1

Unsupervised Argument ldentification for Semantic Role Labeling

Omri Abend!

Roi Reichart?

Ari Rappoport !

Institute of Computer SciencélCNC
Hebrew University of Jerusalem
{omria0l|roiri|arir}@s.huji.ac.il

Abstract

The task of Semantic Role Labeling
(SRL) is often divided into two sub-tasks:
verb argument identification, and argu-
ment classification. Current SRL algo-
rithms show lower results on the identifi-
cation sub-task. Moreover, most SRL al-
gorithms are supervised, relying on large
amounts of manually created data. In
this paper we present an unsupervised al-
gorithm for identifying verb arguments,
where the only type of annotation required
is POS tagging. The algorithm makes use
of a fully unsupervised syntactic parser,
using its output in order to detect clauses
and gather candidate argument colloca-
tion statistics. We evaluate our algorithm
on PropBank10, achieving a precision of
56%, as opposed to 47% of a strong base-
line. We also obtain an 8% increase in
precision for a Spanish corpus. This is
the first paper that tackles unsupervised
verb argument identification without using
manually encoded rules or extensive lexi-
cal or syntactic resources.

Introduction

type of relation that holds between the identi-
fied arguments and their corresponding predicates.
The division into two sub-tasks is justified by
the fact that they are best addressed using differ-
ent feature sets (Pradhan et al., 2005). Perfor-
mance in theARGID stage is a serious bottleneck
for general SRL performance, since only about
81% of the arguments are identified, while about
95% of the identified arguments are labeled cor-
rectly (Marquez et al., 2008).

SRL is a complex task, which is reflected by the
algorithms used to address it. A standard SRL al-
gorithm requires thousands to dozens of thousands
sentences annotated with POS tags, syntactic an-
notation and SRL annotation. Current algorithms
show impressive results but only for languages and
domains where plenty of annotated data is avail-
able, e.g., English newspaper texts (see Section 2).
Results are markedly lower when testing is on a
domain wider than the training one, even in En-
glish (see the WSJ-Brown results in (Pradhan et
al., 2008)).

Only a small number of works that do not re-
quire manually labeled SRL training data have
been done (Swier and Stevenson, 2004; Swier and
Stevenson, 2005; Grenager and Manning, 2006).
These papers have replaced this data with the
VerbNet (Kipper et al., 2000) lexical resource or

Semantic Role Labeling (SRL) is a major NLP a set of manually written rules and supervised
task, providing a shallow sentence-level semantiparsers.

analysis. SRL aims at identifying the relations be-

A potential answer to the SRL training data bot-

tween the predicates (usually, verbs) in the sentleneck are unsupervised SRL models that require
tence and their associated arguments.
The SRL task is often viewed as consisting ofoutput can be used either by itself, or as training
two parts: argument identificatioaRGID) and ar-

gument classification. The former aims at identi-

little to no manual effort for their training. Their

material for modern supervised SRL algorithms.
In this paper we present an algorithm for unsu-

fying the arguments of a given predicate presenpervised argument identification. The only type of
in the sentence, while the latter determines theannotation required by our algorithm is POS tag-



ging, which needs relatively little manual effort. ied language, using the FrameNet (FN) (Baker et

The algorithm consists of two stages. As pre-al., 1998) and PropBank (PB) (Palmer et al., 2005)
processing, we use a fully unsupervised parser teesources. PB is a corpus well suited for evalu-
parse each sentence. Initially, the set of possiation, since it annotates every non-auxiliary verb
ble arguments for a given verb consists of all then a real corpus (the WSJ sections of the Penn
constituents in the parse tree that do not contaiffreebank). PB is a standard corpus for SRL eval-
that predicate. The first stage of the algorithmuation and was used in the CoNLL SRL shared
attempts to detect the minimal clause in the sentasks of 2004 (Carreras andaktjuez, 2004) and
tence that contains the predicate in question. Us2005 (Carreras and dquez, 2005).

ing this information, it further reduces the possible  Most work on SRL has been supervised, requir-
arguments only to those contained in the minimajng dozens of thousands of SRL annotated train-
clause, and further prunes them according to theiihg sentences. In addition, most models assume
position in the parse tree. In the second stage Wehat a syntactic representation of the sentence is
use pointwise mutual information to estimate thegiven, commonly in the form of a parse tree, a de-
collocation strength between the arguments an@lendency structure or a shallow parse. Obtaining
the predicate, and use it to filter out instances ofhese is quite costly in terms of required human
weakly collocating predicate argument pairs. annotation.

We use two measures to evaluate the perfor- the first work to tackle SRL as an indepen-

mance of our algorithm, preci?ion and F-scoreyen task is (Gildea and Jurafsky, 2002), which
Precision reflects the algorithm’s applicability for presented a supervised model trained and evalu-

creating training data to be used by supervisedieq on FrameNet. The CoNLL shared tasks of
SRL models, while the standard SRL F-score measgna and 2005 were devoted to SRL. and stud-

sures the model's performance when used by itigq the influence of different syntactic annotations
self. The first stage of our algorithm is shown t0 44 qomain changes on SRL resul€omputa-

outperform a strong baseline both in terms of Fyjong| Linguisticshas recently published a special
score and of precision. The second stage is Showg e on the task (Rrquez et al., 2008), which

to increase precision while maintaining a reasonyregents state-of-the-art results and surveys the lat-
able recall. est achievements and challenges in the field.

We evaluated our model on sections 2-21 of .
. . ) Most approaches to the task use a multi-level
Propbank. As is customary in unsupervised Pars; roach. separating the task to 0 and an
ing work (e.g. (Seginer, 2007)), we bounded sen- PP » S€P g

tence length by 10 (excluding punctuation). Ourargument classification sub-tasks. They then use

. . o . . the unlabeled argument structure (without the se-
first stage obtained a precision of 52.8%, which is : gume (

. . mantic roles) as training data for tA&GID stage
more than 6% improvement over the baseline. Our

second stage improved precision to nearly 56% and the entire data (perhaps with other features)
. 9 P P . Y 9570 &) the classification stage. Better performance
9.3% improvement over the baseline. In addition

: : . Is achieved on the classification, where state-

we carried out experiments on Spanish (on sen- . .
. of-the-art supervised approaches achieve about
tences of length bounded by 15, excluding punctug, . . : e .
: S . : 81% F-score on the in-domain identification task,
ation), achieving an increase of over 7.5% in pre- .
. . . : of which about 95% are later labeled correctly

cision over the baseline. Our algorithm increase

: . ?M arquez et al., 2008).
F—score as well, showing an 1.8% improvemen _
over the baseline in English and a 2.2% improve- 1here have been several exceptions to the stan-
ment in Spanish. dard architecture described in the last paragraph.

Section 2 reviews related work. In Section 3 we©ONe suggestion poses the problem of SRL as a se-

detail our algorithm. Sections 4 and 5 describe thdUential tagging of words, training an SVM clas-
experimental setup and results. sifier to determine for each word whether it is in-

side, outside or in the beginning of an argument
2 Related Work (Hacioglu and Ward, 2003). Other works have in-

tegrated argument classification and identification
The advance of machine learning based apmto one step (Collobert and Weston, 2007), while
proaches in this field owes to the usage of largethers went further and combined the former two
scale annotated corpora. English is the most studzdlong with parsing into a single model (Musillo



and Merlo, 2006). proach used similarity measures either between

Work on less supervised methods has beeMerbs (Gordon and Swanson, 2007) or between
scarce. Swier and Stevenson (2004) and Swigtouns (Gildea and Jurafsky, 2002) to overcome
and Stevenson (2005) presented the first modégXical sparsity. These measures were estimated
that does not use an SRL annotated corpus. Howsing statistics gathered from corpora augmenting
ever, they utilize the extensive verb lexicon Verb-the model’s training data, and were then utilized
Net, which lists the possible argument structured0 generalize across similar verbs or similar argu-
allowable for each verb, and supervised syntacments.
tic tools. Using VerbNet along with the output of ~ Attempts to substitute full constituency pars-
a rule-based chunker (in 2004) and a supervisetihg by other sources of syntactic information have
syntactic parser (in 2005), they spot instances ilpeen carried out in the SRL community. Sugges-
the corpus that are very similar to the syntacticions include posing SRL as a sequence labeling
patterns listed in VeroNet. They then use these agroblem (Marquez et al., 2005) or as an edge tag-
seed for a bootstrapping algorithm, which conseging problem in a dependency representation (Ha-
quently identifies the verb arguments in the corpusgioglu, 2004). Punyakanok et al. (2008) provide
and assigns their semantic roles. a detailed comparison between the impact of us-

Another less supervised work is that INg shallow vs. full constituency syntactic infor-
of (Grenager and Manning, 2006), which present§”ati°” in an English SRL system. Thgir results
a Bayesian network model for the argumentdear'_y demonstrate the advantage of using full an-
structure of a sentence. They use EM to leardrotation.
the model's parameters from unannotated data, 1he identification of arguments has also been
and use this model to tag a test corpus. Howevefarried out in the context of automatic subcatego-
ARGID was not the task of that work, which dealt fization frame acquisition. Notable examples in-
solely with argument classificationarcip was ~ clude (Manning, 1993; Briscoe and Carroll, 1997;
performed by manually-created rules, requiring d<erhonen, 2002) who all used statistical hypothe-

supervised or manual syntactic annotation of théiS testing to filter a parser’s output for arguments,
corpus to be annotated. with the goal of compiling verb subcategorization

. lexicons. However, these works differ from ours
The three works above are relevant but incom- ’

parable to our work, due to the extensive amounf® they attempt to gharactgri;e the beha_vior .Of a
of supervision (hamely, VerbNet and a rule-base(yerb type, by collecting statistics from various In-
or supervised syntactic system) they used, both iﬁtances of that verb, and not to determine which

detecting the syntactic structure and in detecting?r?r:]he allrgu.rrr]]ents of speccllfl.c Vﬁ_rb mstances];
the arguments. e algorithm presented in this paper performs

. . unsupervised clause detection as an intermedi-
Work has been carried out in a few other lan- P

. . . .ate step towards argument identification. Super-
guages besides English. Chinese has been studle(f P g P

. : vised clause detection was also tackled as a sepa-
n (Xue, 2008). E xperiments on Catalan and Spanfate task, notably in the CoNLL 2001 shared task
ish were done in SemEval 2007 &vjuez et al.,

2007) with t fcinati ‘ Att ; (Tjong Kim Sang and Bjean, 2001). Clause in-
) with fwo participaling systems. €MPLS tormation has been applied to accelerating a syn-
to compile corpora for German (Burdchardt et al.

‘tactic parser (Glaysher and Moldovan, 2006).
2006) and Arabic (Diab et al., 2008) are also un- °p (Glay v )

derway. The small number of Iangu'ages for whichg Algorithm

extensive SRL annotated data exists reflects the

considerable human effort required for such enin this section we describe our algorithm. It con-

deavors. sists of two stages, each of which reduces the set
Some SRL works have tried to use unannotate®f argument candidates, which a-priori contains all

data to improve the performance of a base suconsecutive sequences of words that do not con-

pervised model. Methods used include bootstraptain the predicate in question.

ping approaches (Gildea and Jurafsky, 2002; Kate _ _

and Mooney, 2007), where large unannotated cor:—‘,"1 Algorithm overview

pora were tagged with SRL annotation, later toAs pre-processing, we use an unsupervised parser

be used to retrain the SRL model. Another apthat generates an unlabeled parse tree for each sen-



tence (Seginer, 2007). This parser is unique in that :
it is able to induce a bracketing (unlabeled pars- /\
ing) from raw text (without even using POS tags) C L

achieving state-of-the-art results. Since our algo- o R /\
\ |

rithm uses millions to tens of millions sentences, e materials C L

we must use very fast tools. The parser’s high Y TN

speed (thousands of words per second) enables us o W /L\

to process these large amounts of data. chan PO
IN CcD students

The only type of supervised annotation we | |
use is POS tagging. We use the taggers MX-

POST (Ratnaparkhi, 1996) for English and Tree- L

Tagger (Schmid, 1994) for Spanish, to obtain POS N

tags for our model. N
The first stage of our algorithm uses linguisti- vér L

cally motivated considerations to reduce the set of

possible arguments. It does so by confining the set VE{L\L

of argument candidates only to those constituents

which obey the following two restrictions. First, Figure 1: An example of an unlabeled POS tagged
they should be contained in the minimal clauseparse tree. The middle tree is tI5g" of ‘reach’
containing the predicate. Second, they should bwith the root as the encoded ancestor. The bot-
k-th degree cousins of the predicate in the parstom one is theST with its parent as the encoded
tree. We propose a novel algorithm for clause deancestor.

tection and use its output to determine which of

the constituents obey these two restrictions. Statistics gathering. In order to detect which

The second stage of the algorithm uses pointef the verb’s ancestors is the minimal clause, we
wise mutual information to rule out constituentsscore each of the ancestors and select the one that
that appear to be weakly collocating with the pred-maximizes the score. We represent each ancestor
icate in question. Since a predicate greatly reusing its Spinal Tree(ST). The ST of a given
stricts the type of arguments with which it may verb’s ancestor is obtained by replacing all the
appear (this is often referred to as “selectional reeonstituents that do not contain the verb by a leaf
strictions”), we expect it to have certain characterhaving a label. This effectively encodes all the
istic arguments with which itis likely to collocate. th degree cousins of the verb (for evety The
leaf labels are either the word’s POS in case the
constituent is a leaf, or the generic label “L" de-
noting a non-leaf. See Figure 1 for an example.
The main idea behind this stage is the observation In this stage we collect statistics of the occur-
that most of the arguments of a predicate are corrences ofST's in a large corpus. For eve§ in
tained within the minimal clause that contains thethe corpus, we count the number of times it oc-
predicate. We tested this on our development dataurs in a form we consider to be a clause (positive
— section 24 of the WSJ PTB, where we saw thagxamples), and the number of times it appears in
86% of the arguments that are also constituentsther forms (negative examples).

(in the gold standard parse) were indeed contained Positive examples are divided into two main
in that minimal clause (as defined by the tree latypes. First, when th&T encodes the root an-
bel types in the gold standard parse that denoteestor (as in the middle tree of Figure 1); second,
a clause, e.g.s, SBAR). Since we are not pro- when the ancestor complies to a clause lexico-
vided with clause annotation (or any label), we at-syntactic pattern. In many languages there is a
tempted to detect them in an unsupervised mannesmall set of lexico-syntactic patterns that mark a
Our algorithm attempts to find sub-trees within theclause, e.g. the English ‘that’, the German ‘dass’
parse tree, whose structure resembles the structuaad the Spanish ‘que’. The patterns which were
of a full sentence. This approximates the notion ofused in our experiments are shown in Figure 2.

a clause. For each verb instance, we traverse over its an-

3.2 Clause detection stage



English If there is only one verb in the senterdcer if
TO + VB. The constituent starts with “to” followed by clause(STa;) = 0 for everyl < j < m, we
a verb in infinitive form. choose the top level constituent by default to be
WP. The constituent is preceded by a Wh-pronoun. the minimal clause containing the verb. Other-
That. The constituent is preceded by a “that” marked wise, the minimal clause is defined to be the yield

by an “IN” POS tag indicating that it is a subordinating  Of the selected ancestor.
conjunction.

Argument identification. For each predicate in
the corpus, its argument candidates are now de-
fined to be the constituents contained in the min-

Spanish

CQUE. The constituent is preceded by a word with the
POS “CQUE” which denotes the word “que” as a can-

junction. imal clause containing the predicate. However,
INT. The constituent is preceded by a word with the these constituents may be (and are) nested within
POS "INT” which denotes an interrogative pronoun. each other, violating a major restriction on SRL
CSUB. The constituent is preceded by a word with ope  arguments. Hence we now prune our set, by keep-
of the POSs “CSUBF”, “CSUBI" or “CSUBX", which ing only the siblings of all of the verb’s ancestors,

denote a subordinating conjunction.

as is common in supervised SRL (Xue and Palmer,

Figure 2: The set of lexico-syntactic patterns tha2004).
mark clauses which were used by our model.

3.3 Using collocations

cestors from top to bottom. For each of them weVVe use the following observation to filter out some
update the following countersentence(ST) for ~ Superfluous argument candidates: since the argu-
the root ancestor'ST, pattern;(ST) for the ones Ments of a predicate many times bear a semantic
complying to thei-th lexico-syntactic pattern and connection with that predicate, they consequently
negative(ST) for the other ancestots tend to collocate with it.

We collect collocation statistics from a large
Clause detection. At test time, when detecting corpus, which we annotate with parse trees and
the minimal clause of a verb instance, we useQg tags. We mark arguments using the argu-
the statistics collected in the previous stage. Dement detection algorithm described in the previous
note the ancestors of the verb with, ... An.  two sections, and extract all (predicate, argument)
For each of them, we calculat€ause(ST4;)  pairs appearing in the corpus. Recall that for each
and total(STa,). clause(STy,) is the sum  sentence, the arguments are a subset of the con-
of sentence(STa;) and pattern;(STy,) if this  stituents in the parse tree.
ancestor complies to theth pattern (if there  \yg yse two representations of an argument: one
is no such patternclause(STy,) is equal 10 g the POS tag sequence of the terminals contained
sentence(STy;)).  total(STa,) is the sum of i, the argument, the other is its head wbrdhe

clause(STy;) and"egati“?(S_TAj)' predicate is represented as the conjunction of its
The selected ancestor is given by: lemma with its POS tag.
clause(ST4,) Denote the number of times a predicate
(1) Aoz = argmaz a, Total(5Ta,) appeared with an argumeptby n,,. Denote

the total number of (predicate, argument) pairs

An ST whosetotal(ST) is less than a small by N Using these notations, we define the

threshold is not considered a candidate to be theéfollowing quantities:n, = yn.y, 1y, = Senay,
minimal clause, since its statistics may be un-,(;) — ne p(y) = “ andp(z,y) = "=. The
reliable. In case of a tie, we choose the low-pgintwise mutual information of andy is then
est constituent that obtained the maximal scoregjyen by:

Lf while traversing the tree, we encounter an ancestor
whose first word is preceded by a coordinating conjunction
(marked by the POS tag “CC”), we refrain from performing  ®In this case, every argument in the sentence must be re-
any additional counter updates. Structures containing coortated to that verb.
dinating conjunctions tend not to obey our lexico-syntactic  “Since we do not have syntactic labels, we use an approx-
rules. imate notion. For English we use the Bikel parser default
2\We used 4 per million sentences, derived from develop-head word rules (Bikel, 2004). For Spanish, we use the left-
ment data. most word.



(2) PMI(z,y) = log-2&Y)  — jog—Tou__ ing the URLs in the Open Directory Project
p(z)-p(y) (nzny)/N
(dmoz.org). All of the above corpora were parsed

PM] effectively measures the ratio betweenusing Seginer's parser and POS-tagged by MX-
the number of times andy appeared together and POST (Ratnaparkhi, 1996).
the number of times they were expected to appear, For our experiments on Spanish, we used 3.3M
had they been independent. sentences of length at most 15 (excluding punctua-

At test time, when afw, y) pair is observed, we tion) extracted from the Spanish Wikipedia. Here
check if PM1(x,y), computed on the large cor- we chose to bound the length by 15 due to the
pus, is lower than a threshotd for either ofz’s  smaller size of the available test corpus. The
representations. If this holds, for at least one repsame data was used both for the first and the sec-
resentation, we prune all instances of thaty) ond stages. Our development and test data were
pair. The parameter may be selected differently taken from the training data released for the Se-
for each of the argument representations. mEval 2007 task on semantic annotation of Span-

In order to avoid using unreliable statistics,ish (Marquez et al., 2007). This data consisted
we apply this for a given pair only if= >  of 1048 sentences of length up to 15, from which
r, for some parameter. That is, we consider 200 were randomly selected as our development
PMI(z,y) to be reliable, only if the denomina- data and 848 as our test data. The development

tor in equation (2) is sufficiently large. data included 313 verb instances while the test
data included 1279. All corpora were parsed us-
4 Experimental Setup ing the Seginer parser and tagged by the “Tree-

Tagger” (Schmid, 1994).
Corpora. We used the PropBank corpus for de-  gaselines. Since this is the first paper, to our
velopment and for evaluation on English. SeCt'O”knowledge, which addresses the problem of unsu-
24 was used for the development of our modelyerised argument identification, we do not have
and sections 2 to 21 were used as our test datany previous results to compare to. We instead

The free parameters of the collocation extractiorhOmpare to a baseline which marks/alih degree

phase were tuned on the development data. Folqsins of the predicate (for evetyas arguments
lowing the unsupervised parsing literature, multi-

_ : this is the second pruning we use in the clause
ple brackets and brackets covering a single Wordiatection stage). We name this baseline the A

are omitted. We exclude punctuation accordingc,sins baseline. We note that a random base-
to the scheme of (Klein, 2005). As is customaryjine would score very poorly since any sequence of
in unsupervised parsing (e.g. (Seginer, 2007)), Wegrminals which does not contain the predicate is

bounded the lengths of the sentences in the coy qgsible candidate. Therefore, beating this ran-
pus to be at most 10 (excluding punctuation). Thigyom baseline is trivial.

results in 207 sentences in the development data
containing a total of 132 different verbs and 173

verb instances (of the non-auxiliary verbs in theiS provided with a list of predicates, whose argu-

SRL task, see ‘evaluation” below) having 403 " ments it needs to annotate. For the task addressed

9‘%”_‘ents- The _test data has 6007 sentences_com—this paper, non-consecutive parts of arguments
taining 1008 different verbs and 5130 verb N"are treated as full arguments. A match is consid-

stances (as gbove) haymg 12436 arguments. ered each time an argument in the gold standard

Our algorithm requires large amounts of datayaia matches a marked argument in our model’s
to gather argument .str_ucture an(_JI collocation patbutput. An unmatched argument is an argument
terns. For the statistics gathering phase of thghich appears in the gold standard data, and fails
clause detection algorithm, we used 4.5M seng appear in our model's output, and an exces-
tences of the NANC (Graff, 1995) corpus, bound-gjye argument is an argument which appears in

ing their length in the same manner. In orderg, model's output but does not appear in the gold

to extract collocations, we used 2M sentencegiangard. Precision and recall are defined accord-
from the British National Corpus (Burnard, 2000) ingly. We report an F-score as well (the harmonic
and about 29M sentences from the Dmoz cor;

- ey ) mean of precision and recall). We do not attempt
pus (Gabrilovich and Markovitch, 2005). Dmoz
is a web corpus obtained by crawling and clean- Shttp://www.Isi.upc.edutsriconll/soft.html#software.

' Evaluation. Evaluation is carried out using
standard SRL evaluation softward he algorithm



to identify multi-word verbs, and therefore do not baseline and the clause detection stage) with a

report the model’'s performance in identifying verbrelatively small recall degradation. In the Spanish

boundaries. experiments its F-score (23.87%) is even a bit
Since our model detects clauses as an intermddgher than that of the clause detection stage

diate product, we provide a separate evaluatio(23.34%).

of this task for the English corpus. We show re- The full two—stage algorithm (clause detection

sults on our development data. We use the stan+ collocations) should thus be used when we in-

dard parsing F-score evaluation measure. As #end to use the model’s output as training data for

gold standard in this evaluation, we mark for eachsupervised SRL engines or supervigetsiD al-

of the verbs in our development data the minimalgorithms.

clause containing it. A minimal clause is the low- In our algorithm, the initial set of potential ar-

est ancestor of the verb in the parse tree that hgguments consists of constituents in the Seginer

a syntactic label of a clause according to the golgarser’s parse tree. Consequently the fraction

standard parse of the PTB. A verb is any terminabf arguments that are also constituents (81.87%

marked by one of the POS tags of type verb acfor English and 51.83% for Spanish) poses an

cording to the gold standard POS tags of the PTBupper bound on our algorithm’s recall. Note

that the recall of the AL Cousins baseline is
5 Results 74.27% (45.75%) for English (Spanish). This

score emphasizes the baseline’s strength, and jus-

Our results are shown in Table 1. The left SeCt'on[ifies the restriction that the arguments should be

presents results on English and the right sect|or]%_th cousins of the predicate. The difference be-

prclatsenftstshreslults on dStpar;lsh. tThe tolp Ime_l_“hStS ret'\{veen these bounds for the two languages provides
SUls ot the clause detection stage alone. 1Ne ey partial explanation for the corresponding gap in
two lines list results of the full algorithm (clause the algorithm’s performance
detection + collocations) in two different settings '

. ) Figure 3 shows the precision of the collocation
of the collocation stage. The bottom line presents .
; model (on development data) as a function of the
the performance of thelA CousiNsbaseline.

« . . L amount of data it was given. We can see that
In the “Collocation Maximum Precision” set-

. , the algorithm reaches saturation at about 5M sen-
ting the parameters of the collocation stagea(d

ere generally tuned such that maximal preci tences. It achieves this precision while maintain-
T? were gel y sucn | Xl P I'ing areasonable recall (an average recall of 43.1%
sion is achieved while preserving a minimal recall

. : after saturation). The parameters of the colloca-
0 0 -

level (40% for English, 2“0/0f0r Spanlsh on the de tion model were separately tuned for each corpus
velopment data). In the “Collocation Maximum F-

» : size, and the graph displays the maximum which
score” the collocation parameters were generall

) _ Yvas obtained for each of the corpus sizes.
tuned such that the maximum possible F-score for ,
To better understand our model’'s performance,

the collocation algorithm is achieved. . .
The best | to best F . hi we performed experiments on the English cor-
€ DEsL or Close 10 best T-Score 1S aChIEVEH o 14 test how well its first stage detects clauses.
when using the clause detection algorithm alon

59 14% for Enalish. 23.34% for Spanish). N lause detection is used by our algorithm as a step
(59. o for Englsh, 25. b for Spanish). Otetowards argument identification, but it can be of

that for b?th Engh;h a(r;d _Spanlsh_ I_:-sc_ore Im'potential benefit for other purposes as well (see
provtetmhe?s are ac' |e\./f'e Vlta;r? prfhmsmn '{Fgrovegection 2). The results are 23.88% recall and 40%
ment that 1S more signiicant than the reca _egrabrecision. As in thearGID task, a random se-
dation. F-score maximization would be the aim of

tem that h tout of , Itgction of arguments would have yielded an ex-
a system that uses the output of our unsupervisg emely poor result.
ARGID by itself.

The “Collocation Maximum  Precision” g conclusion
achieves the best precision level (55.97% for
English, 21.8% for Spanish) but at the expensén this work we presented the first algorithm for ar-
of the largest recall loss. Still, it maintains a gument identification that uses neither supervised
reasonable level of recall. The “Collocation syntactic annotation nor SRL tagged data. We
Maximum F-score” is an example of a model thathave experimented on two languages: English and
provides a precision improvement (over both theSpanish. The straightforward adaptability of un-



English (Test Data) Spanish (Test Data)
Precision| Recall | F1 Precision| Recall | F1
Clause Detection 52.84 67.14 | 59.14 | 18.00 33.19 | 23.34
Collocation Maximum F—score| 54.11 63.53 | 58.44 | 20.22 29.13 | 23.87
Collocation Maximum Precision 55.97 40.02 | 46.67 || 21.80 18.47 | 20.00

[ALL Cousinsbaseline [46.71 | 74.27 | 57.35] 14.16 | 45.75 | 21.62]

Table 1:Precision, Recall and F1 score for the different stages of our alguritesults are given for English (PTB, sentences
length bounded by 10, left part of the table) and Spanish (SemEva 2p8nish SRL task, right part of the table). The results
of the collocation (second) stage are given in two configurations, Cttechaximum F-score and Collocation Maximum
Precision (see text). The upper bounds on Recall, obtained by takinggathants output by our unsupervised parser, are
81.87% for English and 51.83% for Spanish.

and 3.3M sentences for Spanish.

As this is the first work which addressed un-
supervisedaRGID, many questions remain to be
explored. Interesting issues to address include as-

[
N

[
o

IS
®

Precision

aer —=— Second Stage| | sessing the utility of the proposed methods when
aap —baseime |1 supervised parses are given, comparing our model
4 v v to systems with no access to unsupervised parses
° Kumber of Sentences (Millions) 10 and conducting evaluation using more relaxed
measures.

Figure 3:The performance of the second stage on English - Unsupervised methods for syntactic tasks have
(squares) vs. corpus size. The precision of the baseline (trian- tured bstantially in the last f N
gles) and of the first stage (circles) is displayed for referencenatured substantially in the last few years. ) 0-
The graph indicates the maximum precision obtained for eactiable examples are (Clark, 2003) for unsupervised

corpus size. The graph reaches saturation at about 5M sep(Qg tagging and (Smith and Eisner, 2006) for un-
tences. The average recall of the sampled points from there '

on is 43.1%. Experiments were performed on the Englishsufg_ervised dependency parsing. Adapting_our al-
development data. gorithm to use the output of these models, either to

reduce the little supervision our algorithm requires

supervised models to different languages is on%POS tagging) or to provide complementary syn-

. . S ic information, is an interesting challenge for

of their most appealing characteristics. The re-aCtC ormation, Is an interesting challenge fo
- . . future work.
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