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Game Board

Domain set, X : This is the set of
objects that we may wish to label.

Label set, Y: The set of possible labels.

A prediction rule, h : X → Y: used to
label future examples. This function is
called a predictor, a hypothesis, or a
classifier.

Example

X = R2 representing color
and shape of papayas.

Y = {±1} representing
“tasty” or “non-tasty”.

h(x) = 1 if x is within the
inner rectangle
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The Online Game

For t = 1, 2, . . .

Environment presents an instance xt ∈ X
Learner predicts label ŷt ∈ Y
Environment reveals true label yt ∈ Y
Learner pays 1 if ŷt 6= yt and 0 otherwise

Goal of the learner: Make few mistakes
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Mission impossible ?
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Mission impossible ?

If |X | =∞ and on each day environment shows a new xt, then the
learner can’t know its label and might always err

If |X | <∞, the learner can memorize all labels, but this doesn’t feel
like learning ...
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Prior Knowledge

Give more knowledge to the learner:

The environment produces labels by applying a target f that comes
from some hypothesis class, H ⊂ YX .
That is, H is a pre-defined set of classifiers

E.g. H is the set of all axis-aligned rectangles over some grid

, , , ...

The learner knows H (but of course doesn’t know f)

How should we learn ?

Remark: What if our prior knowledge is wrong ?

We’ll get back to this question later
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Not always helps

Let X = R, and H be thresholds:

H = {hθ : θ ∈ R}, where hθ(x) = sign(x− θ)

θ

hθ(x) = −1 hθ(x) = 1

Theorem: for every learner, exists sequence of examples which is
consistent with some f ∈ H but on which the learner will always err

Proof idea: environment will follow the bisection method

Exercise: show that it’s impossible to learn the class of axis-aligned
rectangles over the reals
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Learning Finite Classes

Assume that H is of finite size

E.g.: H is all the functions from X to Y that can be implemented
using a Python program of length at most b
E.g.: H is thresholds over a grid X = {0, 1

n ,
2
n , . . . , 1}
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Learning Finite Classes

The consistent learner

Initialize V1 = H
For t = 1, 2, . . .

Get xt
Pick some h ∈ Vt and predict ŷt = h(xt)
Get yt and update Vt+1 = {h ∈ Vt : h(xt) = yt}
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Analysis

Theorem

The consistent learner will make at most |H| − 1 mistakes

Proof.

If we err at round t, then the h ∈ Vt we used for prediction will not be in
Vt+1. Therefore, |Vt+1| ≤ |Vt| − 1.

Can we do better ?
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The Halving learner

The Halving learner

Initialize V1 = H
For t = 1, 2, . . .

Get xt
Predict Majority(h(xt) : h ∈ Vt)
Get yt and update Vt+1 = {h ∈ Vt : h(xt) = yt}
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Analysis

Theorem

The Halving learner will make at most log2(|H|) mistakes

Proof.

If we err at round t, then at least half of the functions in Vt will not be in
Vt+1. Therefore, |Vt+1| ≤ |Vt|/2.

Corollary

The Halving learner can learn the class H of all python programs of length
< b bits while making at most b mistakes.
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Powerful, but ...

1 What if the environment is not consistent with any f ∈ H ?

We’ll deal with this later

2 While the mistake bound of Halving grows with log2(|H|), the
runtime of Halving grows with |H|

This is the main reason why the course doesn’t end now ...
Learning must take computational considerations into account
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Efficient learning with structured H

Example:

Recall again the class H of thresholds over a grid X = {0, 1n , . . . , 1}
for some integer n� 1

Halving mistake bound is log(n+ 1)

A naive implementation of Halving takes Ω(n) time

How to implement Halving efficiently?
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Efficient learning with structured H

Efficient Halving for discrete thresholds

Initialize l1 = −0.5/n, r1 = 1 + 0.5/n

For t = 1, 2, . . .

Get xt ∈ {0, 1
n , . . . , 1}

Predict sign((xt − lt)− (rt − xt))
Get yt and if xt ∈ [lt, rt] update:

if yt = 1 then lt+1 = lt, rt+1 = xt − 0.5/n
if yt = −1 then lt+1 = xt + 0.5/n, rt+1 = rt

Exercise: show that the above is indeed an implementation of Halving
and that the runtime of each iteration is O(log(n))
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Halfspaces

H = {x 7→ sign(〈w,x〉+ b) : w ∈ Rd, b ∈ R}

w

−

+

−

+

Inner product: 〈w,x〉 = w>x =
∑d

i=1wixi

w is called a weight vector and b a bias

For d = 1, the class of Halfspaces is the class of thresholds

W.l.o.g., assume that xd = 1 for all examples, and then we can treat
wd as the bias and forget about b
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Using halving to learn halfspaces on a grid

Let us represent all numbers on the grid
G = {−1,−1 + 1/n, . . . , 1− 1/n, 1}
Then, |H| = |G|d = (2n+ 1)d

Therefore, Halving’s bound is at most d log(2n+ 1)

We will show an algorithm with a slightly worse mistake bound but
that can be implemented efficiently
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The Ellipsoid Learner

Recall that Halving maintains the “Version Space”, Vt, containing all
hypotheses in H which are consistent with the examples observed so
far

Each halfspace hypothesis corresponds to a vector in Gd

Instead of maintaining Vt, we will maintain an ellipsoid, Et, that
contains Vt

We will show that every time we make a mistake the volume of Et
shrinks by a factor of e−1/(2n+2)

On the other hand, we will show that the volume of Et cannot be
made too small (this is where we use the grid assumption)
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Background: Balls and Ellipsoids

Let B = {w ∈ Rd : ‖w‖2 ≤ 1} be the unit ball of Rd

Recall: ‖w‖2 = 〈w,w〉 = w>w =
∑d

i=1w
2
i

An ellipsoid is the image of a ball under an affine mapping:
given a matrix M and a vector v,

E(M,v) = {Mw + v : ‖w‖2 ≤ 1}

w

0 vM
w

+
v
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The Ellipsoid Learner

We implicitly maintain an ellipsoid: Et = E(A
1/2
t ,wt)

Start with w1 = 0, A1 = I

For t = 1, 2, . . .

Get xt

Predict ŷt = sign(w>
t xt)

Get yt
If ŷt 6= yt update:

wt+1 = wt +
yt

d+ 1

Atxt√
x>
t Atxt

At+1 =
d2

d2 − 1

(
At −

2

d+ 1

Atxtx
>
t At

x>
t Atxt

)
If ŷt = yt keep wt+1 = wt and At+1 = At
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Python code

w = zeros((d,));

A = eye(d);

M = 0; # counts mistakes

eta = d*d/(d*d-1.0);

for t in range(0,n):

yhat = sign(dot(w,X[:,t]));

if Y[t] != yhat:

M = M+1;

Ax = dot(A , X[:,t]);

xAx = dot(X[:,t] , Ax);

w = w + Y[t]/((d+1)*sqrt(xAx)) * Ax;

A = eta*( A - (2.0/((d+1.0)*xAx)) * outer(Ax,Ax) );
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Intuition

Suppose x1 = (1, 0)>, y1 = 1. Then:

w2 =

(
1/3
0

)
, A2 =

(
4/3 0
0 4/9

)

E2 is Ellipsoid of minimum volume that contains
E1 ∩ {w : y1〈w,x1〉 > 0}
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Analysis

Theorem

The Ellipsoid learner makes at most 2d(2d+ 2) log(n) mistakes.

Proof is based on two lemmas:

Lemma (Volume Reduction)

Whenever we make a mistake, Vol(Et+1) ≤ Vol(Et) e−
1

2d+2 .

Lemma (Volume can’t be too small)

For every t, Vol(Et) ≥ Vol(B) (1/n)2d

Therefore, after M mistakes:

Vol(B) (1/n)2d ≤ Vol(Et) ≤ Vol(B) e−M
1

2d+2
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Summary

The Online Learning model

Need prior knowledge

Learning finite hypothesis classes using Halving

The runtime problem

The Ellipsoid efficiently learns halfspaces (over a grid)

How did we derive the update equations?

How to prove the lemmas?

You need math for this !

details in the next slides
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Background: Balls and Ellipsoids

Recall: E(M,v) = {Mw + v : ‖w‖2 ≤ 1}
We deal with non-degenerative ellipsoids, i.e., M is invertible

SVD theorem: Every real invertible matrix M can be decomposed as
M = UDV > where U, V orthonormal and D diagonal with Di,i > 0.

Exercise: Show that E(M,v) = E(UD,v) = E(UDU>,v)

Therefore, we can assume w.l.o.g. that M = UDU> (i.e., it is
symmetric positive definite)

Exercise: Show that for such M

E(M,v) = {x : (x− v)>M−2(x− v) ≤ 1}

where M−2 = UD−2U> with (D−2)i,i = D−2i,i
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Volume Calculations

Let Vol(B) be the volume of the unit ball

Lemma: If M = UDU> is positive definite, then

Vol(E(M,v)) = det(M)Vol(B) =

(
m∏
i=1

Di,i

)
Vol(B)
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Why volume shrinks

Suppose At = UD2U>. Define x̃t = DU>xt. Then:

At+1 =
d2

d2 − 1

(
At −

2

d+ 1

Atxtx
>
t At

x>t Atxt

)
=

d2

d2 − 1
UD

(
I − 2

d+ 1

x̃tx̃t
>

‖x̃t‖2

)
DU>

By Sylvester’s determinant theorem, det(I + uv>) = 1 + 〈u,v〉.
Therefore,

det(At+1) =

(
d2

d2 − 1

)d
det(D) det

(
I − 2

d+ 1

x̃tx̃t
>

‖x̃t‖2

)
det(D)

= det(At)

(
d2

d2 − 1

)d(
1− 2

d+ 1

)
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Why volume shrinks

We obtain:

Vol(Et+1)

Vol(Et)
=

(
d2

d2 − 1

)d/2(
1− 2

d+ 1

)1/2

=

(
d2

d2 − 1

) d−1
2

· d√
(d− 1)(d+ 1)

·
√
d− 1√
d+ 1

=

(
1 +

1

d2 − 1

) d−1
2

·
(

1− 1

d+ 1

)
≤ e

d−1

2(d2−1) · e−
1

d+1 = e
− 1

2(d+1)

where we used 1 + a ≤ ea which holds for all a ∈ R.
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Why volume can’t be too small

Recall, yt〈w?,xt〉 > 0 for every t.

Since w?,xt are on the grid G, it follows that yt〈w?,xt〉 ≥ 1/n2.

Therefore, if ‖w −w?‖ < 1/n2 then

yt〈w,xt〉 = yt〈w−w?,xt〉+yt〈w?,xt〉 ≥ −‖w−w?‖‖xt‖+1/n2 > 0

Convince yourself (by induction) that Et contains the ball of radius
1/n2 centered around w?. It follows that

Vol(B) (1/n2)d = Vol(E( 1
n2 I,w

?)) ≤ Vol(Et)
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