailed distributions is the mass disparity phe-
nomenon: a small number of samples account for the majority of mass, whereas
all small samples account for negligible mass [17]. Conversely, a typical sample
is small, but a typical unit of mass comes from a large sample. Using concrete
examples from computers, a typical process is short, but a typical second of
CPU activity is part of a long process; a typical file is small, but a typical byte
of storage belongs to a large file (Figure 3). This disparity is sometimes referred
to as the “mice and elephants” phenomenon. But this metaphor may conjure
the image of a bimodal distribution?, which could be misleading: in most cases,
the distribution is continuous.

2 A typical mouse weighs about 28 grams, whereas an elephant weighs 3 to 6 tons,
depending on whether it is Indian or African. Cats, dogs, and zebras, which fall in
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Equation (2).

Formally, it is common to define heavy tailed distributions to be those whose
tails decay like a power law — the probability of sampling a value larger than x
is proportional to one over x raised to some power [62]:

F(z) =Pr[X > 2] ~2™° 0<a<?2 (1)

where F'(z) is the survival function (that is, F(z) = 1— F(z)), and ~ means “has
the same distribution”. This is a very strong statement. Consider an exponential
distribution. The probability of sampling a value larger than say 100 times the
mean is e 1%°, which is totally negligible for all intents and purposes. But for a
Pareto distribution with a = 2, this probability is 1/40000: one in every 40000
samples will be bigger than 100 times the mean. While rare, such events can
certainly happen. When the shape parameter is a = 1.1, and the tail is heavier,
this probability increases to one in 2216 samples.

An important characteristic of heavy tailed distributions is that some of their
moments may be undefined. Specifically, using the above definition, if ¢ < 1 the
mean will be undefined, and if a < 2 the variance will be undefined. But what
does this mean? Consider a Pareto distribution with a = 1, whose probability
density is proportional to =2, Trying to evaluate its mean leads to

1
Elz] = /cmx—2dm =clnzx

so the mean is infinite. But for any finite number of samples, the mean obviously
exists. The answer is that the mean grows logarithmically with the number of
observations. However, this statement is misleading, as the running mean does

between, are missing from this picture.
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plots using different random number generator seeds are shown.

not actually resemble the log function. In fact, it grows in big jumps every time a
large observation from the tail of the distribution is sampled, and then it slowly
decays again towards the log function (Figure 4).

The definition (1) can also be used to determine if a given data set is heavy
tailed. Taking the log from both sides we observe that

log F(z) =logz™* = —alogz (2)

So plotting log F'(z) (the log of the fraction of observations larger than z) as a
function of log z should lead to a straight line with slope —a (this is sometimes
called a “log-log complementary distribution plot”, or LLCD, see Figure 3).

This technique can be further improved by aggregating successive observa-
tions (that is, replacing each sequence of k observations by their sum). Distribu-
tions for which such aggregated random variables have the same distribution as
the original are called stable distributions. The Normal distribution is the only
stable distribution with finite variance. Heavy tailed distributions (according to
definition (1)) are also stable, but have an infinite variance. Thus the central
limit theorem does not apply, and the aggregated random variables do not have
a Normal distribution. Rather, they have the same heavy-tailed distribution.
This can be verified by creating LLCD plots of the aggregated samples, and
checking that they too are straight lines with the same slope as the original [19,
18]. If the distribution is not heavy tailed, the aggregated samples will tend to
be Normally distributed (the more so as the level of aggregation increases), and
the slopes of the LLCD plots will increase with the level of aggregation.

Using these and other procedures, the following have been argued to be heavy
tailed:

— Process runtimes on general purpose workstations [51,37]. Note that this
only applies to the tail of the distribution, i.e. to processes longer than a
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certain threshold. Measurements show the power to be close to 1.

model |tai1 k
Pr[T >t =t [51] (°86)[> 3s 1.05-1.25
137] (°96)|> 1s 0.78-1.29

File sizes on a general purpose system (Figure 3), again limited to the tail
of the distribution. There has been some discussion on whether this is best
modeled by a Pareto or a lognormal distribution, but at least some data sets
seem to fit a Pareto model better, and in any case they are highly skewed
[22].

Various aspects of Internet traffic, specifically [62, 69]

e Flow sizes

e FTP data transfer sizes

e TELNET packet interarrival times
Various aspects of web server load, specifically [18, 6]

e The tail of the distribution of file sizes on a server

e The distribution of request sizes

e The popularity of the different files (this is a Zipf distribution — see

below)

e The distribution of off times (between requests)

e The distribution of the number of embedded references in a web page
The popularity of items (e.g. pages on the web) is often found to follow Zipf’s
Law [77], which is also a power law [7]. Assume a set of items are ordered
according to their popularity counts, i.e. according to how many times each
was selected. Zipf’s Law is that the count y is inversely proportional to the
rank r according to

yr~rt b1 (3)

This means that there are r items with count larger than y, or
PrlY >y]=r/N (4)

where N is the total number of items. We can express r as a function of y
by inverting the original expression (3), leading to r ~ y~!/®; substituting
this into (4) gives a power-law tail

Prly >y|=C-y *
moreover, b &~ 1 implies a ~ 1 [2].

The problem with procedures such as plotting log F'(z) as a function of log z

and measuring the slope of the line is that data regarding the tail is sparse by
definition. When applying an automatic classification procedure, a single large
sample may sway the decision is favor of “heavy”. But is this the correct general-
ization? The question is one of identifying the nature of the underlying distribu-
tion, without having adequate data. Claiming a truly heavy tailed distribution is
almost always unfounded, because such a claim means that unbounded samples
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should be expected as more and more samples are generated. In all real cases,
samples must be bounded by some number (a process cannot run for longer than
the uptime of the computer; a file cannot be larger than the total available disk
space).

One simple option is to postulate a certain upper bound on the distribution,
but this does not really solve the problem because the question of where to
place the bound remains unanswered. Another option is to try fitting alternative
distributions for which all moments converge. For example, there have been
successful attempts to model file sizes using a lognormal distribution rather than
a Pareto distribution [22]. This has the additional benefit of fitting the whole
distribution rather than just the tail.

A more general approach is to use phase-type distributions, which employ
a mixture of exponentials. Consider a simple example, in which N samples are
drawn from an exponential distribution, and one additional sample is a far out-
lier. This can be modeled as a hyperexponential distribution, with probability
N/(N + 1) to sample from the main exponential, and probability 1/(N + 1) to
sample from a second exponential distribution with a mean equal to the outlier
value. In general, it is possible to construct mixtures of exponentials to fit any
observed distribution [9]. This is especially important for analytical modeling, as
distributions with infinite moments cause severe problems for such analysis. For
simulation the exact definition is somewhat less important, as long as significant
mass is concentrated in the tail.

4.2 The Phenomena of Self Similarity

Self similarity refers to situations in which a phenomenon has the same general
characteristics at different scales [56,67]. In particular, parts of the whole may
be scaled-down copies of the whole, as in well known fractals such as the Cantor
set and the Sierpinski triangle. In natural phenomena we cannot expect perfect
copies of the whole, but we can expect the same statistical properties. A well
known natural fractal is the coast of Britain [56]. Workloads often also display
such behavior.

The first demonstrations of self similarity in computer workloads were for
Internet traffic, and used a striking visual demonstration. A time series rep-
resenting the number of packets transmitted during successive time units was
recorded. At a fine granularity, i.e. when using small time unites, this was seen
to be bursty. But the same bursty behavior persisted also when the time series
was aggregated over several orders of magnitude, by using larger and larger time
units. This contradicted the common Poisson model of packet arrivals, which
predicted that the traffic should average out when aggregated.

Similar demonstrations have since been done for other types of workloads.
Figure 5 gives an example from jobs arriving at a parallel supercomputer. Self
similarity has also been shown in file systems [36] and in web usage [18].

The mathematical description of self similarity is based on the notion of long-
range correlations. Actually, there are correlations at many different time scales:
self similarity implies that the workload at a certain instant is similar to the
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Fig. 5. Burstiness of job arrivals to the SDSC Paragon parallel supercomputer at dif-
ferent time scales. Left: jobs per time unit. Right: processes per time unit (each parallel
Jjob is composed of multiple processes). In all the graphs time is in seconds; the duration
of the log is two years, which is about 63 million seconds.

workload at other instants at different scales, starting with a short time scale,
through medium time scales, and up to long time scales. But the strength of the
correlation decreases as a power law with the time scale.

A model useful for understanding the correlations leading to self similarity is
provided by random walks. In a one-dimensional random walk, each step is either
to the left or to the right with equal probabilities. It is well known that after n
steps the expected distance from the origin is v/n, or n%°. But what happens if
the steps are correlated with each other? If each step has a probability higher
than % of being in the same direction as the previous step, we can expect slightly
longer stretches of steps in the same direction. But this is not enough to change
the expected distance from the origin after n steps — is stays n®-. This remains
true also if each step is correlated with all previous steps with exponentially
decreasing weights. In both these cases, the correlation only has a short range,
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and the effect of each step decays to zero very quickly.

But if a step is correlated with previous steps with polynomially decreasing
weights, meaning that the weight of the step taken k steps back is proportional
to k™, stretches of steps in the same direction become much longer. And the
expected distance from the origin is found to behave like nf, with 0.5 < H < 1.
H is called the Hurst parameter [63]. The closer it is to 1, the more self-similar
the walk.

One way of checking whether a process is self similar is directly based on the
above: measure the range covered after n steps, and check the exponent that
relates it to n. Assume you start with a time series 1, Z2,.... The procedure is
as follows [63]:

1. Normalize it subtracting the mean = from each sample, giving z; = z; — Z.
The mean of the new series is obviously 0.
2. Calculate the distance covered after j steps:

J
Y; = Z Zi
i=1
3. The range covered after n steps is the maximum distance that has occurred:

R, = max y; — min y;
j=1l..n j=1l..n
4. Rescale this by dividing by the standard deviation of the original data.
5. The model is that the rescaled range, R/s, should grow like en’’. To check
this take the log leading to

R
log (;) =logc+ Hlogn

If the process is indeed self similar, we expect to see a straight line, and the
slope of the line gives H.

If a long time series is given, the calculation for small values of n is repeated
for non-overlapping sub-series of length n each, and the average is used. An
example of the results of doing so is given in Figure 6, based on the data shown
graphically in Figure 5.

Other ways of checking for self similarity are based on the rate in which the
variance decays as observations are aggregated, or on the decay of the spectral
density, possibly using wavelet analysis [1]. Results of the Variance-time method
are also shown in Figure 6. This is based on aggregating the original time series
(that is, replacing each m consecutive values by their average) and calculating
the variance of the new series. This decays polynomially with a rate of —p,
leading to a straight line with this slope in log-log axes. The Hurst parameter is
then given by

H=1-(8/2)
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4.3 Modeling Self-Similarity

Heavy tailed distributions and self similarity are intimately tied to each other,
and the modeling of self-similar workloads depends on this. As noted above,
self similarity is a result of long-range correlation in the workload. By using
heavy tailed distributions to create a workload model with the desired long
range correlation, we get a model that also displays self similarity.

The idea is that the workload is not uniform, but rather generated by mul-
tiple on-off processes [75,18,36]. “On” periods are active periods, in which the
workload arrives at the system at a certain rate (jobs per hour, packets per sec-
ond, etc). “Off” periods are inactive periods during which no load is generated.
The complete workload is the result of many such on-off processes.

The crux of the model is the distributions governing the lengths of the on and
off periods. If these distributions are heavy tailed, we get long-range correlation:
if a unit of work arrives at time ¢, similar units of work will continue to arrive for
the duration d of the on period to which it belongs, leading to a correlation with
subsequent times up to t + d. As this duration is heavy tailed, the correlation
created by this burst will typically be for a short d; but occasionally a long on
period will lead to a correlation over a long span of time. As many different
bursts may be active at time ¢, what we actually get is a combination of such
correlations for durations that correspond to the distribution of the on periods.
But this is heavy tailed, so we get a correlation that decays polynomially — a
long range dependence.

In some cases, this type of behavior is built in, and a direct result of the
heavy tailed nature of certain workload parameters. For example, given that
web server file sizes are heavy tailed, the distribution of service times will also
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be heavy tailed (as the time to serve a file is proportional to its size). During the
time a file is served, data is transmitted at a constant rate. This is correlated
with later transmittals according to the heavy-tailed distribution of sizes and
transmission times, leading to long range correlation and self similarity [18].

5 Workload Dynamics and Structural Modeling

The on-off process used for modeling self-similar workloads has another very
important benefit. It provides a mechanism for introducing locality into the
workload, so that not only the statistics will be modeled, but also the dynamics.

5.1 User Behavior

The procedure for workload modeling outlined in Section 3.2 was to analyze real
workloads, recover distributions that characterize them, and then sample from
these distributions. The main problem with this procedure is that is loses all
structural information.

A real workload is not a random sampling from a distribution. For example,
the load on a server used by students at a university changes from week to week,
depending on the assignments that are due each time. In each week, everybody
is working on the same task, so the workload is composed of many jobs that are
statistically similar. The next week all the jobs are similar to each other again,
but they are all different from the jobs of the previous week. Over the whole year
we indeed observe a wide distribution with many job types, but at any given
time we do not see a representative sampling of this distribution. Instead, we
only see samples concentrated in a small part of the distribution (Figure 7). The
workload displays a “locality of sampling”?.

The common way to model workload dynamics is with a user behavior graph
[31]. This is a graph whose nodes represent states. In each state, the user exe-
cutes a certain job with characteristics drawn from a certain distribution. The
arcs denote the probability of moving from state to state. The graph therefore
encodes a Markovian model of the workload dynamics. A random walk on the
graph, subject to the model’s transition probabilities, creates a random workload
sequence such that the probability of each job matches the limiting probability
of that job’s state, but it also abides by the model of which jobs come after each
other, and how many times a job may be repeated (using self-looping arcs in the
graph) [64]. However, this needs to be adjusted in order to create heavy tailed
distributions.

In a university it may be plausible to argue that all students should be
modeled using the same user behavior graph. But in a production environment
one would expect different users, with different levels of activity and different
behaviors. In addition, the active population changes with time (Figure 7) [23].

% The existence of such local repetitiveness in workloads was suggested to me by Larry
Rudolph over ten years ago.
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by the number of different job sizes observed. Note that the x scale is not linear.

Thus what we actually need is not one user behavior graph, but a model of the
user population as a whole: how the population of users changes, and what user
behavior graph each one should have. Using such a model has two important
advantages. First, it has built-in support for generating self-similar workloads
(assuming users have long-tailed on and off activity times). Second, it provides a
good way to control load without modifying the underlying distributions: simply
change the number of users [6].

Another aspect of user behavior, which is not captured by the user behav-
ior graph, is the feedback from the system performance to the generation of
new work. Real users are not oblivious to the system’s behavior: They typically
submit additional work only when existing work is finished. Thus, if the user
population is bounded, the system’s current performance modulates the offered
load, automatically reducing it when congestion occurs, and spreading the load
more evenly over time. But adding this integrates the workload model with the
system, and prevents the use of an independent workload model.

5.2 Internal Structure

User modeling implants a structure on the workload. But it does not by itself
define the basic building blocks of the workload — the jobs that are submitted
to the system.

One approach is to use a descriptive model. For example, modeling of parallel
applications requires a functional relationship between the number of processors
and the runtimes — in short, a speedup function of the application. A model
of speedups based on the average parallelism and its variance was proposed by
Downey [21]. Another model, based on the parallel and sequential parts of the
application and on the overheads of parallelization, was proposed by Sevcik [68].

An alternative is to model the application’s internal structure. It is com-
mon practice to measure systems using parameterized synthetic applications [8].
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Such applications typically involve several nested loops that mimic the behavior
of iterative applications, and perform different amounts of computations, I/0
operations, and memory accesses. The number of iterations, types of operations,
and spread of addresses are all parameters, thus allowing a single simple and
generic benchmark to mimic many different applications.

A similar approach can be used to generate a synthetic workload: use a
parameterized program, selecting the parameters from suitable distributions in
order to create the desired mix of behaviors. For example, Rudolph and Feitelson
have proposed a model of parallel applications with relatively few parameters,
including the total work done, the average size of work units and its variability,
the way in which these work units are partitioned into threads, and the number
of barriers by which they are synchronized [30].

The question is what distributions to use. While there has been some work
done on characterizing specific applications [20, 74, 65], there has been little if
any work on characterizing the mix of application characteristics in a typical
workload. A rather singular example is the Charisma project, in which a whole
workload was measured [59]. Interestingly, this requires the same statistical tech-
niques described in Section 3.2, just applied to a different level. Indeed, such hier-
archical structuring of workloads has been recognized as an important workload
structuring tool [64].

Naturally, all this applies to practically all types of workloads, and not only
to jobs on (parallel) machines. For example, web workloads can be viewed as
sessions that each include a sequence of requests for pages that each have several
embedded components; database workloads include transactions that contain a
number of embedded database operations, and so on.

6 Conclusions

Performance evaluation depends on workload modeling. We have outlined the
conceptual framework of such modeling, starting with simple statistical charac-
terization, continuing with the handling of self similarity, and ending with the
need to also model user behavior. But all this is useless without real measured
data from which distributions and parameters can be learned. One of the most
important tasks is to collect large amounts of high resolution data about the
behavior of workloads, and to share this data to facilitate the creation of better
workload models.

Apart from collecting data, there are also many methodological issues that
beg for additional work. These include techniques to analyze and characterize
workloads, evaluations of the relative importance of different workload parame-
ters, and demonstrations of how workloads affect system performance. In all of
these, emphasis should be placed on the dynamics of workloads. And as with the
workload data, it is important to share the programs that perform the analysis
and implement the models — both to facilitate the dissemination and use of new
techniques, and to help ensure that researchers use compatible methodologies.
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