Precoded Integer-Forcing Universally Achieves the MIMO Capacity to Within a Constant Gap

Or Ordentlich
Joint work with Uri Erez

September 11th, 2013
ITW, Seville, Spain
The MIMO Channel

$y = Hx + z$

- $H \in \mathbb{C}^{N \times M}$, $x \in \mathbb{C}^{M \times 1}$ and $z \sim \mathcal{CN}(0, I_N)$.
- Power constraint is $\mathbb{E}\|x\|^2 \leq M \cdot \text{SNR}$.

Or Ordentlich and Uri Erez
Precoded Integer-Forcing Equalization
The MIMO Channel

Closed-loop

\[C = \max_{Q \succ 0 : \text{trace } Q \leq M \cdot \text{SNR}} \log \det \left(I + QH^\dagger H \right) \]
The MIMO Channel

Closed-loop

\[C = \max_{Q > 0 : \text{trace } Q \leq M \cdot \text{SNR}} \log \det \left(I + QH^\dagger H \right) \]

Open-loop

Optimizing \(Q \) is impossible. Isotropic transmission \(Q = \text{SNR} \cdot I \) is a reasonable idea and gives

\[C_{\text{WI}} = \log \det \left(I + \text{SNR}H^\dagger H \right) \]
The MIMO Channel

Closed-loop

\[C = \max_{Q > 0 : \text{trace } Q \leq M \cdot \text{SNR}} \log \det \left(I + Q H^\dagger H \right) \]

Open-loop

Optimizing \(Q \) is impossible. Isotropic transmission \(Q = \text{SNR} \cdot I \) is a reasonable idea and gives

\[C_{WI} = \log \det \left(I + \text{SNR} H^\dagger H \right) \]

Definition: Compound channel

The compound MIMO channel with capacity \(C_{WI} \) consists of the set of all channel matrices

\[\mathcal{H}(C_{WI}) = \left\{ H \in \mathbb{C}^{N \times M} : \log \det \left(I + \text{SNR} H^\dagger H \right) = C_{WI} \right\} \]
How can we approach the compound channel capacity in practice?*

*practice = scalar AWGN coding & decoding + linear pre/post processing
Decoupling Decoding from Equalization

Transmitter

Encoder

\(w \)

\(x_1 \)

\(x_M \)

Channel

\(H \)

\(z_1 \)

\(y_1 \)

\(z_N \)

\(y_N \)

Receiver

Decoder

\(\hat{w} \)
Decoupling Decoding from Equalization

Split \(w \) to \(M \) messages \(w_1, \ldots, w_M \)

encode each message separately

equalize channel and decode each message separately
Closed-loop

Can transform the channel to a set of parallel SISO channels via SVD or QR

- Use standard AWGN encoders and decoders (e.g., turbo, LDPC) for the SISO channels
- Gap to capacity is the same as that of the AWGN codes
Compound channel

Much less is known...

- Can still apply QR at the receiver, but how should the transmitter allocate rates to the different streams?
- Can also apply linear equalization (ZF or MMSE), but loss can be large
The MIMO Channel - Practical Schemes

Compound channel

Much less is known...

- Can still apply QR at the receiver, but how should the transmitter allocate rates to the different streams?
- Can also apply linear equalization (ZF or MMSE), but loss can be large

Finding schemes with adequate performance guarantees for the compound channel is difficult
Compound channel

Much less is known...

- Can still apply QR at the receiver, but how should the transmitter allocate rates to the different streams?
- Can also apply linear equalization (ZF or MMSE), but loss can be large

Finding schemes with adequate performance guarantees for the compound channel is difficult

Less restricting benchmarks became common
The MIMO Channel - Practical Schemes

Compound channel

Much less is known...

- Can still apply QR at the receiver, but how should the transmitter allocate rates to the different streams?
- Can also apply linear equalization (ZF or MMSE), but loss can be large

Finding schemes with adequate performance guarantees for the compound channel is difficult

Less restricting benchmarks became common

Statistical approach
The MIMO Channel - Practical Schemes

Compound channel

Much less is known...

- Can still apply QR at the receiver, but how should the transmitter allocate rates to the different streams?
- Can also apply linear equalization (ZF or MMSE), but loss can be large

Finding schemes with adequate performance guarantees for the compound channel is difficult

Less restricting benchmarks became common

\[\mathbb{E}_H (P_e) = \mathbb{E}_{C_W I} (\mathbb{E}_H (P_e | C_W I)) \]
Diversity-multiplexing tradeoff (Zheng-Tse IT03)

- Introduced as a physical characterization of the channel
- Has become a benchmark for assessing practical coding schemes
Diversity-multiplexing tradeoff (Zheng-Tse IT03)

- Introduced as a physical characterization of the channel
- Has become a benchmark for assessing practical coding schemes

As a benchmark, DMT is powerful, but has two weaknesses:
The MIMO Channel - DMT

Diversity-multiplexing tradeoff (Zheng-Tse IT03)

- Introduced as a physical characterization of the channel
- Has become a benchmark for assessing practical coding schemes

As a benchmark, DMT is powerful, but has two weaknesses:

Weakness #1 - (lack of) robustness to channel statistics

- DMT optimality of a scheme does not translate to performance guarantees for specific channel realizations
 \[\Rightarrow\] Can design a scheme to work well only for typical channels

Or Ordentlich and Uri Erez

Precoded Integer-Forcing Equalization
The MIMO Channel - DMT

<table>
<thead>
<tr>
<th>Diversity-multiplexing tradeoff (Zheng-Tse IT03)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Introduced as a physical characterization of the channel</td>
</tr>
<tr>
<td>- Has become a benchmark for assessing practical coding schemes</td>
</tr>
</tbody>
</table>

As a benchmark, DMT is powerful, but has two weaknesses:

Weakness #1 - (lack of) robustness to channel statistics

- DMT optimality of a scheme does not translate to performance guarantees for specific channel realizations
 \[\Rightarrow\] Can design a scheme to work well only for typical channels

Solution: approximately universal codes

- Introduced by Tavildar and Vishwanath (IT06)
- DMT optimal regardless of the channel statistics
The MIMO Channel - DMT

Diversity-multiplexing tradeoff (Zheng-Tse IT03)

- Introduced as a physical characterization of the channel
- Has become a benchmark for assessing practical coding schemes

As a benchmark, DMT is powerful, but has two weaknesses:

Weakness #2 - crude measure of error probability

- For “good” channel realizations, the error probability is only required to be smaller than the outage probability
 \[\Rightarrow \] A scheme with short block length (essentially “uncoded”) can be DMT optimal
Diversity-multiplexing tradeoff (Zheng-Tse IT03)

- Introduced as a physical characterization of the channel
- Has become a benchmark for assessing practical coding schemes

As a benchmark, DMT is powerful, but has two weaknesses:

Weakness #2 - crude measure of error probability

- For “good” channel realizations, the error probability is only required to be smaller than the outage probability
 \[\Rightarrow \] A scheme with short block length (essentially “uncoded”) can be DMT optimal

When not in outage, we want communication to be reliable
This Work

A low-complexity scheme that achieves the compound MIMO capacity to within a constant gap.
This Work

A low-complexity scheme that achieves the compound MIMO capacity to within a constant gap

Constant gap-to-capacity also implies

- DMT optimality
- Constant gap to the outage capacity for any channel statistics
This Work

A low-complexity scheme that achieves the compound MIMO capacity to within a constant gap.

Constant gap-to-capacity also implies

- DMT optimality
- Constant gap to the outage capacity for any channel statistics

Main result

IF equalization with space-time coded transmission can achieve any rate

\[R < C_{WI} - \Gamma \left(\delta_{\min}(C_{\infty}^{ST}), M \right) \]

where \(\Gamma \left(\delta_{\min}(C_{\infty}^{ST}), M \right) \triangleq \log \frac{1}{\delta_{\min}(C_{\infty}^{ST})} + 3M \log(2M^2) \)
Precoded Integer-Forcing

For 2×2 Rayleigh fading with Golden code precoding

![Gap-to-capacity histogram at $C_{\text{WI}}=30$ bits](image)
Integer-Forcing: Background

Proposed by Zhan et al. ISIT2010
Antennas transmit independent streams (BLAST).
All streams are codewords from the same linear code with rate R.
Rather than equalizing \mathbf{H} to identity (as in ZF or MMSE), in IF the channel is equalized to a full-rank $\mathbf{A} \in \mathbb{Z}^M + i\mathbb{Z}^M$

$$
\mathbf{B} = \mathbf{A} \mathbf{H}^\dagger \left(\text{SNR}^{-1} \mathbf{I} + \mathbf{H} \mathbf{H}^\dagger \right)^{-1}
$$
A linear combination of codewords with integer coefficients is a codeword

\[\tilde{y}_{\text{eff}, 1} = \sum_{m=1}^{M} a_{1m} x_m + z_{\text{eff}, 1} \]

\[\tilde{y}_{\text{eff}, M} = \sum_{m=1}^{M} a_{Mm} x_m + z_{\text{eff}, M} \]

\(x_1 \in C \rightarrow v_1 \in C \rightarrow \tilde{y}_{\text{eff}, 1} \)

\(\vdots \)

\(x_M \in C \rightarrow v_M \in C \rightarrow \tilde{y}_{\text{eff}, M} \)

\(\Rightarrow \) Can decode the linear combinations - remove noise

\(\Rightarrow \) Can solve noiseless linear combinations for the transmitted streams
A linear combination of codewords with integer coefficients is a codeword

\[\Rightarrow \text{Can decode the linear combinations - remove noise} \]

\[\Rightarrow \text{Can solve noiseless linear combinations for the transmitted streams} \]
\(x_1 \in C \quad \vdots \quad x_M \in C \)

\[
\begin{align*}
\mathbf{v}_1 \in C &\quad \mathbf{A} &\quad \mathbf{v}_M \in C \\
\mathbf{y}_{\text{eff},1} &\quad = \sum_{m=1}^{M} a_{1m} x_m + z_{\text{eff},1} \\
\vdots &\quad \vdots \\
\mathbf{y}_{\text{eff},M} &\quad = \sum_{m=1}^{M} a_{Mm} x_m + z_{\text{eff},M}
\end{align*}
\]
Integer-Forcing: Background

\[\mathbf{x}_1 \in \mathcal{C} \quad \vdash \quad \mathbf{v}_1 \in \mathcal{C} \quad \Downarrow \quad \mathbf{y}_{\text{eff},1} = \sum_{m=1}^{M} a_{1m} \mathbf{x}_m + \mathbf{z}_{\text{eff},1} \]

\[\vdots \]

\[\mathbf{x}_M \in \mathcal{C} \quad \vdash \quad \mathbf{v}_M \in \mathcal{C} \quad \Downarrow \quad \mathbf{y}_{\text{eff},M} = \sum_{m=1}^{M} a_{Mm} \mathbf{x}_m + \mathbf{z}_{\text{eff},M} \]

- Effective noise \(\mathbf{z}_{\text{eff},k} \) has effective variance

\[
\sigma_{\text{eff},k}^2 \triangleq \frac{1}{n} \mathbb{E} \| \mathbf{z}_{\text{eff},k} \|^2 = \text{SNR} \mathbf{a}_{k}^\dagger \left(\mathbf{I} + \text{SNR} \mathbf{H}^\dagger \mathbf{H} \right)^{-1} \mathbf{a}_k
\]

where \(\mathbf{a}_{k}^\dagger \) is the \(k \)th row of \(\mathbf{A} \).
Integer-Forcing: Background

\[\begin{align*}
\mathbf{x}_1 & \in \mathcal{C} \\
\vdots & \\
\mathbf{x}_M & \in \mathcal{C} \\
\end{align*} \]

\[\begin{align*}
\mathbf{z}_{\text{eff},1} \\
\vdots \\
\mathbf{z}_{\text{eff},M} \\
\end{align*} \]

\[\begin{align*}
\mathbf{v}_1 & \in \mathcal{C} \\
\vdots & \\
\mathbf{v}_M & \in \mathcal{C} \\
\end{align*} \]

\[\begin{align*}
\tilde{\mathbf{y}}_{\text{eff},1} & = \sum_{m=1}^{M} a_{1m} \mathbf{x}_m + \mathbf{z}_{\text{eff},1} \\
\vdots & \\
\tilde{\mathbf{y}}_{\text{eff},M} & = \sum_{m=1}^{M} a_{Mm} \mathbf{x}_m + \mathbf{z}_{\text{eff},M} \\
\end{align*} \]

- Same codebook used over all subchannels
 \[\implies \text{the subchannel with the largest noise dictates the performance} \]

\[\begin{align*}
\text{SNR}_{\text{eff},k} & \triangleq \frac{\text{SNR}}{\sigma_{\text{eff},k}^2} = \left[a_k^\dagger \left(\mathbf{I} + \text{SNR} \mathbf{H}^\dagger \mathbf{H} \right)^{-1} a_k \right]^{-1} \\
\text{SNR}_{\text{eff}} & \triangleq \min_{k=1,\ldots,M} \text{SNR}_{\text{eff},k} = \left[\max_{k=1,\ldots,M} \left. a_k^\dagger \left(\mathbf{I} + \text{SNR} \mathbf{H}^\dagger \mathbf{H} \right)^{-1} a_k \right. \right]^{-1}
\end{align*} \]
For AWGN capacity achieving nested lattice codebook C

$$R_{IF} < M \log(SNR_{eff})$$
Integer-Forcing: Background

For AWGN capacity achieving nested lattice codebook C

$$R_{IF} < M \log(\text{SNR}_{\text{eff}})$$

To approach C_{WI} we need $\text{SNR}_{\text{eff}} \approx 2^{\frac{C_{WI}}{M}}$
Integer-Forcing: SNR_{eff}

\[
\text{SNR}_{\text{eff}} = \frac{1}{\min_{A \in \mathbb{Z}^{M \times M} + i\mathbb{Z}^{M \times M}} \max_{k=1,\ldots,M} a_k^\dagger (I + \text{SNR} H^\dagger H)^{-1} a_k}
\]
Integer-Forcing: SNR_{eff}

$$\text{SNR}_{\text{eff}} = \frac{1}{\min_{A \in \mathbb{Z}^{M \times M} + i\mathbb{Z}^{M \times M}} \max_{k=1, \ldots, M} a_k \dagger (I + \text{SNR} H \dagger H)^{-1} a_k} \quad \text{with } \det(A) \neq 0$$

- Does not give much insight to the dependence on H 😞
Integer-Forcing: SNR_{eff}

$$\text{SNR}_{\text{eff}} = \frac{1}{\min_{A \in \mathbb{Z}^{M \times M} + i \mathbb{Z}^{M \times M}} \max_{k=1, \ldots, M} a_k^\dagger (I + \text{SNR} H^\dagger H)^{-1} a_k}$$

- Does not give much insight to the dependence on H 😞

- Fortunately, using a transference theorem by Banaszczyk we can lower bound with a simple expression 😊
Theorem - \(SNR_{\text{eff}} \) bound

\[
SNR_{\text{eff}} > \frac{1}{4M^2} \min_{a \in \mathbb{Z}^M + i \mathbb{Z}^M \setminus 0} a^\dagger \left(I + SNR H^\dagger H \right) a
\]
Theorem - SNR\textsubscript{eff} bound

\[
\text{SNR}_{\text{eff}} > \frac{1}{4M^2} \min_{a \in \mathbb{Z}_M^M + i\mathbb{Z}_M^M \setminus 0} a^\dagger \left(I + \text{SNR} H^\dagger H \right) a
\]

Let

\[
\text{QAM}(L) \triangleq \{-L, -L + 1, \ldots, L - 1, L\} + i\{-L, -L + 1, \ldots, L - 1, L\},
\]

and define

\[
d_{\min}(H, L) \triangleq \min_{a \in \text{QAM}^M(L) \setminus 0} \| Ha \|
\]
Theorem - SNR\textsubscript{eff} bound

\[\text{SNR}_{\text{eff}} > \frac{1}{4M^2} \min_{a \in \mathbb{Z}^M + i\mathbb{Z}^M \setminus 0} a^\dagger \left(I + \text{SNR} H^\dagger H \right) a \]

Let

\[\text{QAM}(L) \triangleq \{-L, -L + 1, \ldots, L - 1, L\} + i \{-L, -L + 1, \ldots, L - 1, L\}, \]

and define \(d_{\text{min}}(H, L) \triangleq \min_{a \in \text{QAM}^M(L) \setminus 0} \| Ha \| \)

Corollary

\[\text{SNR}_{\text{eff}} > \frac{1}{4M^2} \min_{L=1,2,\ldots} (L^2 + \text{SNR} d_{\text{min}}^2(H, L)) \]
Integer-Forcing: SNR_{eff} via Uncoded d_{min}

$$\text{SNR}_{\text{eff}} > \frac{1}{4M^2} \min_{L=1,2,...} \left(L^2 + \text{SNR}d_{\text{min}}^2(H, L) \right)$$
Integer-Forcing: SNR_{eff} via Uncoded d_{min}

$$\text{SNR}_{\text{eff}} > \frac{1}{4M^2} \min_{L=1,2,...} \left(L^2 + \text{SNR}d_{\text{min}}^2(H, L) \right)$$

What can we guarantee for a specific channel realization?

Unfortunately nothing...
Integer-Forcing: SNR_{eff} via Uncoded d_{min}

$$\text{SNR}_{\text{eff}} > \frac{1}{4M^2} \min_{L=1,2,...} \left(L^2 + \text{SNR}d_{\text{min}}^2(H, L) \right)$$

Example for a bad channel

$$H = \begin{bmatrix} h & 0 \\ 0 & 0 \end{bmatrix}$$

- $\text{SNR}_{\text{eff}} = 1$, $R_{\text{IF}} = M \log(\text{SNR}_{\text{eff}}) = 0$.
- $C_{\text{WI}} - R_{\text{IF}}$ is unbounded (as with any BLAST scheme).
Integer-Forcing: SNR_{eff} via Uncoded d_{min}

$$SNR_{\text{eff}} > \frac{1}{4M^2} \min_{L=1,2,...} \left(L^2 + SNRd_{\text{min}}^2(H, L) \right)$$

Example for a bad channel

$$H = \begin{bmatrix} h & 0 \\ 0 & 0 \end{bmatrix}$$

- $SNR_{\text{eff}} = 1$, $R_{IF} = M \log(SNR_{\text{eff}}) = 0$.
- $C_{WI} - R_{IF}$ is unbounded (as with any BLAST scheme).

Need to precode over time for transmit diversity
Instead of transmitting M independent streams of length n over n time slots, transmit MT independent streams over nT time slots.

Before transmission, precode all MT streams using a unitary matrix $P \in \mathbb{C}^{MT \times MT}$.

Or Ordentlich and Uri Erez
Precoded Integer-Forcing Equalization
Space-Time Coding/Modulation

Or Ordentlich and Uri Erez
Precoded Integer-Forcing Equalization
Precoded Integer-Forcing

\[
\tilde{y} = \begin{bmatrix}
H & 0 & \cdots & 0 \\
0 & H & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & H
\end{bmatrix}
\]

\[P\tilde{x} + \tilde{z} = \mathcal{H}P\tilde{x} + \tilde{z} = \tilde{H}\tilde{x} + \tilde{z}\]

Can apply IF equalization to the aggregate channel [Domanovitz and Erez IEEEI12]
Precoded Integer-Forcing Equalization

\[\tilde{y} = \begin{bmatrix} \mathbf{H} & 0 & \cdots & 0 \\ 0 & \mathbf{H} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \mathbf{H} \end{bmatrix} \]

Can apply IF equalization to the aggregate channel [Domanovitz and Erez IEEE112]

But how to choose \(\mathbf{P} \) to guarantee good performance?

- Large minimum distance for QAM translates to large SNR\(_{eff} \) for IF
- \(\mathbf{P} \) should maximize \(d_{\text{min}}^2(\mathcal{H}\mathbf{P}, L) \) for the worst-case matrix \(\mathbf{H} \)
- This problem was extensively studied under the linear dispersion space-time coding framework
- “Perfect” linear dispersion codes guarantee that \(d_{\text{min}}^2(\mathcal{H}\mathbf{P}, L) \) grows appropriately with \(C_{\text{WI}} \)
Proving the Lower Bound

Theorem

If \(\mathbf{P} \) generates a perfect linear dispersion code

\[
\text{SNR}_d^2(\mathcal{H}\mathbf{P}, L) \geq \left[\delta_{\min}(C_{\infty}^{\text{ST}}) \frac{1}{M} 2^{\frac{C_{\text{WI}}}{M}} - 2M^2L^2 \right]^+
\]

for all channels matrices \(\mathbf{H} \)

Proof follows by using the properties of perfect codes and extending Tavildar and Vishwanath’s proof for the approximate universality criterion.
Proving the Lower Bound

Theorem

If \(\mathbf{P} \) generates a perfect linear dispersion code

\[
\text{SNR}_{d_{\min}^2}(\mathcal{H}\mathbf{P}, L) \geq \left[\delta_{\min}(C^{ST}) \frac{1}{M} 2 \frac{C_{\text{WI}}}{M} - 2M^2L^2 \right]^+
\]

for all channels matrices \(\mathcal{H} \)

Proof follows by using the properties of perfect codes and extending Tavildar and Vishwanath’s proof for the approximate universality criterion

Combining with the SNR_{eff} lower bound

For precoded IF with a generating matrix \(\mathbf{P} \) of a perfect ST “code”

\[
\text{SNR}_{\text{eff}} \geq \frac{1}{4M^4} \min_{L=1,2,...} \left(L^2 + \text{SNR}_{d_{\min}^2}(\mathcal{H}\mathbf{P}, L) \right)
\]

\[
\geq \frac{1}{8M^6} \delta_{\min}(C^{ST}) \frac{1}{M} 2 \frac{C_{\text{WI}}}{M}
\]
Proving the Lower Bound

Since $R_{IF} = M \log(\text{SNR}_{\text{eff}})$ we get the main result.

For precoded IF with a generating matrix \mathbf{P} of a perfect ST “code”

$$R_{IF} = M \log(\text{SNR}_{\text{eff}}) > C_{\text{WI}} - \Gamma \left(\delta_{\min}(C^{\text{ST}}), M \right)$$

where $\Gamma \left(\delta_{\min}(C^{\text{ST}}), M \right) \triangleq \log \frac{1}{\delta_{\min}(C^{\text{ST}})} + 3M \log(2M^2)$.
Since $R_{IF} = M \log(\text{SNR}_{\text{eff}})$ we get the main result

For precoded IF with a generating matrix \mathbf{P} of a perfect ST “code”

$$R_{IF} = M \log(\text{SNR}_{\text{eff}}) > C_{WI} - \Gamma \left(\delta_{\text{min}}(C^S_T), M \right)$$

where $\Gamma \left(\delta_{\text{min}}(C^S_T), M \right) \triangleq \log \frac{1}{\delta_{\text{min}}(C^S_T)} + 3M \log(2M^2)$

Thanks for your attention!