Introduction to Machine Learning (67577) Lecture 14

Shai Shalev-Shwartz

School of CS and Engineering, The Hebrew University of Jerusalem

Generative Models

Generative Models

- The Generative Approach: try to learn the distribution \mathcal{D} over the data

Generative Models

- The Generative Approach: try to learn the distribution \mathcal{D} over the data
- If we know \mathcal{D} we can predict using the Bayes optimal classifier

Generative Models

- The Generative Approach: try to learn the distribution \mathcal{D} over the data
- If we know \mathcal{D} we can predict using the Bayes optimal classifier
- Usually, it is much harder to learn \mathcal{D} than to simply learn a predictor

Generative Models

- The Generative Approach: try to learn the distribution \mathcal{D} over the data
- If we know \mathcal{D} we can predict using the Bayes optimal classifier
- Usually, it is much harder to learn \mathcal{D} than to simply learn a predictor
- However, in some situations, it is reasonable to adopt the generative learning approach:

Generative Models

- The Generative Approach: try to learn the distribution \mathcal{D} over the data
- If we know \mathcal{D} we can predict using the Bayes optimal classifier
- Usually, it is much harder to learn \mathcal{D} than to simply learn a predictor
- However, in some situations, it is reasonable to adopt the generative learning approach:
- Computational reasons

Generative Models

- The Generative Approach: try to learn the distribution \mathcal{D} over the data
- If we know \mathcal{D} we can predict using the Bayes optimal classifier
- Usually, it is much harder to learn \mathcal{D} than to simply learn a predictor
- However, in some situations, it is reasonable to adopt the generative learning approach:
- Computational reasons
- We sometimes don't have a specific task at hand

Generative Models

- The Generative Approach: try to learn the distribution \mathcal{D} over the data
- If we know \mathcal{D} we can predict using the Bayes optimal classifier
- Usually, it is much harder to learn \mathcal{D} than to simply learn a predictor
- However, in some situations, it is reasonable to adopt the generative learning approach:
- Computational reasons
- We sometimes don't have a specific task at hand
- Interpretability of the data

Outline

(1) Maximum Likelihood
(2) Naive Bayes
(3) Linear Discriminant Analysis
(4) Latent Variables and EM
(5) Bayesian Reasoning

Maximum Likelihood Estimator

- We assume as prior knowledge that the underlying distribution is parameterized by some θ

Maximum Likelihood Estimator

- We assume as prior knowledge that the underlying distribution is parameterized by some θ
- Learning the distribution corresponds to finding θ

Maximum Likelihood Estimator

- We assume as prior knowledge that the underlying distribution is parameterized by some θ
- Learning the distribution corresponds to finding θ
- Example: let $\mathcal{X}=\{0,1\}$ then the set of distributions over \mathcal{X} are parameterized by a single number $\theta \in[0,1]$ corresponding to $\mathbb{P}_{x \sim \mathcal{D}_{\theta}}[x=1]=\mathcal{D}_{\theta}(\{1\})=\theta$

Maximum Likelihood Estimator

- We assume as prior knowledge that the underlying distribution is parameterized by some θ
- Learning the distribution corresponds to finding θ
- Example: let $\mathcal{X}=\{0,1\}$ then the set of distributions over \mathcal{X} are parameterized by a single number $\theta \in[0,1]$ corresponding to $\mathbb{P}_{x \sim \mathcal{D}_{\theta}}[x=1]=\mathcal{D}_{\theta}(\{1\})=\theta$
- The goal is to learn θ from a sequence of i.i.d. examples $S=\left(x_{1}, \ldots, x_{m}\right) \sim \mathcal{D}_{\theta}^{m}$

Maximum Likelihood Estimator

- Likelihood: The likelihood of S, assuming the distribution is \mathcal{D}_{θ}, is defined to be

$$
\mathcal{D}_{\theta}^{m}(\{S\})=\prod_{i=1}^{m} \mathcal{D}_{\theta}\left(\left\{x_{i}\right\}\right)=\prod_{i=1}^{m} \underset{X \sim \mathcal{D}_{\theta}}{\mathbb{P}}\left[X=x_{i}\right]
$$

Maximum Likelihood Estimator

- Likelihood: The likelihood of S, assuming the distribution is \mathcal{D}_{θ}, is defined to be

$$
\mathcal{D}_{\theta}^{m}(\{S\})=\prod_{i=1}^{m} \mathcal{D}_{\theta}\left(\left\{x_{i}\right\}\right)=\prod_{i=1}^{m} \underset{X \sim \mathcal{D}_{\theta}}{\mathbb{P}}\left[X=x_{i}\right]
$$

- Log-Likelihood: it is convenient to denote

$$
L(S ; \theta)=\log \left(\mathcal{D}_{\theta}^{m}(\{S\})\right)=\sum_{i=1}^{m} \log \left(\underset{X \sim \mathcal{D}_{\theta}}{\mathbb{P}}\left[X=x_{i}\right]\right)
$$

Maximum Likelihood Estimator

- Likelihood: The likelihood of S, assuming the distribution is \mathcal{D}_{θ}, is defined to be

$$
\mathcal{D}_{\theta}^{m}(\{S\})=\prod_{i=1}^{m} \mathcal{D}_{\theta}\left(\left\{x_{i}\right\}\right)=\prod_{i=1}^{m} \underset{X \sim \mathcal{D}_{\theta}}{\mathbb{P}}\left[X=x_{i}\right]
$$

- Log-Likelihood: it is convenient to denote

$$
L(S ; \theta)=\log \left(\mathcal{D}_{\theta}^{m}(\{S\})\right)=\sum_{i=1}^{m} \log \left(\underset{X \sim \mathcal{D}_{\theta}}{\mathbb{P}}\left[X=x_{i}\right]\right)
$$

- Maximum Likelihood Estimator (MLE): estimate θ based on S according to

$$
\hat{\theta}(S)=\underset{\theta}{\operatorname{argmax}} L(S ; \theta)
$$

Maximum Likelihood Estimator for Bernoulli variables

- Suppose $\mathcal{X}=\{0,1\}, \mathcal{D}_{\theta}$ is the distribution s.t. $P_{x \sim \mathcal{D}_{\theta}}[x=1]=\theta$

Maximum Likelihood Estimator for Bernoulli variables

- Suppose $\mathcal{X}=\{0,1\}, \mathcal{D}_{\theta}$ is the distribution s.t. $P_{x \sim \mathcal{D}_{\theta}}[x=1]=\theta$
- The log-likelihood function:

$$
L(S ; \theta)=\log (\theta) \cdot\left|\left\{i: x_{i}=1\right\}\right|+\log (1-\theta) \cdot\left|\left\{i: x_{i}=0\right\}\right|
$$

Maximum Likelihood Estimator for Bernoulli variables

- Suppose $\mathcal{X}=\{0,1\}, \mathcal{D}_{\theta}$ is the distribution s.t. $P_{x \sim \mathcal{D}_{\theta}}[x=1]=\theta$
- The log-likelihood function:

$$
L(S ; \theta)=\log (\theta) \cdot\left|\left\{i: x_{i}=1\right\}\right|+\log (1-\theta) \cdot\left|\left\{i: x_{i}=0\right\}\right|
$$

- Maximizing w.r.t. θ gives the ML estimator. Taking derivative w.r.t. θ and comparing to zero gives:

$$
\frac{\left|\left\{i: x_{i}=1\right\}\right|}{\hat{\theta}}-\frac{\left|\left\{i: x_{i}=0\right\}\right|}{1-\hat{\theta}}=0 \Rightarrow \hat{\theta}=\frac{\left|\left\{i: x_{i}=1\right\}\right|}{m}
$$

Maximum Likelihood Estimator for Bernoulli variables

- Suppose $\mathcal{X}=\{0,1\}, \mathcal{D}_{\theta}$ is the distribution s.t. $P_{x \sim \mathcal{D}_{\theta}}[x=1]=\theta$
- The log-likelihood function:

$$
L(S ; \theta)=\log (\theta) \cdot\left|\left\{i: x_{i}=1\right\}\right|+\log (1-\theta) \cdot\left|\left\{i: x_{i}=0\right\}\right|
$$

- Maximizing w.r.t. θ gives the ML estimator. Taking derivative w.r.t. θ and comparing to zero gives:

$$
\frac{\left|\left\{i: x_{i}=1\right\}\right|}{\hat{\theta}}-\frac{\left|\left\{i: x_{i}=0\right\}\right|}{1-\hat{\theta}}=0 \Rightarrow \hat{\theta}=\frac{\left|\left\{i: x_{i}=1\right\}\right|}{m}
$$

- That is, $\hat{\theta}$ is the average number of ones in S

Maximum Likelihood for Continuous Variables

- Example: $\mathcal{X}=[0,1]$ and \mathcal{D}_{θ} is the uniform distribution. Then, $\mathcal{D}_{\theta}(\{x\})=0$ for all x so $L(S ; \theta)=-\infty \ldots$

Maximum Likelihood for Continuous Variables

- Example: $\mathcal{X}=[0,1]$ and \mathcal{D}_{θ} is the uniform distribution. Then, $\mathcal{D}_{\theta}(\{x\})=0$ for all x so $L(S ; \theta)=-\infty \ldots$
- To overcome the problem, we define L using the density distribution:

$$
L(S ; \theta)=\sum_{i=1}^{m} \log \left(\mathcal{P}_{x \sim \mathcal{D}_{\theta}}\left[x=x_{i}\right]\right)
$$

Maximum Likelihood for Continuous Variables

- Example: $\mathcal{X}=[0,1]$ and \mathcal{D}_{θ} is the uniform distribution. Then, $\mathcal{D}_{\theta}(\{x\})=0$ for all x so $L(S ; \theta)=-\infty \ldots$
- To overcome the problem, we define L using the density distribution:

$$
L(S ; \theta)=\sum_{i=1}^{m} \log \left(\mathcal{P}_{x \sim \mathcal{D}_{\theta}}\left[x=x_{i}\right]\right)
$$

- E.g., for Gaussian distribution, with $\theta=(\mu, \sigma)$,

$$
\mathcal{P}_{x \sim \mathcal{D}_{\theta}}\left(x_{i}\right)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}\right)
$$

and

$$
L(S ; \theta)=-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{m}\left(x_{i}-\mu\right)^{2}-m \log (\sigma \sqrt{2 \pi}) .
$$

Maximum Likelihood for Continuous Variables

- Example: $\mathcal{X}=[0,1]$ and \mathcal{D}_{θ} is the uniform distribution. Then, $\mathcal{D}_{\theta}(\{x\})=0$ for all x so $L(S ; \theta)=-\infty \ldots$
- To overcome the problem, we define L using the density distribution:

$$
L(S ; \theta)=\sum_{i=1}^{m} \log \left(\mathcal{P}_{x \sim \mathcal{D}_{\theta}}\left[x=x_{i}\right]\right)
$$

- E.g., for Gaussian distribution, with $\theta=(\mu, \sigma)$,

$$
\mathcal{P}_{x \sim \mathcal{D}_{\theta}}\left(x_{i}\right)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}\right)
$$

and

$$
L(S ; \theta)=-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{m}\left(x_{i}-\mu\right)^{2}-m \log (\sigma \sqrt{2 \pi})
$$

- MLE becomes: $\hat{\mu}=\frac{1}{m} \sum_{i=1}^{m} x_{i}$ and $\hat{\sigma}=\sqrt{\frac{1}{m} \sum_{i=1}^{m}\left(x_{i}-\hat{\mu}\right)^{2}}$

Outline

(1) Maximum Likelihood

(2) Naive Bayes

(3) Linear Discriminant Analysis

(4) Latent Variables and EM
(5) Bayesian Reasoning

Naive Bayes

- A classical demonstration of how generative assumptions and parameter estimations simplify the learning process

Naive Bayes

- A classical demonstration of how generative assumptions and parameter estimations simplify the learning process
- Goal: learn function $h:\{0,1\}^{d} \rightarrow\{0,1\}$

Naive Bayes

- A classical demonstration of how generative assumptions and parameter estimations simplify the learning process
- Goal: learn function $h:\{0,1\}^{d} \rightarrow\{0,1\}$
- Bayes optimal classifier:

$$
h_{\text {Bayes }}(\mathbf{x})=\underset{y \in\{0,1\}}{\operatorname{argmax}} \mathcal{P}[Y=y \mid X=\mathbf{x}] .
$$

Naive Bayes

- A classical demonstration of how generative assumptions and parameter estimations simplify the learning process
- Goal: learn function $h:\{0,1\}^{d} \rightarrow\{0,1\}$
- Bayes optimal classifier:

$$
h_{\text {Bayes }}(\mathbf{x})=\underset{y \in\{0,1\}}{\operatorname{argmax}} \mathcal{P}[Y=y \mid X=\mathbf{x}] .
$$

- Need 2^{d} parameters for describing $\mathcal{P}[Y=y \mid X=\mathbf{x}]$ for every $\mathbf{x} \in\{0,1\}^{d}$

Naive Bayes

- A classical demonstration of how generative assumptions and parameter estimations simplify the learning process
- Goal: learn function $h:\{0,1\}^{d} \rightarrow\{0,1\}$
- Bayes optimal classifier:

$$
h_{\text {Bayes }}(\mathbf{x})=\underset{\sim \in\{0,1}{\operatorname{argmax}} \mathcal{P}[Y=y \mid X=\mathbf{x}]
$$

- Need 2^{d} parameters for describing $\mathcal{P}[Y=y \mid X=\mathbf{x}]$ for every $\mathbf{x} \in\{0,1\}^{d}$
- Naive generative assumption: features are independent given the label:

$$
\mathcal{P}[X=\mathbf{x} \mid Y=y]=\prod_{i=1}^{d} \mathcal{P}\left[X_{i}=x_{i} \mid Y=y\right]
$$

Naive Bayes

- With this (rather naive) assumption and using Bayes rule, the Bayes optimal classifier can be further simplified:

$$
\begin{aligned}
h_{\text {Bayes }}(\mathbf{x}) & =\underset{y \in\{0,1\}}{\operatorname{argmax}} \mathcal{P}[Y=y \mid X=\mathbf{x}] \\
& =\underset{y \in\{0,1\}}{\operatorname{argmax}} \mathcal{P}[Y=y] \mathcal{P}[X=\mathbf{x} \mid Y=y] \\
& =\underset{y \in\{0,1\}}{\operatorname{argmax}} \mathcal{P}[Y=y] \prod_{i=1}^{d} \mathcal{P}\left[X_{i}=x_{i} \mid Y=y\right]
\end{aligned}
$$

Naive Bayes

- With this (rather naive) assumption and using Bayes rule, the Bayes optimal classifier can be further simplified:

$$
\begin{aligned}
h_{\text {Bayes }}(\mathbf{x}) & =\underset{y \in\{0,1\}}{\operatorname{argmax}} \mathcal{P}[Y=y \mid X=\mathbf{x}] \\
& =\underset{y \in\{0,1\}}{\operatorname{argmax}} \mathcal{P}[Y=y] \mathcal{P}[X=\mathbf{x} \mid Y=y] \\
& =\underset{y \in\{0,1\}}{\operatorname{argmax}} \mathcal{P}[Y=y] \prod_{i=1}^{d} \mathcal{P}\left[X_{i}=x_{i} \mid Y=y\right]
\end{aligned}
$$

- Now, number of parameters to estimate is $2 d+1$

Naive Bayes

- With this (rather naive) assumption and using Bayes rule, the Bayes optimal classifier can be further simplified:

$$
\begin{aligned}
h_{\text {Bayes }}(\mathbf{x}) & =\underset{y \in\{0,1\}}{\operatorname{argmax}} \mathcal{P}[Y=y \mid X=\mathbf{x}] \\
& =\underset{y \in\{0,1\}}{\operatorname{argmax}} \mathcal{P}[Y=y] \mathcal{P}[X=\mathbf{x} \mid Y=y] \\
& =\underset{y \in\{0,1\}}{\operatorname{argmax}} \mathcal{P}[Y=y] \prod_{i=1}^{d} \mathcal{P}\left[X_{i}=x_{i} \mid Y=y\right]
\end{aligned}
$$

- Now, number of parameters to estimate is $2 d+1$
- Reduces both runtime and sample complexity

Outline

(1) Maximum Likelihood

(2) Naive Bayes

(3) Linear Discriminant Analysis

4. Latent Variables and EM

(5) Bayesian Reasoning

Linear Discriminant Analysis

- Another demonstration of how generative assumptions simplify the learning process

Linear Discriminant Analysis

- Another demonstration of how generative assumptions simplify the learning process
- Goal: learn $h: \mathbb{R}^{d} \rightarrow\{0,1\}$

Linear Discriminant Analysis

- Another demonstration of how generative assumptions simplify the learning process
- Goal: learn $h: \mathbb{R}^{d} \rightarrow\{0,1\}$
- The generative assumption: y is generated based on $\mathcal{P}[Y=1]=\mathcal{P}[Y=0]=1 / 2$ and given $y, \mathbf{x} \sim \mathbb{N}\left(\boldsymbol{\mu}_{y}, \Sigma\right):$

$$
\mathcal{P}[X=\mathbf{x} \mid Y=y]=\frac{1}{(2 \pi)^{d / 2}|\Sigma|^{1 / 2}} \exp \left(-\frac{1}{2}\left(\mathbf{x}-\boldsymbol{\mu}_{y}\right)^{T} \Sigma^{-1}\left(\mathbf{x}-\boldsymbol{\mu}_{y}\right)\right)
$$

Linear Discriminant Analysis

- Another demonstration of how generative assumptions simplify the learning process
- Goal: learn $h: \mathbb{R}^{d} \rightarrow\{0,1\}$
- The generative assumption: y is generated based on $\mathcal{P}[Y=1]=\mathcal{P}[Y=0]=1 / 2$ and given $y, \mathbf{x} \sim \mathbb{N}\left(\boldsymbol{\mu}_{y}, \Sigma\right):$

$$
\mathcal{P}[X=\mathbf{x} \mid Y=y]=\frac{1}{(2 \pi)^{d / 2}|\Sigma|^{1 / 2}} \exp \left(-\frac{1}{2}\left(\mathbf{x}-\boldsymbol{\mu}_{y}\right)^{T} \Sigma^{-1}\left(\mathbf{x}-\boldsymbol{\mu}_{y}\right)\right)
$$

- Bayes rule:

$$
h_{\text {Bayes }}(\mathbf{x})=\underset{y \in\{0,1\}}{\operatorname{argmax}} \mathcal{P}[Y=y] \mathcal{P}[X=\mathbf{x} \mid Y=y]
$$

Linear Discriminant Analysis

- Another demonstration of how generative assumptions simplify the learning process
- Goal: learn $h: \mathbb{R}^{d} \rightarrow\{0,1\}$
- The generative assumption: y is generated based on $\mathcal{P}[Y=1]=\mathcal{P}[Y=0]=1 / 2$ and given $y, \mathbf{x} \sim \mathbb{N}\left(\boldsymbol{\mu}_{y}, \Sigma\right):$

$$
\mathcal{P}[X=\mathbf{x} \mid Y=y]=\frac{1}{(2 \pi)^{d / 2}|\Sigma|^{1 / 2}} \exp \left(-\frac{1}{2}\left(\mathbf{x}-\boldsymbol{\mu}_{y}\right)^{T} \Sigma^{-1}\left(\mathbf{x}-\boldsymbol{\mu}_{y}\right)\right)
$$

- Bayes rule:

$$
h_{\text {Bayes }}(\mathbf{x})=\underset{y \in\{0,1\}}{\operatorname{argmax}} \mathcal{P}[Y=y] \mathcal{P}[X=\mathbf{x} \mid Y=y]
$$

- This means we will predict $h_{\text {Bayes }}(\mathbf{x})=1$ iff

$$
\frac{1}{2}\left(\mathbf{x}-\boldsymbol{\mu}_{0}\right)^{T} \Sigma^{-1}\left(\mathbf{x}-\boldsymbol{\mu}_{0}\right)-\frac{1}{2}\left(\mathbf{x}-\boldsymbol{\mu}_{1}\right)^{T} \Sigma^{-1}\left(\mathbf{x}-\boldsymbol{\mu}_{1}\right)>0
$$

Linear Discriminant Analysis

- Equivalent to $\langle\mathbf{w}, \mathbf{x}\rangle+b>0$ where

$$
\mathbf{w}=\left(\boldsymbol{\mu}_{1}-\boldsymbol{\mu}_{0}\right)^{T} \Sigma^{-1} \quad \text { and } \quad b=\frac{1}{2}\left(\boldsymbol{\mu}_{0}^{T} \Sigma^{-1} \boldsymbol{\mu}_{0}-\boldsymbol{\mu}_{1}^{T} \Sigma^{-1} \boldsymbol{\mu}_{1}\right)
$$

Linear Discriminant Analysis

- Equivalent to $\langle\mathbf{w}, \mathbf{x}\rangle+b>0$ where

$$
\mathbf{w}=\left(\boldsymbol{\mu}_{1}-\boldsymbol{\mu}_{0}\right)^{T} \Sigma^{-1} \quad \text { and } \quad b=\frac{1}{2}\left(\boldsymbol{\mu}_{0}^{T} \Sigma^{-1} \boldsymbol{\mu}_{0}-\boldsymbol{\mu}_{1}^{T} \Sigma^{-1} \boldsymbol{\mu}_{1}\right)
$$

- That is, Bayes optimal is a halfspace in this case

Linear Discriminant Analysis

- Equivalent to $\langle\mathbf{w}, \mathbf{x}\rangle+b>0$ where

$$
\mathbf{w}=\left(\boldsymbol{\mu}_{1}-\boldsymbol{\mu}_{0}\right)^{T} \Sigma^{-1} \quad \text { and } \quad b=\frac{1}{2}\left(\boldsymbol{\mu}_{0}^{T} \Sigma^{-1} \boldsymbol{\mu}_{0}-\boldsymbol{\mu}_{1}^{T} \Sigma^{-1} \boldsymbol{\mu}_{1}\right)
$$

- That is, Bayes optimal is a halfspace in this case
- But, instead of learning the halfspace directly, we'll learn $\boldsymbol{\mu}_{0}, \boldsymbol{\mu}_{1}, \Sigma$ using maximum likelihood.

Outline

(1) Maximum Likelihood

(2) Naive Bayes
(3) Linear Discriminant Analysis
(4) Latent Variables and EM
(5) Bayesian Reasoning

Latent Variables

- Sometimes, it is convenient to express the distribution over \mathcal{X} using latent random variables

Latent Variables

- Sometimes, it is convenient to express the distribution over \mathcal{X} using latent random variables
- Mixture of Gaussians: Each $\mathbf{x} \in \mathbb{R}^{d}$ is generated by first selecting a random y from $[k]$, then choose \mathbf{x} according to $N\left(\boldsymbol{\mu}_{y}, \Sigma_{y}\right)$

Mixture of Gaussians

- Each $\mathbf{x} \in \mathbb{R}^{d}$ is generated by first selecting a random y from $[k]$, then choose \mathbf{x} according to $N\left(\boldsymbol{\mu}_{y}, \Sigma_{y}\right)$
- The density can be written as:

$$
\begin{aligned}
\mathcal{P}[X=\mathbf{x}] & =\sum_{y=1}^{k} \mathcal{P}[Y=y] \mathcal{P}[X=\mathbf{x} \mid Y=y] \\
& =\sum_{y=1}^{k} c_{y} \frac{1}{(2 \pi)^{d / 2}\left|\Sigma_{y}\right|^{1 / 2}} \exp \left(-\frac{1}{2}\left(\mathbf{x}-\boldsymbol{\mu}_{y}\right)^{T} \Sigma_{y}^{-1}\left(\mathbf{x}-\boldsymbol{\mu}_{y}\right)\right)
\end{aligned}
$$

- Note: Y is a hidden variable that we do not observe in the data. It is just used to simplify the parametric description of the distribution

Latent Variables

- More generally,

$$
\log \left(\mathcal{P}_{\boldsymbol{\theta}}[X=\mathbf{x}]\right)=\log \left(\sum_{y=1}^{k} \mathcal{P}_{\boldsymbol{\theta}}[X=\mathbf{x}, Y=y]\right)
$$

Latent Variables

- More generally,

$$
\log \left(\mathcal{P}_{\boldsymbol{\theta}}[X=\mathbf{x}]\right)=\log \left(\sum_{y=1}^{k} \mathcal{P}_{\boldsymbol{\theta}}[X=\mathbf{x}, Y=y]\right)
$$

- Maximum Likelihood:

$$
\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{i=1}^{m} \log \left(\sum_{y=1}^{k} \mathcal{P}_{\boldsymbol{\theta}}\left[X=\mathbf{x}_{i}, Y=y\right]\right)
$$

Latent Variables

- More generally,

$$
\log \left(\mathcal{P}_{\boldsymbol{\theta}}[X=\mathbf{x}]\right)=\log \left(\sum_{y=1}^{k} \mathcal{P}_{\boldsymbol{\theta}}[X=\mathbf{x}, Y=y]\right)
$$

- Maximum Likelihood:

$$
\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{i=1}^{m} \log \left(\sum_{y=1}^{k} \mathcal{P}_{\boldsymbol{\theta}}\left[X=\mathbf{x}_{i}, Y=y\right]\right) .
$$

- In many cases, the summation inside the log makes the above optimization problem computationally hard

Latent Variables

- More generally,

$$
\log \left(\mathcal{P}_{\boldsymbol{\theta}}[X=\mathbf{x}]\right)=\log \left(\sum_{y=1}^{k} \mathcal{P}_{\boldsymbol{\theta}}[X=\mathbf{x}, Y=y]\right)
$$

- Maximum Likelihood:

$$
\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{i=1}^{m} \log \left(\sum_{y=1}^{k} \mathcal{P}_{\boldsymbol{\theta}}\left[X=\mathbf{x}_{i}, Y=y\right]\right) .
$$

- In many cases, the summation inside the log makes the above optimization problem computationally hard
- A popular heuristic: Expectation-Maximization (EM), due to Dempster, Laird and Rubin

Expectation-Maximization (EM)

- Designed for cases in which, had we known the values of the latent variables Y, then the maximum likelihood optimization problem would have been tractable.

Expectation-Maximization (EM)

- Designed for cases in which, had we known the values of the latent variables Y, then the maximum likelihood optimization problem would have been tractable.
- Precisely, define the following function over $m \times k$ matrices and the set of parameters $\boldsymbol{\theta}$:

$$
F(Q, \boldsymbol{\theta})=\sum_{i=1}^{m} \sum_{y=1}^{k} Q_{i, y} \log \left(\mathcal{P}_{\boldsymbol{\theta}}\left[X=\mathbf{x}_{i}, Y=y\right]\right)
$$

Expectation-Maximization (EM)

- Designed for cases in which, had we known the values of the latent variables Y, then the maximum likelihood optimization problem would have been tractable.
- Precisely, define the following function over $m \times k$ matrices and the set of parameters $\boldsymbol{\theta}$:

$$
F(Q, \boldsymbol{\theta})=\sum_{i=1}^{m} \sum_{y=1}^{k} Q_{i, y} \log \left(\mathcal{P}_{\boldsymbol{\theta}}\left[X=\mathbf{x}_{i}, Y=y\right]\right)
$$

- Interpret $F(Q, \boldsymbol{\theta})$ as the expected log-likelihood of $\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{m}, y_{m}\right)$

Expectation-Maximization (EM)

- Designed for cases in which, had we known the values of the latent variables Y, then the maximum likelihood optimization problem would have been tractable.
- Precisely, define the following function over $m \times k$ matrices and the set of parameters $\boldsymbol{\theta}$:

$$
F(Q, \boldsymbol{\theta})=\sum_{i=1}^{m} \sum_{y=1}^{k} Q_{i, y} \log \left(\mathcal{P}_{\boldsymbol{\theta}}\left[X=\mathbf{x}_{i}, Y=y\right]\right)
$$

- Interpret $F(Q, \boldsymbol{\theta})$ as the expected log-likelihood of $\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{m}, y_{m}\right)$
- Assumption: For any matrix $Q \in[0,1]^{m, k}$, such that each row of Q sums to 1 , the optimization problem $\operatorname{argmax}_{\boldsymbol{\theta}} F(Q, \boldsymbol{\theta})$ is tractable.

Expectation-Maximization (EM)

- "chicken and egg" problem: Had we known Q, easy to find $\boldsymbol{\theta}$. Had we known $\boldsymbol{\theta}$, we can set $Q_{i, y}=\mathcal{P}_{\boldsymbol{\theta}}\left[Y=y \mid X=\mathbf{x}_{i}\right]$

Expectation-Maximization (EM)

- "chicken and egg" problem: Had we known Q, easy to find $\boldsymbol{\theta}$. Had we known $\boldsymbol{\theta}$, we can set $Q_{i, y}=\mathcal{P}_{\boldsymbol{\theta}}\left[Y=y \mid X=\mathbf{x}_{i}\right]$
- Expectation step: set

$$
Q_{i, y}^{(t+1)}=\mathcal{P}_{\boldsymbol{\theta}^{(t)}}\left[Y=y \mid X=\mathbf{x}_{i}\right]
$$

Expectation-Maximization (EM)

- "chicken and egg" problem: Had we known Q, easy to find $\boldsymbol{\theta}$. Had we known $\boldsymbol{\theta}$, we can set $Q_{i, y}=\mathcal{P}_{\boldsymbol{\theta}}\left[Y=y \mid X=\mathbf{x}_{i}\right]$
- Expectation step: set

$$
Q_{i, y}^{(t+1)}=\mathcal{P}_{\boldsymbol{\theta}^{(t)}}\left[Y=y \mid X=\mathbf{x}_{i}\right]
$$

- Maximization step: set

$$
\boldsymbol{\theta}^{(t+1)}=\underset{\boldsymbol{\theta}}{\operatorname{argmax}} F\left(Q^{(t+1)}, \boldsymbol{\theta}\right)
$$

EM as an alternate maximization algorithm

- EM can be viewed as alternate maximization on the objective

$$
G(Q, \boldsymbol{\theta})=F(Q, \boldsymbol{\theta})-\sum_{i=1}^{m} \sum_{y=1}^{k} Q_{i, y} \log \left(Q_{i, y}\right)
$$

EM as an alternate maximization algorithm

- EM can be viewed as alternate maximization on the objective

$$
G(Q, \boldsymbol{\theta})=F(Q, \boldsymbol{\theta})-\sum_{i=1}^{m} \sum_{y=1}^{k} Q_{i, y} \log \left(Q_{i, y}\right) .
$$

- Lemma: The EM procedure can be rewritten as:

$$
\begin{aligned}
Q^{(t+1)} & =\underset{Q \in[0,1]^{m, k}: \forall i, \sum_{y}}{\operatorname{argmax}} Q_{i, j}=1 \\
& G\left(Q, \boldsymbol{\theta}^{(t)}\right) \\
\boldsymbol{\theta}^{(t+1)} & =\underset{\boldsymbol{\theta}}{\operatorname{argmax}} G\left(Q^{(t+1)}, \boldsymbol{\theta}\right)
\end{aligned}
$$

Furthermore, $G\left(Q^{(t+1)}, \boldsymbol{\theta}^{(t)}\right)=L\left(S ; \boldsymbol{\theta}^{(t)}\right)$.

EM as an alternate maximization algorithm

- EM can be viewed as alternate maximization on the objective

$$
G(Q, \boldsymbol{\theta})=F(Q, \boldsymbol{\theta})-\sum_{i=1}^{m} \sum_{y=1}^{k} Q_{i, y} \log \left(Q_{i, y}\right) .
$$

- Lemma: The EM procedure can be rewritten as:

$$
\begin{aligned}
Q^{(t+1)} & =\underset{Q \in[0,1]^{m, k}: \forall i, \sum_{y}}{\operatorname{argmax}} Q_{i, j}=1 \\
& G\left(Q, \boldsymbol{\theta}^{(t)}\right) \\
\boldsymbol{\theta}^{(t+1)} & =\underset{\boldsymbol{\theta}}{\operatorname{argmax}} G\left(Q^{(t+1)}, \boldsymbol{\theta}\right)
\end{aligned}
$$

Furthermore, $G\left(Q^{(t+1)}, \boldsymbol{\theta}^{(t)}\right)=L\left(S ; \boldsymbol{\theta}^{(t)}\right)$.

- Corollary: $L\left(S ; \boldsymbol{\theta}^{t+1}\right) \geq L\left(S ; \boldsymbol{\theta}^{(t)}\right)$

EM for Mixture of Gaussians (soft k-means)

- Mixture of k Gaussians in which $\boldsymbol{\theta}=\left(\mathbf{c},\left\{\boldsymbol{\mu}_{1}, \ldots, \boldsymbol{\mu}_{k}\right\}\right)$

EM for Mixture of Gaussians (soft k-means)

- Mixture of k Gaussians in which $\boldsymbol{\theta}=\left(\mathbf{c},\left\{\boldsymbol{\mu}_{1}, \ldots, \boldsymbol{\mu}_{k}\right\}\right)$
- Expectation step:

$$
Q_{i, y}^{(t)} \propto c_{y}^{(t)} \exp \left(-\frac{1}{2}\left\|\mathbf{x}_{i}-\boldsymbol{\mu}_{y}^{(t)}\right\|^{2}\right)
$$

EM for Mixture of Gaussians (soft k-means)

- Mixture of k Gaussians in which $\boldsymbol{\theta}=\left(\mathbf{c},\left\{\boldsymbol{\mu}_{1}, \ldots, \boldsymbol{\mu}_{k}\right\}\right)$
- Expectation step:

$$
Q_{i, y}^{(t)} \propto c_{y}^{(t)} \exp \left(-\frac{1}{2}\left\|\mathbf{x}_{i}-\boldsymbol{\mu}_{y}^{(t)}\right\|^{2}\right)
$$

- Maximization step:

$$
\boldsymbol{\mu}_{y}^{(t+1)} \propto \sum_{i=1}^{m} Q_{i, y}^{(t)} \mathbf{x}_{i} \quad \text { and } \quad c_{y}^{(t+1)} \propto \sum_{i=1}^{m} Q_{i, y}^{(t)}
$$

Outline

(1) Maximum Likelihood

(2) Naive Bayes
(3) Linear Discriminant Analysis

4 Latent Variables and EM
(5) Bayesian Reasoning

Bayesian Reasoning

- So far, we treated θ as an unknown parameter

Bayesian Reasoning

- So far, we treated θ as an unknown parameter
- Bayesians treat uncertainty as randomness

Bayesian Reasoning

- So far, we treated θ as an unknown parameter
- Bayesians treat uncertainty as randomness
- Formally, think on θ as a random variable with prior probability $P[\theta]$

Bayesian Reasoning

- So far, we treated θ as an unknown parameter
- Bayesians treat uncertainty as randomness
- Formally, think on θ as a random variable with prior probability $P[\theta]$
- The probability of X given S is

$$
\mathcal{P}[X=x \mid S]=\sum_{\theta} \mathcal{P}[X=x \mid \theta, S] \mathcal{P}[\theta \mid S]=\sum_{\theta} \mathcal{P}[X=x \mid \theta] \mathcal{P}[\theta \mid S]
$$

Bayesian Reasoning

- So far, we treated θ as an unknown parameter
- Bayesians treat uncertainty as randomness
- Formally, think on θ as a random variable with prior probability $P[\theta]$
- The probability of X given S is

$$
\mathcal{P}[X=x \mid S]=\sum_{\theta} \mathcal{P}[X=x \mid \theta, S] \mathcal{P}[\theta \mid S]=\sum_{\theta} \mathcal{P}[X=x \mid \theta] \mathcal{P}[\theta \mid S]
$$

- Using Bayes rule we obtain a posterior distribution

$$
\mathcal{P}[\theta \mid S]=\frac{\mathcal{P}[S \mid \theta] \mathcal{P}[\theta]}{\mathcal{P}[S]}
$$

Bayesian Reasoning

- So far, we treated θ as an unknown parameter
- Bayesians treat uncertainty as randomness
- Formally, think on θ as a random variable with prior probability $P[\theta]$
- The probability of X given S is

$$
\mathcal{P}[X=x \mid S]=\sum_{\theta} \mathcal{P}[X=x \mid \theta, S] \mathcal{P}[\theta \mid S]=\sum_{\theta} \mathcal{P}[X=x \mid \theta] \mathcal{P}[\theta \mid S]
$$

- Using Bayes rule we obtain a posterior distribution

$$
\mathcal{P}[\theta \mid S]=\frac{\mathcal{P}[S \mid \theta] \mathcal{P}[\theta]}{\mathcal{P}[S]}
$$

- Therefore,

$$
\mathcal{P}[X=x \mid S]=\frac{1}{\mathcal{P}[S]} \sum_{\theta} \mathcal{P}[X=x \mid \theta] \prod_{i=1}^{m} \mathcal{P}\left[X=x_{i} \mid \theta\right] \mathcal{P}[\theta]
$$

Bayesian Reasoning

- Example: suppose $\mathcal{X}=\{0,1\}$ and the prior on θ is uniform over $[0,1]$

Bayesian Reasoning

- Example: suppose $\mathcal{X}=\{0,1\}$ and the prior on θ is uniform over $[0,1]$
- Then:

$$
\mathcal{P}[X=x \mid S] \propto \int \theta^{x+\sum_{i} x_{i}}(1-\theta)^{1-x+\sum_{i}\left(1-x_{i}\right)} d \theta
$$

Bayesian Reasoning

- Example: suppose $\mathcal{X}=\{0,1\}$ and the prior on θ is uniform over $[0,1]$
- Then:

$$
\mathcal{P}[X=x \mid S] \propto \int \theta^{x+\sum_{i} x_{i}}(1-\theta)^{1-x+\sum_{i}\left(1-x_{i}\right)} d \theta
$$

- Solving (using integration by parts) we obtain

$$
\mathcal{P}[X=1 \mid S]=\frac{\left(\sum_{i} x_{i}\right)+1}{m+2} .
$$

Bayesian Reasoning

- Example: suppose $\mathcal{X}=\{0,1\}$ and the prior on θ is uniform over $[0,1]$
- Then:

$$
\mathcal{P}[X=x \mid S] \propto \int \theta^{x+\sum_{i} x_{i}}(1-\theta)^{1-x+\sum_{i}\left(1-x_{i}\right)} d \theta
$$

- Solving (using integration by parts) we obtain

$$
\mathcal{P}[X=1 \mid S]=\frac{\left(\sum_{i} x_{i}\right)+1}{m+2} .
$$

- Recall that Maximum Likelihood in this case is $\mathcal{P}[X=1 \mid \hat{\theta}]=\frac{\sum_{i} x_{i}}{m}$

Bayesian Reasoning

- Example: suppose $\mathcal{X}=\{0,1\}$ and the prior on θ is uniform over $[0,1]$
- Then:

$$
\mathcal{P}[X=x \mid S] \propto \int \theta^{x+\sum_{i} x_{i}}(1-\theta)^{1-x+\sum_{i}\left(1-x_{i}\right)} d \theta
$$

- Solving (using integration by parts) we obtain

$$
\mathcal{P}[X=1 \mid S]=\frac{\left(\sum_{i} x_{i}\right)+1}{m+2} .
$$

- Recall that Maximum Likelihood in this case is $\mathcal{P}[X=1 \mid \hat{\theta}]=\frac{\sum_{i} x_{i}}{m}$
- Therefore, uniform prior is similar to maximum likelihood, except it adds "pseudoexamples" to the training set

Maximum A-Posteriori

- In many situations, it is difficult to find a closed form solution to the integral in the definition of $\mathcal{P}[X=x \mid S]$
- A popular approximation is to find a single θ which maximizes $\mathcal{P}[\theta \mid S]$
- This value is called the Maximum A-Posteriori estimator
- Once this value is found, we can calculate the probability that $X=x$ given the maximum a-posteriori estimator and independently on S.

Summary

- Generative approach: model the distribution over the data
- Parametric density estimation: estimate the parameters characterizing the distribution
- Rules: Maximum Likelihood, Bayesian estimation, maximum a posteriori.
- Algorithms: Naive Bayes, LDA, EM

