
Introduction to Machine Learning (67577)

Shai Shalev-Shwartz

School of CS and Engineering,
The Hebrew University of Jerusalem

Deep Learning

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 1 / 30

Outline

1 Gradient-Based Learning

2 Computation Graph and Backpropagation

3 Expressiveness and Sample Complexity

4 Computational Complexity

5 Deep Learning — Examples

6 Convolutional Networks

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 2 / 30

Gradient-Based Learning

Consider a hypothesis class which is parameterized by a vector θ ∈ Rd

Loss function of hθ on example (x, y) is denoted `(θ; (x, y))

The true and empirical risks are

LD(θ) = E
(x,y)∼D

[`(θ; (x, y))] , LS(θ) =
1

m

m∑
i=1

`(θ; (xi, yi))

Assumption: ` is differentiable w.r.t. θ and we can calculate
∇`(θ; (x, y)) efficiently

Minimize LD or LS with Stochastic Gradient Descent (SGD):
Start with θ(0) and update θ(t+1) = θ(t) − ηt∇`(θ(t); (x, y))
SGD converges for convex problems. It may work for non-convex
problems if we initialize “close enough” to a “good minimum”

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 3 / 30

Gradient-Based Learning

Consider a hypothesis class which is parameterized by a vector θ ∈ Rd

Loss function of hθ on example (x, y) is denoted `(θ; (x, y))

The true and empirical risks are

LD(θ) = E
(x,y)∼D

[`(θ; (x, y))] , LS(θ) =
1

m

m∑
i=1

`(θ; (xi, yi))

Assumption: ` is differentiable w.r.t. θ and we can calculate
∇`(θ; (x, y)) efficiently

Minimize LD or LS with Stochastic Gradient Descent (SGD):
Start with θ(0) and update θ(t+1) = θ(t) − ηt∇`(θ(t); (x, y))
SGD converges for convex problems. It may work for non-convex
problems if we initialize “close enough” to a “good minimum”

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 3 / 30

Gradient-Based Learning

Consider a hypothesis class which is parameterized by a vector θ ∈ Rd

Loss function of hθ on example (x, y) is denoted `(θ; (x, y))

The true and empirical risks are

LD(θ) = E
(x,y)∼D

[`(θ; (x, y))] , LS(θ) =
1

m

m∑
i=1

`(θ; (xi, yi))

Assumption: ` is differentiable w.r.t. θ and we can calculate
∇`(θ; (x, y)) efficiently

Minimize LD or LS with Stochastic Gradient Descent (SGD):
Start with θ(0) and update θ(t+1) = θ(t) − ηt∇`(θ(t); (x, y))
SGD converges for convex problems. It may work for non-convex
problems if we initialize “close enough” to a “good minimum”

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 3 / 30

Gradient-Based Learning

Consider a hypothesis class which is parameterized by a vector θ ∈ Rd

Loss function of hθ on example (x, y) is denoted `(θ; (x, y))

The true and empirical risks are

LD(θ) = E
(x,y)∼D

[`(θ; (x, y))] , LS(θ) =
1

m

m∑
i=1

`(θ; (xi, yi))

Assumption: ` is differentiable w.r.t. θ and we can calculate
∇`(θ; (x, y)) efficiently

Minimize LD or LS with Stochastic Gradient Descent (SGD):
Start with θ(0) and update θ(t+1) = θ(t) − ηt∇`(θ(t); (x, y))
SGD converges for convex problems. It may work for non-convex
problems if we initialize “close enough” to a “good minimum”

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 3 / 30

Gradient-Based Learning

Consider a hypothesis class which is parameterized by a vector θ ∈ Rd

Loss function of hθ on example (x, y) is denoted `(θ; (x, y))

The true and empirical risks are

LD(θ) = E
(x,y)∼D

[`(θ; (x, y))] , LS(θ) =
1

m

m∑
i=1

`(θ; (xi, yi))

Assumption: ` is differentiable w.r.t. θ and we can calculate
∇`(θ; (x, y)) efficiently

Minimize LD or LS with Stochastic Gradient Descent (SGD):
Start with θ(0) and update θ(t+1) = θ(t) − ηt∇`(θ(t); (x, y))

SGD converges for convex problems. It may work for non-convex
problems if we initialize “close enough” to a “good minimum”

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 3 / 30

Gradient-Based Learning

Consider a hypothesis class which is parameterized by a vector θ ∈ Rd

Loss function of hθ on example (x, y) is denoted `(θ; (x, y))

The true and empirical risks are

LD(θ) = E
(x,y)∼D

[`(θ; (x, y))] , LS(θ) =
1

m

m∑
i=1

`(θ; (xi, yi))

Assumption: ` is differentiable w.r.t. θ and we can calculate
∇`(θ; (x, y)) efficiently

Minimize LD or LS with Stochastic Gradient Descent (SGD):
Start with θ(0) and update θ(t+1) = θ(t) − ηt∇`(θ(t); (x, y))
SGD converges for convex problems. It may work for non-convex
problems if we initialize “close enough” to a “good minimum”

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 3 / 30

Outline

1 Gradient-Based Learning

2 Computation Graph and Backpropagation

3 Expressiveness and Sample Complexity

4 Computational Complexity

5 Deep Learning — Examples

6 Convolutional Networks

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 4 / 30

Computation Graph

A computation graph for a one dimensional Least Squares
(numbering of nodes corresponds to topological sort):

Variable layer: w

2

Linear layer: p = wx

3

Input layer: x

0

Subtract layer: r = p− y
4

Input layer: y

1

Squared layer: s = r2
5

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 5 / 30

Gradient Calculation using the Chain Rule

Fix x, y and write ` as a function of w by

`(w) = s(ry(px(w))) = (s ◦ ry ◦ px)(w) .

Chain rule:

`′(w) = (s ◦ ry ◦ px)′(w)
= s′(ry(px(w))) · (ry ◦ px)′(w)
= s′(ry(px(w))) · r′y(px(w)) · p′x(w)

Backpropagation: Calculate by a Forward-Backward pass over the
graph

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 6 / 30

Gradient Calculation using the Chain Rule

Fix x, y and write ` as a function of w by

`(w) = s(ry(px(w))) = (s ◦ ry ◦ px)(w) .

Chain rule:

`′(w) = (s ◦ ry ◦ px)′(w)
= s′(ry(px(w))) · (ry ◦ px)′(w)
= s′(ry(px(w))) · r′y(px(w)) · p′x(w)

Backpropagation: Calculate by a Forward-Backward pass over the
graph

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 6 / 30

Gradient Calculation using the Chain Rule

Fix x, y and write ` as a function of w by

`(w) = s(ry(px(w))) = (s ◦ ry ◦ px)(w) .

Chain rule:

`′(w) = (s ◦ ry ◦ px)′(w)
= s′(ry(px(w))) · (ry ◦ px)′(w)
= s′(ry(px(w))) · r′y(px(w)) · p′x(w)

Backpropagation: Calculate by a Forward-Backward pass over the
graph

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 6 / 30

Computation Graph — Forward

For t = 0, 1, . . . , T − 1

Layer[t]->output = Layer[t]->function(Layer[t]->inputs)

Variable layer: w

2

Linear layer: p = wx

3

Input layer: x

0

Subtract layer: r = p− y
4

Input layer: y

1

Squared layer: s = r2
5

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 7 / 30

Computation Graph — Backward

Recall: `′(w) = s′(ry(px(w))) · r′y(px(w)) · p′x(w)
Layer[T-1]->delta = 1

For t = T − 1, T − 2, . . . , 0
For i in Layer[t]->inputs:

i->delta = Layer[t]->delta *

Layer[t]->derivative(i,Layer[t]->inputs)

Variable layer: w

2

Linear layer: p = wx

3

Input layer: x

0

Subtract layer: r = p− y
4

Input layer: y

1

Squared layer: s = r2
5

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 8 / 30

Layers

Nodes in the computation graph are often called layers

Each layer is a simple differentiable function

Layers can implement multivariate functions

Example of popular layers:

Affine layer: O =WX + b 1> where W ∈ Rm,n, x ∈ Rn,c, b ∈ Rm

Unary layer: ∀i, oi = f(xi) for some f : R→ R e.g.

Sigmoid: f(x) = (1 + exp(−x))−1

Rectified Linear Unit (ReLU): f(x) = max{0, x} (discuss: derivative?)

Binary layer: ∀i, oi = f(xi, yi) for some f : R2 → R e.g.

Add layer: f(x, y) = x+ y
Hinge loss: f(x, y) = [1− yixi]+
Logistic loss: f(x, y) = log(1 + exp(−yixi))

Main message

Computation graph enables us to construct very complicated functions
from simple building blocks

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 9 / 30

Layers

Nodes in the computation graph are often called layers

Each layer is a simple differentiable function

Layers can implement multivariate functions

Example of popular layers:

Affine layer: O =WX + b 1> where W ∈ Rm,n, x ∈ Rn,c, b ∈ Rm

Unary layer: ∀i, oi = f(xi) for some f : R→ R e.g.

Sigmoid: f(x) = (1 + exp(−x))−1

Rectified Linear Unit (ReLU): f(x) = max{0, x} (discuss: derivative?)

Binary layer: ∀i, oi = f(xi, yi) for some f : R2 → R e.g.

Add layer: f(x, y) = x+ y
Hinge loss: f(x, y) = [1− yixi]+
Logistic loss: f(x, y) = log(1 + exp(−yixi))

Main message

Computation graph enables us to construct very complicated functions
from simple building blocks

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 9 / 30

Layers

Nodes in the computation graph are often called layers

Each layer is a simple differentiable function

Layers can implement multivariate functions

Example of popular layers:

Affine layer: O =WX + b 1> where W ∈ Rm,n, x ∈ Rn,c, b ∈ Rm

Unary layer: ∀i, oi = f(xi) for some f : R→ R e.g.

Sigmoid: f(x) = (1 + exp(−x))−1

Rectified Linear Unit (ReLU): f(x) = max{0, x} (discuss: derivative?)

Binary layer: ∀i, oi = f(xi, yi) for some f : R2 → R e.g.

Add layer: f(x, y) = x+ y
Hinge loss: f(x, y) = [1− yixi]+
Logistic loss: f(x, y) = log(1 + exp(−yixi))

Main message

Computation graph enables us to construct very complicated functions
from simple building blocks

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 9 / 30

Layers

Nodes in the computation graph are often called layers

Each layer is a simple differentiable function

Layers can implement multivariate functions

Example of popular layers:

Affine layer: O =WX + b 1> where W ∈ Rm,n, x ∈ Rn,c, b ∈ Rm

Unary layer: ∀i, oi = f(xi) for some f : R→ R e.g.

Sigmoid: f(x) = (1 + exp(−x))−1

Rectified Linear Unit (ReLU): f(x) = max{0, x} (discuss: derivative?)

Binary layer: ∀i, oi = f(xi, yi) for some f : R2 → R e.g.

Add layer: f(x, y) = x+ y
Hinge loss: f(x, y) = [1− yixi]+
Logistic loss: f(x, y) = log(1 + exp(−yixi))

Main message

Computation graph enables us to construct very complicated functions
from simple building blocks

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 9 / 30

Layers

Nodes in the computation graph are often called layers

Each layer is a simple differentiable function

Layers can implement multivariate functions

Example of popular layers:

Affine layer: O =WX + b 1> where W ∈ Rm,n, x ∈ Rn,c, b ∈ Rm

Unary layer: ∀i, oi = f(xi) for some f : R→ R e.g.

Sigmoid: f(x) = (1 + exp(−x))−1

Rectified Linear Unit (ReLU): f(x) = max{0, x} (discuss: derivative?)

Binary layer: ∀i, oi = f(xi, yi) for some f : R2 → R e.g.

Add layer: f(x, y) = x+ y
Hinge loss: f(x, y) = [1− yixi]+
Logistic loss: f(x, y) = log(1 + exp(−yixi))

Main message

Computation graph enables us to construct very complicated functions
from simple building blocks

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 9 / 30

Layers

Nodes in the computation graph are often called layers

Each layer is a simple differentiable function

Layers can implement multivariate functions

Example of popular layers:

Affine layer: O =WX + b 1> where W ∈ Rm,n, x ∈ Rn,c, b ∈ Rm

Unary layer: ∀i, oi = f(xi) for some f : R→ R e.g.

Sigmoid: f(x) = (1 + exp(−x))−1

Rectified Linear Unit (ReLU): f(x) = max{0, x} (discuss: derivative?)

Binary layer: ∀i, oi = f(xi, yi) for some f : R2 → R e.g.

Add layer: f(x, y) = x+ y
Hinge loss: f(x, y) = [1− yixi]+
Logistic loss: f(x, y) = log(1 + exp(−yixi))

Main message

Computation graph enables us to construct very complicated functions
from simple building blocks

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 9 / 30

Layers

Nodes in the computation graph are often called layers

Each layer is a simple differentiable function

Layers can implement multivariate functions

Example of popular layers:

Affine layer: O =WX + b 1> where W ∈ Rm,n, x ∈ Rn,c, b ∈ Rm

Unary layer: ∀i, oi = f(xi) for some f : R→ R e.g.

Sigmoid: f(x) = (1 + exp(−x))−1

Rectified Linear Unit (ReLU): f(x) = max{0, x} (discuss: derivative?)

Binary layer: ∀i, oi = f(xi, yi) for some f : R2 → R e.g.

Add layer: f(x, y) = x+ y
Hinge loss: f(x, y) = [1− yixi]+
Logistic loss: f(x, y) = log(1 + exp(−yixi))

Main message

Computation graph enables us to construct very complicated functions
from simple building blocks

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 9 / 30

Layers

Nodes in the computation graph are often called layers

Each layer is a simple differentiable function

Layers can implement multivariate functions

Example of popular layers:

Affine layer: O =WX + b 1> where W ∈ Rm,n, x ∈ Rn,c, b ∈ Rm

Unary layer: ∀i, oi = f(xi) for some f : R→ R e.g.

Sigmoid: f(x) = (1 + exp(−x))−1

Rectified Linear Unit (ReLU): f(x) = max{0, x} (discuss: derivative?)

Binary layer: ∀i, oi = f(xi, yi) for some f : R2 → R e.g.

Add layer: f(x, y) = x+ y
Hinge loss: f(x, y) = [1− yixi]+
Logistic loss: f(x, y) = log(1 + exp(−yixi))

Main message

Computation graph enables us to construct very complicated functions
from simple building blocks

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 9 / 30

Layers

Nodes in the computation graph are often called layers

Each layer is a simple differentiable function

Layers can implement multivariate functions

Example of popular layers:

Affine layer: O =WX + b 1> where W ∈ Rm,n, x ∈ Rn,c, b ∈ Rm

Unary layer: ∀i, oi = f(xi) for some f : R→ R e.g.

Sigmoid: f(x) = (1 + exp(−x))−1

Rectified Linear Unit (ReLU): f(x) = max{0, x} (discuss: derivative?)

Binary layer: ∀i, oi = f(xi, yi) for some f : R2 → R e.g.

Add layer: f(x, y) = x+ y
Hinge loss: f(x, y) = [1− yixi]+
Logistic loss: f(x, y) = log(1 + exp(−yixi))

Main message

Computation graph enables us to construct very complicated functions
from simple building blocks

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 9 / 30

Layers

Nodes in the computation graph are often called layers

Each layer is a simple differentiable function

Layers can implement multivariate functions

Example of popular layers:

Affine layer: O =WX + b 1> where W ∈ Rm,n, x ∈ Rn,c, b ∈ Rm

Unary layer: ∀i, oi = f(xi) for some f : R→ R e.g.

Sigmoid: f(x) = (1 + exp(−x))−1

Rectified Linear Unit (ReLU): f(x) = max{0, x} (discuss: derivative?)

Binary layer: ∀i, oi = f(xi, yi) for some f : R2 → R e.g.

Add layer: f(x, y) = x+ y

Hinge loss: f(x, y) = [1− yixi]+
Logistic loss: f(x, y) = log(1 + exp(−yixi))

Main message

Computation graph enables us to construct very complicated functions
from simple building blocks

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 9 / 30

Layers

Nodes in the computation graph are often called layers

Each layer is a simple differentiable function

Layers can implement multivariate functions

Example of popular layers:

Affine layer: O =WX + b 1> where W ∈ Rm,n, x ∈ Rn,c, b ∈ Rm

Unary layer: ∀i, oi = f(xi) for some f : R→ R e.g.

Sigmoid: f(x) = (1 + exp(−x))−1

Rectified Linear Unit (ReLU): f(x) = max{0, x} (discuss: derivative?)

Binary layer: ∀i, oi = f(xi, yi) for some f : R2 → R e.g.

Add layer: f(x, y) = x+ y
Hinge loss: f(x, y) = [1− yixi]+

Logistic loss: f(x, y) = log(1 + exp(−yixi))

Main message

Computation graph enables us to construct very complicated functions
from simple building blocks

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 9 / 30

Layers

Nodes in the computation graph are often called layers

Each layer is a simple differentiable function

Layers can implement multivariate functions

Example of popular layers:

Affine layer: O =WX + b 1> where W ∈ Rm,n, x ∈ Rn,c, b ∈ Rm

Unary layer: ∀i, oi = f(xi) for some f : R→ R e.g.

Sigmoid: f(x) = (1 + exp(−x))−1

Rectified Linear Unit (ReLU): f(x) = max{0, x} (discuss: derivative?)

Binary layer: ∀i, oi = f(xi, yi) for some f : R2 → R e.g.

Add layer: f(x, y) = x+ y
Hinge loss: f(x, y) = [1− yixi]+
Logistic loss: f(x, y) = log(1 + exp(−yixi))

Main message

Computation graph enables us to construct very complicated functions
from simple building blocks

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 9 / 30

Layers

Nodes in the computation graph are often called layers

Each layer is a simple differentiable function

Layers can implement multivariate functions

Example of popular layers:

Affine layer: O =WX + b 1> where W ∈ Rm,n, x ∈ Rn,c, b ∈ Rm

Unary layer: ∀i, oi = f(xi) for some f : R→ R e.g.

Sigmoid: f(x) = (1 + exp(−x))−1

Rectified Linear Unit (ReLU): f(x) = max{0, x} (discuss: derivative?)

Binary layer: ∀i, oi = f(xi, yi) for some f : R2 → R e.g.

Add layer: f(x, y) = x+ y
Hinge loss: f(x, y) = [1− yixi]+
Logistic loss: f(x, y) = log(1 + exp(−yixi))

Main message

Computation graph enables us to construct very complicated functions
from simple building blocks

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 9 / 30

Layers

Nodes in the computation graph are often called layers

Each layer is a simple differentiable function

Layers can implement multivariate functions

Example of popular layers:

Affine layer: O =WX + b 1> where W ∈ Rm,n, x ∈ Rn,c, b ∈ Rm

Unary layer: ∀i, oi = f(xi) for some f : R→ R e.g.

Sigmoid: f(x) = (1 + exp(−x))−1

Rectified Linear Unit (ReLU): f(x) = max{0, x} (discuss: derivative?)

Binary layer: ∀i, oi = f(xi, yi) for some f : R2 → R e.g.

Add layer: f(x, y) = x+ y
Hinge loss: f(x, y) = [1− yixi]+
Logistic loss: f(x, y) = log(1 + exp(−yixi))

Main message

Computation graph enables us to construct very complicated functions
from simple building blocks

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 9 / 30

Backpropgation for multivariate layers

Recall the backpropagation rule:
For i in Layer[t]->inputs:

i->delta = Layer[t]->delta *

Layer[t]->derivative(i,Layer[t]->inputs)

“delta” is now a vector (same dimension as the output of the layer)

“derivative” is the Jacobian matrix:
The Jacobian of f : Rn → Rm at x ∈ Rn, denoted Jx(f), is the
m× n matrix whose i, j element is the partial derivative of
fi : Rn → R w.r.t. its j’th variable at x.

The multiplication is matrix multiplication

The correctness of the algorithm follows from the multivariate chain
rule

Jw(f ◦ g) = Jg(w)(f)Jw(g)

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 10 / 30

Backpropgation for multivariate layers

Recall the backpropagation rule:
For i in Layer[t]->inputs:

i->delta = Layer[t]->delta *

Layer[t]->derivative(i,Layer[t]->inputs)

“delta” is now a vector (same dimension as the output of the layer)

“derivative” is the Jacobian matrix:
The Jacobian of f : Rn → Rm at x ∈ Rn, denoted Jx(f), is the
m× n matrix whose i, j element is the partial derivative of
fi : Rn → R w.r.t. its j’th variable at x.

The multiplication is matrix multiplication

The correctness of the algorithm follows from the multivariate chain
rule

Jw(f ◦ g) = Jg(w)(f)Jw(g)

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 10 / 30

Backpropgation for multivariate layers

Recall the backpropagation rule:
For i in Layer[t]->inputs:

i->delta = Layer[t]->delta *

Layer[t]->derivative(i,Layer[t]->inputs)

“delta” is now a vector (same dimension as the output of the layer)

“derivative” is the Jacobian matrix:
The Jacobian of f : Rn → Rm at x ∈ Rn, denoted Jx(f), is the
m× n matrix whose i, j element is the partial derivative of
fi : Rn → R w.r.t. its j’th variable at x.

The multiplication is matrix multiplication

The correctness of the algorithm follows from the multivariate chain
rule

Jw(f ◦ g) = Jg(w)(f)Jw(g)

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 10 / 30

Backpropgation for multivariate layers

Recall the backpropagation rule:
For i in Layer[t]->inputs:

i->delta = Layer[t]->delta *

Layer[t]->derivative(i,Layer[t]->inputs)

“delta” is now a vector (same dimension as the output of the layer)

“derivative” is the Jacobian matrix:
The Jacobian of f : Rn → Rm at x ∈ Rn, denoted Jx(f), is the
m× n matrix whose i, j element is the partial derivative of
fi : Rn → R w.r.t. its j’th variable at x.

The multiplication is matrix multiplication

The correctness of the algorithm follows from the multivariate chain
rule

Jw(f ◦ g) = Jg(w)(f)Jw(g)

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 10 / 30

Backpropgation for multivariate layers

Recall the backpropagation rule:
For i in Layer[t]->inputs:

i->delta = Layer[t]->delta *

Layer[t]->derivative(i,Layer[t]->inputs)

“delta” is now a vector (same dimension as the output of the layer)

“derivative” is the Jacobian matrix:
The Jacobian of f : Rn → Rm at x ∈ Rn, denoted Jx(f), is the
m× n matrix whose i, j element is the partial derivative of
fi : Rn → R w.r.t. its j’th variable at x.

The multiplication is matrix multiplication

The correctness of the algorithm follows from the multivariate chain
rule

Jw(f ◦ g) = Jg(w)(f)Jw(g)

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 10 / 30

Jacobian — Examples

If f : Rn → Rn is element-wise application of σ : R→ R then
Jx(f) = diag((σ′(x1), . . . , σ

′(xn))).

Let f(x,w, b) = w>x+ b for w,x ∈ Rn, b ∈ R1. Then:

Jx(f) = w> , Jw(f) = x> , Jb(f) = 1

Let f(W,x) =Wx. Then:

Jx(f) =W , JW (f) =

x> 0 · · · 0
0 x> · · · 0
...

...
. . .

...
0 0 · · · x>

 .

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 11 / 30

Jacobian — Examples

If f : Rn → Rn is element-wise application of σ : R→ R then
Jx(f) = diag((σ′(x1), . . . , σ

′(xn))).

Let f(x,w, b) = w>x+ b for w,x ∈ Rn, b ∈ R1. Then:

Jx(f) = w> , Jw(f) = x> , Jb(f) = 1

Let f(W,x) =Wx. Then:

Jx(f) =W , JW (f) =

x> 0 · · · 0
0 x> · · · 0
...

...
. . .

...
0 0 · · · x>

 .

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 11 / 30

Jacobian — Examples

If f : Rn → Rn is element-wise application of σ : R→ R then
Jx(f) = diag((σ′(x1), . . . , σ

′(xn))).

Let f(x,w, b) = w>x+ b for w,x ∈ Rn, b ∈ R1. Then:

Jx(f) = w> , Jw(f) = x> , Jb(f) = 1

Let f(W,x) =Wx. Then:

Jx(f) =W , JW (f) =

x> 0 · · · 0
0 x> · · · 0
...

...
. . .

...
0 0 · · · x>

 .

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 11 / 30

Outline

1 Gradient-Based Learning

2 Computation Graph and Backpropagation

3 Expressiveness and Sample Complexity

4 Computational Complexity

5 Deep Learning — Examples

6 Convolutional Networks

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 12 / 30

Sample Complexity

If we learn d parameters, and each one is stored in, say, 32 bits, then
the number of hypotheses in our class is at most 232d. It follows that
the sample complexity is order of d.

Other ways to improve generalization is all sort of regularization

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 13 / 30

Sample Complexity

If we learn d parameters, and each one is stored in, say, 32 bits, then
the number of hypotheses in our class is at most 232d. It follows that
the sample complexity is order of d.

Other ways to improve generalization is all sort of regularization

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 13 / 30

Expressiveness

So far in the course we considered hypotheses of the form
x 7→ w>x+ b

Now, consider the following computation graph, known as “one
hidden layer network”:

Input layer: x

0

Affine layer: a(1) =W (1)x+ b(1)
6

Variable layer: W (1)

2

Variable layer: b(1)
3

ReLU layer: h(1) = [a(1)]+

7

Affine layer: p =W (2)h(1) + b(2)
8

Variable layer: W (2)

4

Variable layer: b(2)
5

Loss layer

9

Input layer: y

1

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 14 / 30

Expressiveness of “One Hidden Layer Network”

Claim: Every Boolean function f : {±1}n → {±1} can be expressed
by a one hidden layer network.

Proof:

Show that for integer x we have sign(x) = 2([x+ 1]+ − [x]+)− 1
Show that any f can be written as f(x) = ∨i(x == ui) for some
vectors u1, . . . , uk
Show that sign(x>ui − (n− 1)) is an indicator to (x == ui)
Conclude that we can adjust the weights so that yp(x) ≥ 1 for all
examples (x, y)

Theorem: For every n, let s(n) be the minimal integer such that
there exists a one hidden layer network with s(n) hidden neurons that
implements all functions from {0, 1}n to {0, 1}. Then, s(n) is
exponential in n.

Proof: Think on the VC dimension ...

What type of functions can be implemented by small size networks?

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 15 / 30

Expressiveness of “One Hidden Layer Network”

Claim: Every Boolean function f : {±1}n → {±1} can be expressed
by a one hidden layer network.

Proof:

Show that for integer x we have sign(x) = 2([x+ 1]+ − [x]+)− 1
Show that any f can be written as f(x) = ∨i(x == ui) for some
vectors u1, . . . , uk
Show that sign(x>ui − (n− 1)) is an indicator to (x == ui)
Conclude that we can adjust the weights so that yp(x) ≥ 1 for all
examples (x, y)

Theorem: For every n, let s(n) be the minimal integer such that
there exists a one hidden layer network with s(n) hidden neurons that
implements all functions from {0, 1}n to {0, 1}. Then, s(n) is
exponential in n.

Proof: Think on the VC dimension ...

What type of functions can be implemented by small size networks?

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 15 / 30

Expressiveness of “One Hidden Layer Network”

Claim: Every Boolean function f : {±1}n → {±1} can be expressed
by a one hidden layer network.

Proof:

Show that for integer x we have sign(x) = 2([x+ 1]+ − [x]+)− 1

Show that any f can be written as f(x) = ∨i(x == ui) for some
vectors u1, . . . , uk
Show that sign(x>ui − (n− 1)) is an indicator to (x == ui)
Conclude that we can adjust the weights so that yp(x) ≥ 1 for all
examples (x, y)

Theorem: For every n, let s(n) be the minimal integer such that
there exists a one hidden layer network with s(n) hidden neurons that
implements all functions from {0, 1}n to {0, 1}. Then, s(n) is
exponential in n.

Proof: Think on the VC dimension ...

What type of functions can be implemented by small size networks?

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 15 / 30

Expressiveness of “One Hidden Layer Network”

Claim: Every Boolean function f : {±1}n → {±1} can be expressed
by a one hidden layer network.

Proof:

Show that for integer x we have sign(x) = 2([x+ 1]+ − [x]+)− 1
Show that any f can be written as f(x) = ∨i(x == ui) for some
vectors u1, . . . , uk

Show that sign(x>ui − (n− 1)) is an indicator to (x == ui)
Conclude that we can adjust the weights so that yp(x) ≥ 1 for all
examples (x, y)

Theorem: For every n, let s(n) be the minimal integer such that
there exists a one hidden layer network with s(n) hidden neurons that
implements all functions from {0, 1}n to {0, 1}. Then, s(n) is
exponential in n.

Proof: Think on the VC dimension ...

What type of functions can be implemented by small size networks?

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 15 / 30

Expressiveness of “One Hidden Layer Network”

Claim: Every Boolean function f : {±1}n → {±1} can be expressed
by a one hidden layer network.

Proof:

Show that for integer x we have sign(x) = 2([x+ 1]+ − [x]+)− 1
Show that any f can be written as f(x) = ∨i(x == ui) for some
vectors u1, . . . , uk
Show that sign(x>ui − (n− 1)) is an indicator to (x == ui)

Conclude that we can adjust the weights so that yp(x) ≥ 1 for all
examples (x, y)

Theorem: For every n, let s(n) be the minimal integer such that
there exists a one hidden layer network with s(n) hidden neurons that
implements all functions from {0, 1}n to {0, 1}. Then, s(n) is
exponential in n.

Proof: Think on the VC dimension ...

What type of functions can be implemented by small size networks?

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 15 / 30

Expressiveness of “One Hidden Layer Network”

Claim: Every Boolean function f : {±1}n → {±1} can be expressed
by a one hidden layer network.

Proof:

Show that for integer x we have sign(x) = 2([x+ 1]+ − [x]+)− 1
Show that any f can be written as f(x) = ∨i(x == ui) for some
vectors u1, . . . , uk
Show that sign(x>ui − (n− 1)) is an indicator to (x == ui)
Conclude that we can adjust the weights so that yp(x) ≥ 1 for all
examples (x, y)

Theorem: For every n, let s(n) be the minimal integer such that
there exists a one hidden layer network with s(n) hidden neurons that
implements all functions from {0, 1}n to {0, 1}. Then, s(n) is
exponential in n.

Proof: Think on the VC dimension ...

What type of functions can be implemented by small size networks?

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 15 / 30

Expressiveness of “One Hidden Layer Network”

Claim: Every Boolean function f : {±1}n → {±1} can be expressed
by a one hidden layer network.

Proof:

Show that for integer x we have sign(x) = 2([x+ 1]+ − [x]+)− 1
Show that any f can be written as f(x) = ∨i(x == ui) for some
vectors u1, . . . , uk
Show that sign(x>ui − (n− 1)) is an indicator to (x == ui)
Conclude that we can adjust the weights so that yp(x) ≥ 1 for all
examples (x, y)

Theorem: For every n, let s(n) be the minimal integer such that
there exists a one hidden layer network with s(n) hidden neurons that
implements all functions from {0, 1}n to {0, 1}. Then, s(n) is
exponential in n.

Proof: Think on the VC dimension ...

What type of functions can be implemented by small size networks?

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 15 / 30

Expressiveness of “One Hidden Layer Network”

Claim: Every Boolean function f : {±1}n → {±1} can be expressed
by a one hidden layer network.

Proof:

Show that for integer x we have sign(x) = 2([x+ 1]+ − [x]+)− 1
Show that any f can be written as f(x) = ∨i(x == ui) for some
vectors u1, . . . , uk
Show that sign(x>ui − (n− 1)) is an indicator to (x == ui)
Conclude that we can adjust the weights so that yp(x) ≥ 1 for all
examples (x, y)

Theorem: For every n, let s(n) be the minimal integer such that
there exists a one hidden layer network with s(n) hidden neurons that
implements all functions from {0, 1}n to {0, 1}. Then, s(n) is
exponential in n.

Proof: Think on the VC dimension ...

What type of functions can be implemented by small size networks?

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 15 / 30

Expressiveness of “One Hidden Layer Network”

Claim: Every Boolean function f : {±1}n → {±1} can be expressed
by a one hidden layer network.

Proof:

Show that for integer x we have sign(x) = 2([x+ 1]+ − [x]+)− 1
Show that any f can be written as f(x) = ∨i(x == ui) for some
vectors u1, . . . , uk
Show that sign(x>ui − (n− 1)) is an indicator to (x == ui)
Conclude that we can adjust the weights so that yp(x) ≥ 1 for all
examples (x, y)

Theorem: For every n, let s(n) be the minimal integer such that
there exists a one hidden layer network with s(n) hidden neurons that
implements all functions from {0, 1}n to {0, 1}. Then, s(n) is
exponential in n.

Proof: Think on the VC dimension ...

What type of functions can be implemented by small size networks?

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 15 / 30

Geometric Intuition

One hidden layer networks can express intersection of halfspaces

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 16 / 30

Geometric Intuition

Two hidden layer networks can express unions of intersection of
halfspaces

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 17 / 30

What can we express with T -depth networks ?

Theorem: Let T : N→ N and for every n, let Fn be the set of
functions that can be implemented using a Turing machine using
runtime of at most T (n). Then, there exist constants b, c ∈ R+ such
that for every n, there is a network of depth at most T and size at
most c T (n)2 + b such that it implements all functions in Fn.

Sample complexity is order of number of variables (in our case
polynomial in T)

Conclusion: A very weak notion of prior knowledge suffices — if we
only care about functions that can be implemented in time T (n), we
can use neural networks of depth T and size O(T (n)2), and the
sample complexity is also bounded by polynomial in T (n) !

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 18 / 30

What can we express with T -depth networks ?

Theorem: Let T : N→ N and for every n, let Fn be the set of
functions that can be implemented using a Turing machine using
runtime of at most T (n). Then, there exist constants b, c ∈ R+ such
that for every n, there is a network of depth at most T and size at
most c T (n)2 + b such that it implements all functions in Fn.

Sample complexity is order of number of variables (in our case
polynomial in T)

Conclusion: A very weak notion of prior knowledge suffices — if we
only care about functions that can be implemented in time T (n), we
can use neural networks of depth T and size O(T (n)2), and the
sample complexity is also bounded by polynomial in T (n) !

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 18 / 30

What can we express with T -depth networks ?

Theorem: Let T : N→ N and for every n, let Fn be the set of
functions that can be implemented using a Turing machine using
runtime of at most T (n). Then, there exist constants b, c ∈ R+ such
that for every n, there is a network of depth at most T and size at
most c T (n)2 + b such that it implements all functions in Fn.

Sample complexity is order of number of variables (in our case
polynomial in T)

Conclusion: A very weak notion of prior knowledge suffices — if we
only care about functions that can be implemented in time T (n), we
can use neural networks of depth T and size O(T (n)2), and the
sample complexity is also bounded by polynomial in T (n) !

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 18 / 30

The ultimate hypothesis class

less prior knowledge
more data

expert system

use prior knowl-
edge to con-
struct φ(x) and
learn 〈w, φ(x)〉

deep net-
works

No Free Lunch

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 19 / 30

Outline

1 Gradient-Based Learning

2 Computation Graph and Backpropagation

3 Expressiveness and Sample Complexity

4 Computational Complexity

5 Deep Learning — Examples

6 Convolutional Networks

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 20 / 30

Runtime of learning neural networks

Theorem: It is NP hard to implement the ERM rule even for one
hidden layer networks with just 4 neurons in the hidden layer.

But, maybe ERM is hard but some improper algorithm works ?

Theorem: Under some average case complexity assumption, it is hard
to learn one hidden layer networks with ω(log(d)) hidden neurons
even improperly

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 21 / 30

Runtime of learning neural networks

Theorem: It is NP hard to implement the ERM rule even for one
hidden layer networks with just 4 neurons in the hidden layer.

But, maybe ERM is hard but some improper algorithm works ?

Theorem: Under some average case complexity assumption, it is hard
to learn one hidden layer networks with ω(log(d)) hidden neurons
even improperly

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 21 / 30

Runtime of learning neural networks

Theorem: It is NP hard to implement the ERM rule even for one
hidden layer networks with just 4 neurons in the hidden layer.

But, maybe ERM is hard but some improper algorithm works ?

Theorem: Under some average case complexity assumption, it is hard
to learn one hidden layer networks with ω(log(d)) hidden neurons
even improperly

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 21 / 30

How to train neural network ?

So, neural networks can form an excellent hypothesis class, but it is
intractable to train it.

How is this different than the class of all Python programs that can
be implemented in code length of b bits ?

Main technique: Gradient-based learning (using SGD)

Not convex, no guarantees, can take a long time, but:

Often (but not always) still works fine, finds a good solution
Easier than optimizing over Python programs ...
Need to apply some tricks (initialization, learning rate, mini-batching,
architecture), and need some luck

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 22 / 30

How to train neural network ?

So, neural networks can form an excellent hypothesis class, but it is
intractable to train it.

How is this different than the class of all Python programs that can
be implemented in code length of b bits ?

Main technique: Gradient-based learning (using SGD)

Not convex, no guarantees, can take a long time, but:

Often (but not always) still works fine, finds a good solution
Easier than optimizing over Python programs ...
Need to apply some tricks (initialization, learning rate, mini-batching,
architecture), and need some luck

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 22 / 30

How to train neural network ?

So, neural networks can form an excellent hypothesis class, but it is
intractable to train it.

How is this different than the class of all Python programs that can
be implemented in code length of b bits ?

Main technique: Gradient-based learning (using SGD)

Not convex, no guarantees, can take a long time, but:

Often (but not always) still works fine, finds a good solution
Easier than optimizing over Python programs ...
Need to apply some tricks (initialization, learning rate, mini-batching,
architecture), and need some luck

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 22 / 30

How to train neural network ?

So, neural networks can form an excellent hypothesis class, but it is
intractable to train it.

How is this different than the class of all Python programs that can
be implemented in code length of b bits ?

Main technique: Gradient-based learning (using SGD)

Not convex, no guarantees, can take a long time, but:

Often (but not always) still works fine, finds a good solution
Easier than optimizing over Python programs ...
Need to apply some tricks (initialization, learning rate, mini-batching,
architecture), and need some luck

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 22 / 30

How to train neural network ?

So, neural networks can form an excellent hypothesis class, but it is
intractable to train it.

How is this different than the class of all Python programs that can
be implemented in code length of b bits ?

Main technique: Gradient-based learning (using SGD)

Not convex, no guarantees, can take a long time, but:

Often (but not always) still works fine, finds a good solution

Easier than optimizing over Python programs ...
Need to apply some tricks (initialization, learning rate, mini-batching,
architecture), and need some luck

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 22 / 30

How to train neural network ?

So, neural networks can form an excellent hypothesis class, but it is
intractable to train it.

How is this different than the class of all Python programs that can
be implemented in code length of b bits ?

Main technique: Gradient-based learning (using SGD)

Not convex, no guarantees, can take a long time, but:

Often (but not always) still works fine, finds a good solution
Easier than optimizing over Python programs ...

Need to apply some tricks (initialization, learning rate, mini-batching,
architecture), and need some luck

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 22 / 30

How to train neural network ?

So, neural networks can form an excellent hypothesis class, but it is
intractable to train it.

How is this different than the class of all Python programs that can
be implemented in code length of b bits ?

Main technique: Gradient-based learning (using SGD)

Not convex, no guarantees, can take a long time, but:

Often (but not always) still works fine, finds a good solution
Easier than optimizing over Python programs ...
Need to apply some tricks (initialization, learning rate, mini-batching,
architecture), and need some luck

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 22 / 30

Outline

1 Gradient-Based Learning

2 Computation Graph and Backpropagation

3 Expressiveness and Sample Complexity

4 Computational Complexity

5 Deep Learning — Examples

6 Convolutional Networks

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 23 / 30

The MNIST dataset

The task: Handwritten digits recognition

Input space: X = {0, 1, . . . , 255}28×28
Output space: Y = {0, 1, . . . , 9}

Multiclass categorization:

We take hypotheses of the form h : X → R|Y|
We interpret h(x) as a vector that gives scores for all the labels
The actual prediction is the label with the highest score: argmaxi hi(x)

Network architecture: x→ Affine(500) → ReLU → Affine(10).

Logistic loss for multiclass categorization:

SoftMax: ∀i, pi =
exp(hi(x))∑
j exp(hj(x))

LogLoss: If the correct label is y then the loss is

− log(py) = log
(∑

j exp(hj(x)− hi(x))
)

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 24 / 30

The MNIST dataset

The task: Handwritten digits recognition

Input space: X = {0, 1, . . . , 255}28×28

Output space: Y = {0, 1, . . . , 9}
Multiclass categorization:

We take hypotheses of the form h : X → R|Y|
We interpret h(x) as a vector that gives scores for all the labels
The actual prediction is the label with the highest score: argmaxi hi(x)

Network architecture: x→ Affine(500) → ReLU → Affine(10).

Logistic loss for multiclass categorization:

SoftMax: ∀i, pi =
exp(hi(x))∑
j exp(hj(x))

LogLoss: If the correct label is y then the loss is

− log(py) = log
(∑

j exp(hj(x)− hi(x))
)

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 24 / 30

The MNIST dataset

The task: Handwritten digits recognition

Input space: X = {0, 1, . . . , 255}28×28
Output space: Y = {0, 1, . . . , 9}

Multiclass categorization:

We take hypotheses of the form h : X → R|Y|
We interpret h(x) as a vector that gives scores for all the labels
The actual prediction is the label with the highest score: argmaxi hi(x)

Network architecture: x→ Affine(500) → ReLU → Affine(10).

Logistic loss for multiclass categorization:

SoftMax: ∀i, pi =
exp(hi(x))∑
j exp(hj(x))

LogLoss: If the correct label is y then the loss is

− log(py) = log
(∑

j exp(hj(x)− hi(x))
)

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 24 / 30

The MNIST dataset

The task: Handwritten digits recognition

Input space: X = {0, 1, . . . , 255}28×28
Output space: Y = {0, 1, . . . , 9}

Multiclass categorization:

We take hypotheses of the form h : X → R|Y|
We interpret h(x) as a vector that gives scores for all the labels
The actual prediction is the label with the highest score: argmaxi hi(x)

Network architecture: x→ Affine(500) → ReLU → Affine(10).

Logistic loss for multiclass categorization:

SoftMax: ∀i, pi =
exp(hi(x))∑
j exp(hj(x))

LogLoss: If the correct label is y then the loss is

− log(py) = log
(∑

j exp(hj(x)− hi(x))
)

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 24 / 30

The MNIST dataset

The task: Handwritten digits recognition

Input space: X = {0, 1, . . . , 255}28×28
Output space: Y = {0, 1, . . . , 9}

Multiclass categorization:

We take hypotheses of the form h : X → R|Y|

We interpret h(x) as a vector that gives scores for all the labels
The actual prediction is the label with the highest score: argmaxi hi(x)

Network architecture: x→ Affine(500) → ReLU → Affine(10).

Logistic loss for multiclass categorization:

SoftMax: ∀i, pi =
exp(hi(x))∑
j exp(hj(x))

LogLoss: If the correct label is y then the loss is

− log(py) = log
(∑

j exp(hj(x)− hi(x))
)

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 24 / 30

The MNIST dataset

The task: Handwritten digits recognition

Input space: X = {0, 1, . . . , 255}28×28
Output space: Y = {0, 1, . . . , 9}

Multiclass categorization:

We take hypotheses of the form h : X → R|Y|
We interpret h(x) as a vector that gives scores for all the labels

The actual prediction is the label with the highest score: argmaxi hi(x)

Network architecture: x→ Affine(500) → ReLU → Affine(10).

Logistic loss for multiclass categorization:

SoftMax: ∀i, pi =
exp(hi(x))∑
j exp(hj(x))

LogLoss: If the correct label is y then the loss is

− log(py) = log
(∑

j exp(hj(x)− hi(x))
)

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 24 / 30

The MNIST dataset

The task: Handwritten digits recognition

Input space: X = {0, 1, . . . , 255}28×28
Output space: Y = {0, 1, . . . , 9}

Multiclass categorization:

We take hypotheses of the form h : X → R|Y|
We interpret h(x) as a vector that gives scores for all the labels
The actual prediction is the label with the highest score: argmaxi hi(x)

Network architecture: x→ Affine(500) → ReLU → Affine(10).

Logistic loss for multiclass categorization:

SoftMax: ∀i, pi =
exp(hi(x))∑
j exp(hj(x))

LogLoss: If the correct label is y then the loss is

− log(py) = log
(∑

j exp(hj(x)− hi(x))
)

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 24 / 30

The MNIST dataset

The task: Handwritten digits recognition

Input space: X = {0, 1, . . . , 255}28×28
Output space: Y = {0, 1, . . . , 9}

Multiclass categorization:

We take hypotheses of the form h : X → R|Y|
We interpret h(x) as a vector that gives scores for all the labels
The actual prediction is the label with the highest score: argmaxi hi(x)

Network architecture: x→ Affine(500) → ReLU → Affine(10).

Logistic loss for multiclass categorization:

SoftMax: ∀i, pi =
exp(hi(x))∑
j exp(hj(x))

LogLoss: If the correct label is y then the loss is

− log(py) = log
(∑

j exp(hj(x)− hi(x))
)

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 24 / 30

The MNIST dataset

The task: Handwritten digits recognition

Input space: X = {0, 1, . . . , 255}28×28
Output space: Y = {0, 1, . . . , 9}

Multiclass categorization:

We take hypotheses of the form h : X → R|Y|
We interpret h(x) as a vector that gives scores for all the labels
The actual prediction is the label with the highest score: argmaxi hi(x)

Network architecture: x→ Affine(500) → ReLU → Affine(10).

Logistic loss for multiclass categorization:

SoftMax: ∀i, pi =
exp(hi(x))∑
j exp(hj(x))

LogLoss: If the correct label is y then the loss is

− log(py) = log
(∑

j exp(hj(x)− hi(x))
)

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 24 / 30

The MNIST dataset

The task: Handwritten digits recognition

Input space: X = {0, 1, . . . , 255}28×28
Output space: Y = {0, 1, . . . , 9}

Multiclass categorization:

We take hypotheses of the form h : X → R|Y|
We interpret h(x) as a vector that gives scores for all the labels
The actual prediction is the label with the highest score: argmaxi hi(x)

Network architecture: x→ Affine(500) → ReLU → Affine(10).

Logistic loss for multiclass categorization:

SoftMax: ∀i, pi =
exp(hi(x))∑
j exp(hj(x))

LogLoss: If the correct label is y then the loss is

− log(py) = log
(∑

j exp(hj(x)− hi(x))
)

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 24 / 30

The MNIST dataset

The task: Handwritten digits recognition

Input space: X = {0, 1, . . . , 255}28×28
Output space: Y = {0, 1, . . . , 9}

Multiclass categorization:

We take hypotheses of the form h : X → R|Y|
We interpret h(x) as a vector that gives scores for all the labels
The actual prediction is the label with the highest score: argmaxi hi(x)

Network architecture: x→ Affine(500) → ReLU → Affine(10).

Logistic loss for multiclass categorization:

SoftMax: ∀i, pi =
exp(hi(x))∑
j exp(hj(x))

LogLoss: If the correct label is y then the loss is

− log(py) = log
(∑

j exp(hj(x)− hi(x))
)

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 24 / 30

Some Training Tricks

Input normalization: divide each element of x by 255 to make sure it
is in [0, 1]

Initialization is important: One trick that works well in practice is to
initialize the bias to be zero and initialize the rows of W to be
random in [−1/

√
n, 1/

√
n]

Mini-batches: At each iteration of SGD we calculate the average loss
on k random examples for k > 1. Advantages:

Reduces the variance of the update direction (w.r.t. the full gradient),
hence converges faster
We don’t pay a lot in time because of parallel implementation

Learning rate: Choice of learning rate is important. One way is to
start with some fixed η and decrease it by 1/2 whenever the training
stops making progress.

Variants of SGD: There are plenty of variants that work better than
vanilla SGD.

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 25 / 30

Some Training Tricks

Input normalization: divide each element of x by 255 to make sure it
is in [0, 1]

Initialization is important: One trick that works well in practice is to
initialize the bias to be zero and initialize the rows of W to be
random in [−1/

√
n, 1/

√
n]

Mini-batches: At each iteration of SGD we calculate the average loss
on k random examples for k > 1. Advantages:

Reduces the variance of the update direction (w.r.t. the full gradient),
hence converges faster
We don’t pay a lot in time because of parallel implementation

Learning rate: Choice of learning rate is important. One way is to
start with some fixed η and decrease it by 1/2 whenever the training
stops making progress.

Variants of SGD: There are plenty of variants that work better than
vanilla SGD.

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 25 / 30

Some Training Tricks

Input normalization: divide each element of x by 255 to make sure it
is in [0, 1]

Initialization is important: One trick that works well in practice is to
initialize the bias to be zero and initialize the rows of W to be
random in [−1/

√
n, 1/

√
n]

Mini-batches: At each iteration of SGD we calculate the average loss
on k random examples for k > 1. Advantages:

Reduces the variance of the update direction (w.r.t. the full gradient),
hence converges faster
We don’t pay a lot in time because of parallel implementation

Learning rate: Choice of learning rate is important. One way is to
start with some fixed η and decrease it by 1/2 whenever the training
stops making progress.

Variants of SGD: There are plenty of variants that work better than
vanilla SGD.

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 25 / 30

Some Training Tricks

Input normalization: divide each element of x by 255 to make sure it
is in [0, 1]

Initialization is important: One trick that works well in practice is to
initialize the bias to be zero and initialize the rows of W to be
random in [−1/

√
n, 1/

√
n]

Mini-batches: At each iteration of SGD we calculate the average loss
on k random examples for k > 1. Advantages:

Reduces the variance of the update direction (w.r.t. the full gradient),
hence converges faster

We don’t pay a lot in time because of parallel implementation

Learning rate: Choice of learning rate is important. One way is to
start with some fixed η and decrease it by 1/2 whenever the training
stops making progress.

Variants of SGD: There are plenty of variants that work better than
vanilla SGD.

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 25 / 30

Some Training Tricks

Input normalization: divide each element of x by 255 to make sure it
is in [0, 1]

Initialization is important: One trick that works well in practice is to
initialize the bias to be zero and initialize the rows of W to be
random in [−1/

√
n, 1/

√
n]

Mini-batches: At each iteration of SGD we calculate the average loss
on k random examples for k > 1. Advantages:

Reduces the variance of the update direction (w.r.t. the full gradient),
hence converges faster
We don’t pay a lot in time because of parallel implementation

Learning rate: Choice of learning rate is important. One way is to
start with some fixed η and decrease it by 1/2 whenever the training
stops making progress.

Variants of SGD: There are plenty of variants that work better than
vanilla SGD.

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 25 / 30

Some Training Tricks

Input normalization: divide each element of x by 255 to make sure it
is in [0, 1]

Initialization is important: One trick that works well in practice is to
initialize the bias to be zero and initialize the rows of W to be
random in [−1/

√
n, 1/

√
n]

Mini-batches: At each iteration of SGD we calculate the average loss
on k random examples for k > 1. Advantages:

Reduces the variance of the update direction (w.r.t. the full gradient),
hence converges faster
We don’t pay a lot in time because of parallel implementation

Learning rate: Choice of learning rate is important. One way is to
start with some fixed η and decrease it by 1/2 whenever the training
stops making progress.

Variants of SGD: There are plenty of variants that work better than
vanilla SGD.

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 25 / 30

Some Training Tricks

Input normalization: divide each element of x by 255 to make sure it
is in [0, 1]

Initialization is important: One trick that works well in practice is to
initialize the bias to be zero and initialize the rows of W to be
random in [−1/

√
n, 1/

√
n]

Mini-batches: At each iteration of SGD we calculate the average loss
on k random examples for k > 1. Advantages:

Reduces the variance of the update direction (w.r.t. the full gradient),
hence converges faster
We don’t pay a lot in time because of parallel implementation

Learning rate: Choice of learning rate is important. One way is to
start with some fixed η and decrease it by 1/2 whenever the training
stops making progress.

Variants of SGD: There are plenty of variants that work better than
vanilla SGD.

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 25 / 30

Failures of Deep Learning

Parity of more than 30 bits

Multiplication of large numbers

Matrix inversion

...

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 26 / 30

Outline

1 Gradient-Based Learning

2 Computation Graph and Backpropagation

3 Expressiveness and Sample Complexity

4 Computational Complexity

5 Deep Learning — Examples

6 Convolutional Networks

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 27 / 30

Convolutional Networks

Convolution layer:

Input: C images
Output: C ′ images
Calculation:

O[c′, h′, w′] = b(c
′) +

C−1∑
c=0

k−1∑
h=0

k−1∑
w=0

W (c′)[c, h, w]X[c, h+ h′, w + w′]

Observe: equivalent to an Affine layer with weight sharing
Observe: can be implemented as a combination of Im2Col layer and
Affine layer

Pooling layer:

Input: Image of size H ×W
Output: Image of size (H/k)× (W/k)
Calculation: Divide input image to k × k windows and for each such
window output the maximal value (or average value)

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 28 / 30

Convolutional Networks

Convolution layer:

Input: C images

Output: C ′ images
Calculation:

O[c′, h′, w′] = b(c
′) +

C−1∑
c=0

k−1∑
h=0

k−1∑
w=0

W (c′)[c, h, w]X[c, h+ h′, w + w′]

Observe: equivalent to an Affine layer with weight sharing
Observe: can be implemented as a combination of Im2Col layer and
Affine layer

Pooling layer:

Input: Image of size H ×W
Output: Image of size (H/k)× (W/k)
Calculation: Divide input image to k × k windows and for each such
window output the maximal value (or average value)

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 28 / 30

Convolutional Networks

Convolution layer:

Input: C images
Output: C ′ images

Calculation:

O[c′, h′, w′] = b(c
′) +

C−1∑
c=0

k−1∑
h=0

k−1∑
w=0

W (c′)[c, h, w]X[c, h+ h′, w + w′]

Observe: equivalent to an Affine layer with weight sharing
Observe: can be implemented as a combination of Im2Col layer and
Affine layer

Pooling layer:

Input: Image of size H ×W
Output: Image of size (H/k)× (W/k)
Calculation: Divide input image to k × k windows and for each such
window output the maximal value (or average value)

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 28 / 30

Convolutional Networks

Convolution layer:

Input: C images
Output: C ′ images
Calculation:

O[c′, h′, w′] = b(c
′) +

C−1∑
c=0

k−1∑
h=0

k−1∑
w=0

W (c′)[c, h, w]X[c, h+ h′, w + w′]

Observe: equivalent to an Affine layer with weight sharing
Observe: can be implemented as a combination of Im2Col layer and
Affine layer

Pooling layer:

Input: Image of size H ×W
Output: Image of size (H/k)× (W/k)
Calculation: Divide input image to k × k windows and for each such
window output the maximal value (or average value)

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 28 / 30

Convolutional Networks

Convolution layer:

Input: C images
Output: C ′ images
Calculation:

O[c′, h′, w′] = b(c
′) +

C−1∑
c=0

k−1∑
h=0

k−1∑
w=0

W (c′)[c, h, w]X[c, h+ h′, w + w′]

Observe: equivalent to an Affine layer with weight sharing

Observe: can be implemented as a combination of Im2Col layer and
Affine layer

Pooling layer:

Input: Image of size H ×W
Output: Image of size (H/k)× (W/k)
Calculation: Divide input image to k × k windows and for each such
window output the maximal value (or average value)

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 28 / 30

Convolutional Networks

Convolution layer:

Input: C images
Output: C ′ images
Calculation:

O[c′, h′, w′] = b(c
′) +

C−1∑
c=0

k−1∑
h=0

k−1∑
w=0

W (c′)[c, h, w]X[c, h+ h′, w + w′]

Observe: equivalent to an Affine layer with weight sharing
Observe: can be implemented as a combination of Im2Col layer and
Affine layer

Pooling layer:

Input: Image of size H ×W
Output: Image of size (H/k)× (W/k)
Calculation: Divide input image to k × k windows and for each such
window output the maximal value (or average value)

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 28 / 30

Convolutional Networks

Convolution layer:

Input: C images
Output: C ′ images
Calculation:

O[c′, h′, w′] = b(c
′) +

C−1∑
c=0

k−1∑
h=0

k−1∑
w=0

W (c′)[c, h, w]X[c, h+ h′, w + w′]

Observe: equivalent to an Affine layer with weight sharing
Observe: can be implemented as a combination of Im2Col layer and
Affine layer

Pooling layer:

Input: Image of size H ×W
Output: Image of size (H/k)× (W/k)
Calculation: Divide input image to k × k windows and for each such
window output the maximal value (or average value)

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 28 / 30

Convolutional Networks

Convolution layer:

Input: C images
Output: C ′ images
Calculation:

O[c′, h′, w′] = b(c
′) +

C−1∑
c=0

k−1∑
h=0

k−1∑
w=0

W (c′)[c, h, w]X[c, h+ h′, w + w′]

Observe: equivalent to an Affine layer with weight sharing
Observe: can be implemented as a combination of Im2Col layer and
Affine layer

Pooling layer:

Input: Image of size H ×W

Output: Image of size (H/k)× (W/k)
Calculation: Divide input image to k × k windows and for each such
window output the maximal value (or average value)

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 28 / 30

Convolutional Networks

Convolution layer:

Input: C images
Output: C ′ images
Calculation:

O[c′, h′, w′] = b(c
′) +

C−1∑
c=0

k−1∑
h=0

k−1∑
w=0

W (c′)[c, h, w]X[c, h+ h′, w + w′]

Observe: equivalent to an Affine layer with weight sharing
Observe: can be implemented as a combination of Im2Col layer and
Affine layer

Pooling layer:

Input: Image of size H ×W
Output: Image of size (H/k)× (W/k)

Calculation: Divide input image to k × k windows and for each such
window output the maximal value (or average value)

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 28 / 30

Convolutional Networks

Convolution layer:

Input: C images
Output: C ′ images
Calculation:

O[c′, h′, w′] = b(c
′) +

C−1∑
c=0

k−1∑
h=0

k−1∑
w=0

W (c′)[c, h, w]X[c, h+ h′, w + w′]

Observe: equivalent to an Affine layer with weight sharing
Observe: can be implemented as a combination of Im2Col layer and
Affine layer

Pooling layer:

Input: Image of size H ×W
Output: Image of size (H/k)× (W/k)
Calculation: Divide input image to k × k windows and for each such
window output the maximal value (or average value)

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 28 / 30

Historical Remarks

1940s-70s:
Inspired by learning/modeling the brain (Pitts, Hebb, and others)
Perceptron Rule (Rosenblatt), Multilayer perceptron (Minksy and
Papert)
Backpropagation (Werbos 1975)

1980s – early 1990s:
Practical Back-prop (Rumelhart, Hinton et al 1986) and SGD (Bottou)
Initial empirical success

1990s-2000s:
Lost favor to implicit linear methods: SVM, Boosting

2006 –:
Regain popularity because of unsupervised pre-training (Hinton,
Bengio, LeCun, Ng, and others)
Computational advances and several new tricks allow training HUGE
networks. Empirical success leads to renewed interest
2012: Krizhevsky, Sustkever, Hinton: significant improvement of
state-of-the-art on imagenet dataset (object recognition of 1000
classes), without unsupervised pre-training

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 29 / 30

Summary

Deep Learning can be used to construct the ultimate hypothesis class

Worst-case complexity is exponential

. . . but, empirically, it works reasonably well and leads to
state-of-the-art on many real world problems

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 30 / 30

	Gradient-Based Learning
	Computation Graph and Backpropagation
	Expressiveness and Sample Complexity
	Computational Complexity
	Deep Learning — Examples
	Convolutional Networks

