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Weak Learnability

Definition ((ε, δ)-Weak-Learnability)

A class H is (ε, δ)-weak-learnable if there exists a learning algorithm, A,
and a training set size, m ∈ N, such that for every distribution D over X
and every f ∈ H,

Dm({S : LD,f (A(S)) ≤ ε}) ≥ 1− δ .

Remarks:

Almost identical to (strong) PAC learning, but we only need to
succeed for specific ε, δ

Every class H is (1/2, 0)-weak-learnable

Intuitively, one can think of a weak learner as an algorithm that uses
a simple ’rule of thumb’ to output a hypothesis that performs just
slightly better than a random guess
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Example of weak learner

X = R, H is the class of 3-piece classifiers, e.g.

θ1 θ2

+ +−

Let B = {x 7→ sign(x− θ) · b : θ ∈ R, b ∈ {±1}} be the class of
Decision Stumps

Claim: There is a constant m, such that ERMB over m examples is a
(5/12, 1/2)-weak learner for H
Proof:

Observe that there’s always a decision stump with LD,f (h) ≤ 1/3
Apply VC bound for the class of decision stumps
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The problem of boosting

Suppose we have an (ε0, δ0)-weak-learner algorithm, A, for some class
H

Can we use A to construct a strong learner ?

If A is computationally efficient, can we boost it efficiently ?

Two questions:

Boosting the confidence
Boosting the accuracy
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Boosting the confidence

Suppose A is an (ε0, δ0)-weak learner for H that requires m0 examples

For any δ, ε ∈ (0, 1) we show how to learn H to accuracy ε0 + ε with
confidence δ

Step 1: Apply A on k =
⌈

log(2/δ)
log(1/δ0)

⌉
i.i.d. samples, each of which of

m0 examples, to obtain h1, . . . , hk

Step 2: Take additional validation sample of size |V | ≥ 2 log(4k/δ)
ε2

and

output ĥ ∈ argminhi LV (hi)

Claim: W.p. at least 1− δ, we have LD(ĥ) ≤ ε0 + ε
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Proof

First, by the validation procedure guarantees

P[LD(ĥ) > min
i
LD(hi) + ε] ≤ δ/2 .

Second,

P[min
i
LD(hi) > ε0] = P[∀i LD(hi) > ε0]

=
k∏
i=1

P[LD(hi) > ε0]

≤ δk0 ≤ δ/2 .

Apply the union bound to conclude the proof.
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P[LD(ĥ) > min
i
LD(hi) + ε] ≤ δ/2 .

Second,

P[min
i
LD(hi) > ε0] = P[∀i LD(hi) > ε0]

=

k∏
i=1

P[LD(hi) > ε0]

≤ δk0 ≤ δ/2 .

Apply the union bound to conclude the proof.

Shai Shalev-Shwartz (Hebrew U) IML Lecture 4 Boosting 8 / 29



Boosting a learner that succeeds on expectation

Suppose that A is a learner that guarantees:

E
S∼Dm

[LD(A(S))] ≤ min
h∈H

LD(h) + ε .

Denote θ = LD(A(S))−minh∈H LD(h), so we obtain

E
S∼Dm

[θ] ≤ ε .

Since θ is a non-negative random variable, we can apply Markov’s
inequality to obtain

P[θ ≥ 2ε] ≤ E[θ]

2ε
≤ 1

2
.

Corollary: A is (2ε, 1/2)-weak learner.
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Boosting the accuracy
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AdaBoost (’Adaptive Boosting’)

Input: S = (x1, y1), . . . , (xm, ym), where for each i, yi = f(xi)

Output: hypothesis h with small error on S

We’ll later analyze L(D,f)(h) as well

AdaBoost calls the weak learner on distributions over S
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The AdaBoost Algorithm

input: training set S = (x1, y1), . . . , (xm, ym), weak learner WL,
number of rounds T

initialize D(1) = ( 1
m , . . . ,

1
m)

for t = 1, . . . , T :

invoke weak learner ht = WL(D(t), S)

compute εt = LD(t)(ht) =
∑m
i=1D

(t)
i 1[yi 6=ht(xi)]

let wt = 1
2 log

(
1
εt
− 1
)

update D
(t+1)
i =

D
(t)
i exp(−wtyiht(xi))∑m

j=1D
(t)
j exp(−wtyjht(xj))

for all i = 1, . . . ,m

output the hypothesis hs(x) = sign
(∑T

t=1wtht(x)
)

.
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Intuition: AdaBoost forces WL to focus on problematic
examples

Claim: The error of ht w.r.t. D(t+1) is exactly 1/2

Proof:

m∑
i=1

D
(t+1)
i 1[yi 6=ht(xi)] =

∑m
i=1D

(t)
i e−wtyiht(xi)1[yi 6=ht(xi)]∑m
j=1D

(t)
j e−wtyjht(xj)

=
ewtεt

ewtεt + e−wt(1− εt)
=

εt
εt + e−2wt(1− εt)

=
εt

εt + εt
1−εt (1− εt)

=
1

2
.
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Proof:

m∑
i=1

D
(t+1)
i 1[yi 6=ht(xi)] =

∑m
i=1D

(t)
i e−wtyiht(xi)1[yi 6=ht(xi)]∑m
j=1D

(t)
j e−wtyjht(xj)

=
ewtεt

ewtεt + e−wt(1− εt)
=

εt
εt + e−2wt(1− εt)

=
εt

εt + εt
1−εt (1− εt)

=
1

2
.
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Theorem

If WL is (1/2− γ, δ) weak learner then, with probability at least 1− δT ,

LS(hs) ≤ exp(−2 γ2 T ) .

Remarks:

For any ε > 0 and γ ∈ (0, 1/2), if T ≥ log(1/ε)
2γ2

, then AdaBoost will

output a hypothesis hs with LS(hs) ≤ ε.
Setting ε = 1/(2m) the hypothesis hs must have a zero training error

Since the weak learner is invoked on a distribution over S, in many
cases δ can be 0. In any case, by “boosting the confidence”, we can
assume w.l.o.g. that δ is very small.
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AdaBoost as a Learner for Halfspaces++

Let B be the set of all hypotheses the WL may return

Observe that AdaBoost outputs a hypothesis from the class

L(B, T ) =

{
x 7→ sign

(
T∑
t=1

wtht(x)

)
: w ∈ RT , ∀t, ht ∈ B

}
.

Since WL is invoked only on distributions over S we can assume
w.l.o.g. that B = {g1, . . . , gd} for some d ≤ 2m.

Denote ψ(x) = (g1(x), . . . , gd(x)). Therefore:

L(B, T ) =
{
x 7→ sign (〈w,ψ(x)〉) : w ∈ Rd, ‖w‖0 ≤ T

}
,

where ‖w‖0 = |{i : wi 6= 0}|.
That is, AdaBoost learns a composition of the class of halfspaces with
sparse coefficients over the mapping x 7→ ψ(x)
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Expressiveness of L(B, T )

Suppose X = R and B is Decision Stumps,

B = {x 7→ sign(x− θ) · b : θ ∈ R, b ∈ {±1}} .

Let GT be the class of piece-wise constant functions with T pieces

Claim: GT ⊆ L(B, T )

Composing halfspaces on top of simple classes can be very expressive !
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Bias-complexity

Recall:

εapp εest

We have argued that the expressiveness of L(B, T ) grows with T

In other words, the approximation error decreases with T

We’ll show that the estimation error increases with T

Therefore, the parameter T of AdaBoost enables us to control the
bias-complexity tradeoff
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The Estimation Error of L(B, T )

Claim:
VCdim(L(B, T )) ≤ Õ(T · VCdim(B))

Corollary: if m ≥ Ω̃
(
log(1/δ)
γ2ε

)
and T = log(m)/(2γ2), then w.p. of

at least 1− δ,
L(D,f)(hs) ≤ ε .
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Weak Learnability and Separability with Margin

We have essentially shown: if H is weak learnable, then H ⊆ L(B,∞)

What about the other direction ?

Using von Neumanns minimax theorem, it can be shown that if
L(B,∞) separates a training set with `1 margin γ then ERMB is a γ
weak learner for H
This is beyond the scope of the course
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Face Detection

Classify rectangles in an image as face or non-face
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Weak Learner for Face Detection

Rules of thumb:

“eye region is often darker than the cheeks”

“bridge of the noise is brighter than the eyes”

Goal:

We want to combine few rules of thumb to obtain a face detector

“Sparsity” reflects both small estimation error but also speed !
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Weak Learner for Face Detection

Each hypothesis in the base class is of the form h(x) = f(g(x)), where f
is a decision stump and g : R24,24 → R is parameterized by:

An axis-aligned rectangle R. Since each image is of size 24× 24,
there are at most 244 axis-aligned rectangles.

A type, t ∈ {A,B,C,D}. Each type corresponds to a mask:

A B

C D
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AdaBoost for Face Detection

The first and second features selected by AdaBoost, as implemented by
Viola and Jones.

Figure 5: The first and second features selected by AdaBoost. The two features are shown in the top row
and then overlayed on a typical training face in the bottom row. The first feature measures the difference in
intensity between the region of the eyes and a region across the upper cheeks. The feature capitalizes on the
observation that the eye region is often darker than the cheeks. The second feature compares the intensities
in the eye regions to the intensity across the bridge of the nose.

directly increases computation time.

4 The Attentional Cascade

This section describes an algorithm for constructing a cascade of classifiers which achieves increased detec-
tion performance while radically reducing computation time. The key insight is that smaller, and therefore
more efficient, boosted classifiers can be constructed which reject many of the negative sub-windows while
detecting almost all positive instances. Simpler classifiers are used to reject the majority of sub-windows
before more complex classifiers are called upon to achieve low false positive rates.
Stages in the cascade are constructed by training classifiers using AdaBoost. Starting with a two-feature

strong classifier, an effective face filter can be obtained by adjusting the strong classifier threshold to min-
imize false negatives. The initial AdaBoost threshold, , is designed to yield a low error rate on
the training data. A lower threshold yields higher detection rates and higher false positive rates. Based on
performance measured using a validation training set, the two-feature classifier can be adjusted to detect
100% of the faces with a false positive rate of 40%. See Figure 5 for a description of the two features used
in this classifier.
The detection performance of the two-feature classifier is far from acceptable as an object detection

system. Nevertheless the classifier can significantly reduce the number sub-windows that need further pro-
cessing with very few operations:

1. Evaluate the rectangle features (requires between 6 and 9 array references per feature).

2. Compute the weak classifier for each feature (requires one threshold operation per feature).

11
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Summary

Boosting the confidence using validation

Boosting the accuracy using AdaBoost

The power of composing halfspaces over simple classes

The bias-complexity tradeoff

AdaBoost works in many practical problems !
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