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Clustering

One of the most widely used techniques for exploratory data analysis

Unsupervised learning: finding meaningful patterns in data
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What is Clustering ?

Intuitively: grouping a set of objects such that

similar objects end up in the same group
dissimilar objects are separated into different groups

Imprecise, possibly ambiguous, definition

Quite surprisingly, it is not at all clear how to come up with a more
rigorous definition ...
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Why is it hard to define what is clustering ?

Our intuitive objective

similar objects end up in the same group
dissimilar objects are separated into different groups

Problem I: Two contradicting objectives: Similarity is not a transitive
relation while class membership is transitive

Problem II: Lack of ground truth
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Why is it hard to define what is clustering ?

similar objects in same group dissimilar objects are separated

Shai Shalev-Shwartz (Hebrew U) IML Lecture 12 Clustering 5 / 15



Why is it hard to define what is clustering ?

similar objects in same group dissimilar objects are separated

Shai Shalev-Shwartz (Hebrew U) IML Lecture 12 Clustering 5 / 15



Why is it hard to define what is clustering ?

Lack of ground truth:
Cluster these points into two clusters.

We have two well justifiable solutions:
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A clustering model

Input: a set of elements and a distance d : X × X → R+

Output: Partition of X : X =
⋃k
i=1Ci with Ci ∩ Cj = ∅

Remarks:

Sometimes the input also contains the number of desired clusters, k.
Sometimes, the output is a dendrogram (from Greek dendron = tree,
gramma = drawing)
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Outline

1 Linkage-based Clustering Algorithms

2 The k-means family
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Linkage-based clustering

Start from the trivial clustering that has each data point as a
single-point cluster

Repeatedly merge the “closest” clusters of the previous clustering

End when the result is the trivial clustering in which all of the domain
points share one large cluster

Different linkage methods differ in how they extend the distance function d
from points to clusters:

1 Single Linkage: D(A,B) = min{d(x, y) : x ∈ A, y ∈ B}
2 Average Linkage: D(A,B) = 1

|A||B|
∑

x∈A, y∈B d(x, y)

3 Max Linkage: D(A,B) = max{d(x, y) : x ∈ A, y ∈ B}
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The output of linkage clustering is a Dendrogram
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{b, c, d, e}

{a, b, c, d, e}
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Outline

1 Linkage-based Clustering Algorithms

2 The k-means family
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Cost Minimization Clustering

Define a function, G, that takes as input (X , d) and a proposed
clustering C = (C1, . . . , Ck), and returns a quality (positive scalar)

Return the clustering C that minimizes G((X , d), C)
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The k-means objective

Gk−means((X , d), (C1, . . . , Ck)) = min
µ1,...µk∈X ′

k∑
i=1

∑
x∈Ci

d(x, µi)
2

X ⊂ X ′ (e.g., data points are in Rd)

If we define the centroid of Ci as

µi(Ci) = argmin
µ∈X ′

∑
x∈Ci

d(x, µ)2 .

Then, the k-means objective becomes

Gk−means((X , d), (C1, . . . , Ck)) =
k∑
i=1

∑
x∈Ci

d(x, µi(Ci))
2 .
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Other objectives from the k-means family

k-Medoids:

GK−medoid((X , d), (C1, . . . , Ck)) = min
µ1,...µk∈X

k∑
i=1

∑
x∈Ci

d(x, µi)
2 .

k-median:

GK−median((X , d), (C1, . . . , Ck)) = min
µ1,...µk∈X

k∑
i=1

∑
x∈Ci

d(x, µi) .
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How to solve the k-means optimization problem?

NP hard ...

A good practical heuristic is Lloyd’s algorithm

k-means

input: X ⊂ Rn ; Number of clusters k
initialize: Randomly choose initial centroids µ1, . . . ,µk
repeat until convergence
∀i ∈ [k] set Ci = {x ∈ X : i = argminj ‖x− µj‖}
(break ties in some arbitrary manner)
∀i ∈ [k] update µi =

1
|Ci|

∑
x∈Ci

x
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Summary

Clustering is a very intuitive task, but there’s no good rigorous
defintion

Linkage based family and k-means family

There are many other clustering methods: spectral clustering,
information bottleneck, ...
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