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Abstract—Analysts are interested in two categories of perfor-
mance metrics: those concerned with time (response or wait
time), and those concerned with rates (throughput or utilization,
which reflect productivity and how well resources are used). In
principle, these two categories are independent of each other, and
both should be evaluated. But a common mistake is to “measure”
the throughput in open-system evaluations, where the throughput
is actually dictated directly by the workload. In order to evaluate
throughput, the system model must include a feedback loop which
modulates the workload being processed. The common solution is
to create a pure closed system with a fixed number of users, who
submit jobs in a loop. However, such behavior is often unrealistic.
We review and analyze two alternative models that provide the
required feedback by combining open and closed components:
the mixed model which includes two such job classes, and the
re-open model in which open user arrivals are combined with
performance-dependent closed repetition of jobs by these users.
These models allow evaluations of the trade-off between response
time and throughput, including the throughput as it is observed
by each user.

Index Terms—throughput; utilization; mixed open-closed
model; re-open model.

I. INTRODUCTION

Evaluating the performance of a system is a major part of
system design. Reliable evaluations of a proposed system are
expected to lead to better designs and reduced expenses, by
considering multiple options, evaluating them, and choosing
the best. Therefore, when a new system design is proposed or
when we want to improve a current system, it is common to
evaluate it before implementing it.

There are two main categories of system performance met-
rics. The first category includes the response time and the wait
time. These capture the delays that a job suffers in the system.
The assumption is that users are more satisfied with shorter
delays. The second category includes the utilization and the
throughput. These capture how much of the system’s resources
are used and the rate at which the system serves requests.
The assumption is that higher utilization and serving more
requests are better. In many systems a tradeoff is involved:
higher throughputs lead to higher response times.

Importantly, the two categories are not just different mani-
festations of the same effects. They can change independently
of each other, so both should be evaluated. But commonly
used performance evaluation approaches such as trace-based
simulation and open-system queuing analysis evaluate only the
wait time and the response time. Measuring the throughput
or utilization using these methodologies can only serve as a
sanity check, because the throughput and utilization (which
are linearly related in expectation in this case) are completely

determined by the workload. In other words, these common
evaluation methodologies effectively treat throughput and uti-
lization as an input and not as part of the evaluation.

The classic approach to evaluate throughput is by using a
closed model. But a pure closed model with a fixed number
of users is unrealistic for many types of system. In many
cases a more realistic workload scenario combines the closed
behavior with an open behavior. For example, users may arrive
randomly as in an open system, but then they may execute a
workflow of multiple jobs that depend on each other as in
a closed model. Trace-based simulations that preserve all the
jobs’ properties, including their arrival times, actually destroys
the logic of the user’s workflow, specifically the dependencies
and think times between successive jobs. An better alternative
is therefore to preserve the dependencies, and adjust the arrival
times [14]. But still, if all the jobs in the workflow are
eventually performed, the total amount of work and hence
the system throughput are the same as in the original trace.
The only thing that may change is the per-user throughput,
because the workflows of individual users may be spread out
differently. This motivates adding per-user throughput to the
set of metrics that should be evaluated.

But in real life there do exist situations where the total
throughput is indeed affected. To capture this one needs a
system model that includes an explicit effect on the number
of jobs processed by the system. This can take one of two
forms. The first model is systems that use admission controls
to throttle their users or just drop superfluous jobs (e.g. [2],
[12], [1]). A good metric of performance in this case is the
number of jobs that are rejected. The second model is users
who change their behavior in response to system performance.
For example, it is easy to envision users who become frustrated
with poor performance and reduce their activity. This is the
type of models we address here.

Importantly, such models allow analysts to assess the impact
of system designs on throughput even when the system does
not address this explicitly (e.g. it does not employ admis-
sion controls). In particular, they facilitate an analysis of
the tradeoff between throughput and response time, and the
identification of situations where higher response times are ac-
tually beneficial because they correlate with higher throughput
and utilization. Moreover, such models may capture negative
feedback effects as when users back off from an overloaded
system and thereby prevent its saturation. Using an oblivious
model — as is commonly done in trace-based simulations and
queueing analyses — would miss such effects and lead to
overly pessimistic results [9].
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Fig. 1: Flow of TBOUS.

II. TBUOS AND SEMI-OPEN SIMULATION

In a previous work we proposed the Trace-Based User-
Oriented Simulation (TBUOS), which is a semi-open simula-
tion that includes dynamic user activity and internal feedback
from the system to the users [15]. In this simulation, we divide
the users into two groups (Figure 1). One is temporary users
that arrive to the system at a fixed rate, and are active for only
a limited time. The other is long term users who are always
active. This is modeled in simulations by sending their first
traced job again after the termination of their last traced job.

We found that the overall throughput of a TBOUS simula-
tion can differ from that of a conventional simulation based
on the same trace, as a result of subtle interactions between
the users. The temporary users each have a fixed number of
jobs, so in the long run their contribution is fixed. But the long
term users are coupled to them because they contend for the
same processing resources. So if the load caused by temporary
users affects the rate at which long-term users circulate, the
overall throughput is affected. The goal of the present paper is
to further investigate this effect, and compare it with another
model where all users are temporary but their number of jobs
is performance-dependent.

More formally, the two models we will be investigating are
as follows:

• The mixed model. This model includes an open work-
load class and a closed workload class. It is an abstraction
of the workload used in the TBUOS simulations.

1) Open users submit a single job to the system and
leave. This is like in a conventional open system.
Arrivals of these users are not affected by the system
state, so the load they impose on the system is also
not affected by the system state. In other words,
they have a constant contribution to the system
throughput.

2) Closed users who submit a job, wait for it to
terminate, think, submit another job, and so on
indefinitely. This is just like a conventional closed
system, and arrivals are naturally affected by the
system state.

We assume that the properties of the jobs, such as the
distribution of run-times, are the same for both classes.
The interesting issue is the interaction between the two

classes. As in TBOUS, the open class affects the per-
formance of the closed class, and this effect can lead to
changes in the system throughput.
This model represents a system that has both permanent
users and temporary users. For example, a cloud service
that has users that paid to host a persistent service and
other users that try the system for a limited time only
and then leave. This is highly relevant today due to the
growing popularity of cloud systems.

• The re-open model. This is an open model with repeated
submittal of jobs: users arrive at a given arrival rate as
in a conventional open model, but once they arrive they
may submit several jobs one after the other with think
times in between. As we show below, if the total number
of jobs (or the probability to submit additional jobs) is
fixed, the system cannot affect the throughput. But if the
probability to submit additional jobs depends on system
performance (and specifically on the response time) then
throughput is indeed affected.
This model may be suitable for a web server or similar
systems. When users surf to a site they usually send some
number of requests. However, if the performance is poor,
a user may get discouraged and leave the site. On the
other hand, if the server is highly responsive, the users
may extend their activity and send more requests.

These models are shown graphically in Figure 2. Note that
in the mixed model the two user classes are distinct, and
the only interaction between them is that both use the same
resources on the server. In the re-open model, on the other
hand, there is only one user class, and each user either submits
additional jobs (closed behavior) or departs (open behavior)
with some probability.

An important issue in both models with whether the work-
load is assumed to be interactive or batch. In batch workloads
closed jobs are submitted one after the other with no inter-
vening think time. As a result the utilization is always 100%
and the throughput equals the system’s capacity (namely the
maximal number of jobs that the system can serve in a unit
of time). In this case the only metric that can change is the
throughput observed by each user, because delays cause the
users to execute the same jobs over longer periods of time.

In interactive workloads the think time throttles the rate of
submitting jobs, and therefore changes to the scheduler can
lead to changes in throughput. This can happen, for example,
by delaying interfering jobs to non-prime time [3]. In our
models we focus on interactive workloads.

III. THE MIXED MODEL

The mixed model in and of itself is not new, and has been
used to model the combination of interactive and batch work
for example (see [5, sect 7.4.3] and [6, sect 13.7]). The idea
there is that the batch jobs constitute a closed system, with
a new one starting immediately upon the termination of a
previous one. Previous works described the model briefly and
how to calculate the performance metrics. To this we add the
motivation of affecting throughput, and present graphs that
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Fig. 2: The mixed model (left) and the re-open model (right).

show the relation between the inputs and the performance met-
rics. Also, we analyze this model using operational analysis,
to show both intuitively and mathematically these relations
between the performance metrics.

The Mixed Model is an abstraction of the model we used in
simulations in the context of suggesting the use of workload
resampling from recorded logs and TBOUS [13], [15]. As
explained above, the two workload classes were long-term
users who are active throughout and behave like a closed
model, and temporary users who are active only for a limited
duration, thus behaving like an open model (or rather, like a
re-open model) in that their arrivals — and consequently also
all the load they impose — is uncorrelated with system state.

A. Model and Dynamics

Assume a single server system, where arriving jobs queue,
receive service, and depart. The parameters of the model are
as follows:

open part λ arrival rate

closed part N number of users
Z think time

system params S service demand
µ service rate ( 1

E[S] )

This model assumes that all the jobs are similar, meaning that
they have the same service demand S. Also, the scheduler does
not differentiate between jobs submitted by the open users and
the closed users.

Given the mixed workload, the system dynamics will evolve
as follows. The open component of the workload is oblivious
to the system state. It therefore imposes a fixed load of λE[S]
per job. This has to be less than the system capacity, implying
the common requirement λ < µ.

Once the capacity taken up by the open component is ac-
knowledged, the remaining capacity is (µ−λ)E[S]. The closed
part adjusts to fit in this left over capacity. The mechanism
that affects this adjustment is the response time. The lower
the system-wide response time, the sooner the closed users
submit additional jobs, thereby increasing the load. But if the
load is too high the response time will grow, thereby delaying
the closed users, and subsequently delaying the submittal of
additional jobs and reducing the load. This is a stabilizing
negative feedback effect on the throughput X .
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Fig. 3: The average response time and throughput of the closed
submodel (MVA results) with µ = 1.0 and Z = 5.0. The first
two graphs show how the number of usersN affects the average
response time and the throughput. The third graph combines
these results to show the average response time as a function of
the throughput (or equivalently, the utilization).

B. Common Evaluation

As noted above the mixed model is well-known. For com-
pleteness, we provide a short review of the common approach
to calculating the response times Rc and Ro (of closed and
open jobs, respectively; they are not identical because open
jobs arrive randomly, whereas closed job arrivals are correlated
with system state, but the difference becomes negligible for
large N ).

1) The open part is oblivious to the system. Its utilization
is λS and the throughput is λ.

2) The effect of the open part on the closed part is modeled
by extending the service time to Sc = S

1−Sλ . The closed
part is then solved using the iterative MVA algorithm.

3) The average queue length of closed customers is added
to the resident users of the open model to calculate Ro.

While this method calculates the performance metrics for
the system, it doesn’t provide the relations between the dif-
ferent metrics nor an intuitive explanation of the system’s
behavior. To provide this, we present some results in Figure
3. When the number of closed users increases both the
response time and the throughput increase, but with different
profiles: asymptotically the response time grows linearly, and
throughput saturates at system capacity. The relation between
them is highly non-linear, and similar to how response time
depends on utilization in open systems. To understand this
better, we use operational laws.

C. Operational Analysis

First, we observe that the system can operate in either of
two phases.



• Full utilization phase — in this phase the closed compo-
nent uses all the remaining capacity.

• Partial utilization phase — in this case the closed compo-
nent does not use up all the remaining capacity, because
the combination of the number of users and the think
time does not allow the submittal of sufficient jobs.

Let’s start by analyzing the full utilization phase. The fact
that the system is fully utilized means that the throughput
equals to the system capacity and therefore

X = µ

The throughput is the sum of the open throughput λ and the
closed throughput N

Rc+Z
(from the interactive response time

law). Using the first equation we conclude that

µ = λ+
N

Rc + Z

From this we can extract Rc

Rc =
N

µ− λ
− Z

Thereby characterizing the system performance using opera-
tional laws that do not require assumptions about distributions.
This shows the intuitive result that (asymptotically) adding
closed users leads to a linear increase in response time because
they just pile up in the queue.

The partial utilization phase implies that

µ > X = λ+
N

Rc + Z

and therefore
Rc >

N

µ− λ
− Z

In other words, the response time Rc is large enough to throttle
the closed users and prevent them from creating additional
load. We then have two unknowns: Rc and X , with the
relationship

Rc =
N

X − λ
− Z

While this doesn’t allow us to solve for Rc and X , it provides
the inverse relationship between them for given N and Z. But
if N grows X grows too, giving the result in Figure 3.

IV. THE RE-OPEN MODEL

The basic elements of the re-open model were introduced
by Schroeder et al. under the name “partly-open” [8] and used
by others [7], [4]. Specifically, this combined open and closed
elements by mandating that users submit additional jobs with a
probability p. However, this alone does not affect throughput.
To affect throughput we add the new condition that p be
dependent on the system state.

The parameters of the model are as follows:

user params λ arrival rate
p probability to submit another job
Z think time between submitted jobs

system params S service demand
µ service rate ( 1

E[S] )
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Fig. 4: Simulating the re-open model for 10,000 users to check
the impact of the “think rate” 1

Z on performance. Simulations
use µ = 1.0 and λ = 0.5, with p = 0.36 (solid) and p =
0.47 (dashed). These p values produce high enough load to be
interesting, while the system is still stable.

In the following subsections we analyze this model under
different assumptions. To examine this model’s characteristics,
we created a simulation that simulates the re-open model with
a basic FCFS scheduling policy.

A. Constant p Value

When p is constant, this model is a generalization of both
the open and closed conventional models. A conventional open
model is obtained when p = 0, and a conventional closed
model is obtained when p = 1 and λ = 0.

If 0 < p < 1 then each user submits a number of jobs and
then leaves. As defined above with constant p the throughput
X is fixed by the model, and it is essentially like an open
system: each user submits 1+p+p2+p3+ . . . = 1

1−p jobs in
expectation, so the throughput is X = λ

1−p . In such a model
the stability constraint is

λ ≤ (1− p)µ

This immediately leads to a bound on p, namely p ≤ 1− λ
µ .

To evaluate this behavior, we modeled fixed p in simula-
tions. All the distributions including the think times, interar-
rival times, and service times are exponential. Figure 4 shows
that the think time doesn’t have an impact on any of the
results, at least when the system is not too close to saturation.
Figure 5 shows the impact of p. While throughput, utilization,
and jobs per user grow moderately with p, the queue length
and wait time grow much more precipitously, but only upon
approaching saturation. And note that as the overall throughput
increases, the throughput as observed by each user drops.

Finally, Figure 6 shows the relation between the response
time, the throughput, and the throughput per user. Note that the
throughput per user decreases dramatically for higher response
times, because the users are active for much longer, but send
the same number of jobs.
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Fig. 5: Simulating the re-open model for 10,000 users using
µ = 1.0, λ = 0.5, and Z = 1 in order to check the impact of p
on performance.
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B. p as a Function of the Response Time

A more realistic model is to assume that the probability
to send an additional job is not fixed, but rather depends
on the performance of the system. High speed response may
cause a user to extend his session with the system, while slow
responses may cause him to leave the system. Therefore, a few
works suggested to take the response time into account when
calculating the probability of a user to send an additional job
[10], [11].

This is an interesting model, because it means that the
throughput is dynamic and depends on the performance of the
system. Short response times will lead to higher throughput.
But higher throughput will lead to more contention and thus
to higher response times, and hence to reduced throughput.
Therefore, the throughput and the response times balance each
other, and again we have a stabilizing negative feedback effect.

To formalize the model we need to decide how p depends on
the response time of previous jobs. A reasonable assumption
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Fig. 7: Simulating the re-open model for 10,000 users with
µ = 1.0 and Z = 1 where p is exponentially decreasing with
r (solid) and where p is set according to Shmueli’s formula
(dashed).

is that p is a monotonically decreasing function of r, where r
is the response time of the last job of this user. We modeled
two different functions for p:

• Exponentially decreasing function. This means that the
probability to submit another job drops off exponentially
with the response time of the previous job. In other
words, p = e−r. Therefore p starts from one for zero
response time and decreases exponentially to 0 with
longer response times.

• Shmueli’s model. Shmueli and Feitelson analyzed the
probability of a user to continue a session for several
logs in the Parallel Workloads Archive [10], [11]. They
discovered that the relationship is a hyperbola

p =
0.8

0.05 · r + 1

where r is in minutes. The average running time of jobs
was from a couple of minutes to perhaps 10 minutes
depending on the log. In our model, we use S = 1 as the
unit of time. Therefore we used the same formula, but
used 10r instead of r.

We simulated these two approaches. Figure 7 shows the
resulting metrics for different λ. Note that the throughput and
utilization are larger than λ due to the job repetitions. As λ
increases, the throughput and utilization converge to 1. Thus
when more users arrive, there are less resources available for
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Fig. 8: Runtime distributions of jobs after which the decision
was to submit another job (continue), and jobs where the
decision was to quit (break). Results for simulation of 10,000
users with µ = 1.0 and Z = 1.

running repeated jobs. Therefore response times grow and p
drops. Consequently users submit fewer jobs, and the system
does not saturate. Also, the throughput per user drops, but
much more moderately than in the constant p model. And
again, queue length and wait time shoot up only when the
system is close to saturation.

Both approaches have different characteristics than the
constant p model due to the fact that a higher number of
users (higher λ) leads each user to send fewer jobs. Comparing
between the two approaches, Shmueli’s approach starts with a
higher number of jobs per user, and drops nearly linearly to 1,
while in the exponential approach the slope become smaller
for higher λ. As a result, the throughput when using Shmueli’s
approach converges to 1 for lower λ and the average wait time
is longer.

An interesting new metric we introduce is the throughput
per user. This is the quotient of the number of jobs that a user
submits divided by the total residence time in the system. In
Shmueli’s approach it starts higher, which means that users
take advantage of the empty system to send more jobs, but
they keep sending a high number of jobs when the system
is loaded, and this leads to delays and subsequently to low
throughput per user when λ is high.

C. Runtime Distribution Bias

An interesting artifact of the re-open model is the possible
creation of bias in the distribution of job runtimes for each
user. When p depends on the response time of the previous
job, this reflects the confluence of two factors: the length of
the job itself, and how long it had to wait in the queue. So if
the job was short there is an increased probability to continue
with additional jobs, and if the job was long this probability

is reduced — regardless of the performance of the system. As
a result the sequence of jobs executed by a certain user may
tend to include several short jobs and only one long job, the
last one. This may affect the throughput per user metric.

Evidence for this effect is shown in Figure 8. The distri-
bution of runtimes of jobs that were the last one for a user
(meaning that the probabilistic decision was not to submit
additional jobs) tends to have longer times than the distribution
of runtimes of jobs that were not the last. The effect is stronger
with the Shmueli model, and weaker when λ is high, because
then each user submits fewer jobs. More work is needed to
decide if this is a problem or perhaps it actually reflects an
effect that exists in reality.

V. CONCLUSIONS AND FUTURE WORK

In conventional trace-based simulations and open-system
analyses the throughput is given, and only the response time
can be evaluated. In addition there is no feedback and the
system may saturate as users continue to submit jobs.

We considered two models that include realistic negative
feedback effects and allow the tradeoff between response time
and throughput to be explored. The mixed model includes
closed users whose throughput is affected by contention from
open users. In the re-open model users submit additional jobs
depending on their response time. In either case, the total
throughput converges to the system capacity as more users are
added. Therefore a more interesting metric is the throughput
per user.

Use of such models is mandatory if one wishes to assess
the effect of a scheduling scheme on throughput. This is an
important performance metric for schedulers that attempt to
prioritize different users or affect their productivity and be-
havior [11], [15]. Preferring one model over the other depends
on the type of evaluated system and the users’ behavior in the
environment.

Our next goal is to continue developing these models and
make them more realistic, similarly to the TBOUS simulation
[15]. One useful expansion is to combine them by adding
repeated jobs based on performance to the mixed model. In
effect, this creates a mixture of closed and re-open instead of
closed and open.

Another interesting issue is the think time (Z). In both
the mixed model and the re-open model results above, the
think time was sampled from an exponential distribution with
parameters given as an input of the model. However, in reality,
the think time might depend on various factors. For example,
if the response time was short, the user might still be engaged
with his session and send the next job with a short delay. For
longer response times, the user might break his session and
send the next job later in a new session (e.g. after taking a
coffee break) or even the next day (if the job finished late at
night). This suggests that more elaborate user behavior models
are needed [14].
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