Introduction to Machine Learning (67577) Lecture 4

Shai Shalev-Shwartz

School of CS and Engineering, The Hebrew University of Jerusalem

Boosting

Outline

(1) Weak learnability
(2) Boosting the confidence
(3) Boosting the accuracy using AdaBoost
4) AdaBoost as a learner for Halfspaces++
(5) AdaBoost and the Bias-Complexity Tradeoff
(6) Weak Learnability and Separability with Margin
(7) AdaBoost for Face Detection

Weak Learnability

Definition ($\epsilon, \delta)$-Weak-Learnability)

A class \mathcal{H} is (ϵ, δ)-weak-learnable if there exists a learning algorithm, A, and a training set size, $m \in \mathbb{N}$, such that for every distribution \mathcal{D} over \mathcal{X} and every $f \in \mathcal{H}$,

$$
\mathcal{D}^{m}\left(\left\{S: L_{\mathcal{D}, f}(A(S)) \leq \epsilon\right\}\right) \geq 1-\delta
$$

Weak Learnability

Definition (($\epsilon, \delta)$-Weak-Learnability)

A class \mathcal{H} is (ϵ, δ)-weak-learnable if there exists a learning algorithm, A, and a training set size, $m \in \mathbb{N}$, such that for every distribution \mathcal{D} over \mathcal{X} and every $f \in \mathcal{H}$,

$$
\mathcal{D}^{m}\left(\left\{S: L_{\mathcal{D}, f}(A(S)) \leq \epsilon\right\}\right) \geq 1-\delta .
$$

Remarks:

- Almost identical to (strong) PAC learning, but we only need to succeed for specific ϵ, δ

Weak Learnability

Definition ($\epsilon, \delta)$-Weak-Learnability)

A class \mathcal{H} is (ϵ, δ)-weak-learnable if there exists a learning algorithm, A, and a training set size, $m \in \mathbb{N}$, such that for every distribution \mathcal{D} over \mathcal{X} and every $f \in \mathcal{H}$,

$$
\mathcal{D}^{m}\left(\left\{S: L_{\mathcal{D}, f}(A(S)) \leq \epsilon\right\}\right) \geq 1-\delta .
$$

Remarks:

- Almost identical to (strong) PAC learning, but we only need to succeed for specific ϵ, δ
- Every class \mathcal{H} is $(1 / 2,0)$-weak-learnable

Weak Learnability

Definition (($\epsilon, \delta)$-Weak-Learnability)

A class \mathcal{H} is (ϵ, δ)-weak-learnable if there exists a learning algorithm, A, and a training set size, $m \in \mathbb{N}$, such that for every distribution \mathcal{D} over \mathcal{X} and every $f \in \mathcal{H}$,

$$
\mathcal{D}^{m}\left(\left\{S: L_{\mathcal{D}, f}(A(S)) \leq \epsilon\right\}\right) \geq 1-\delta .
$$

Remarks:

- Almost identical to (strong) PAC learning, but we only need to succeed for specific ϵ, δ
- Every class \mathcal{H} is $(1 / 2,0)$-weak-learnable
- Intuitively, one can think of a weak learner as an algorithm that uses a simple 'rule of thumb' to output a hypothesis that performs just slightly better than a random guess

Example of weak learner

- $\mathcal{X}=\mathbb{R}, \mathcal{H}$ is the class of 3 -piece classifiers, e.g.

Example of weak learner

- $\mathcal{X}=\mathbb{R}, \mathcal{H}$ is the class of 3 -piece classifiers, e.g.

- Let $B=\{x \mapsto \operatorname{sign}(x-\theta) \cdot b: \quad \theta \in \mathbb{R}, b \in\{ \pm 1\}\}$ be the class of Decision Stumps

Example of weak learner

- $\mathcal{X}=\mathbb{R}, \mathcal{H}$ is the class of 3 -piece classifiers, e.g.

- Let $B=\{x \mapsto \operatorname{sign}(x-\theta) \cdot b: \quad \theta \in \mathbb{R}, b \in\{ \pm 1\}\}$ be the class of Decision Stumps
- Claim: There is a constant m, such that ERM_{B} over m examples is a (5/12, 1/2)-weak learner for \mathcal{H}

Example of weak learner

- $\mathcal{X}=\mathbb{R}, \mathcal{H}$ is the class of 3 -piece classifiers, e.g.

- Let $B=\{x \mapsto \operatorname{sign}(x-\theta) \cdot b: \quad \theta \in \mathbb{R}, b \in\{ \pm 1\}\}$ be the class of Decision Stumps
- Claim: There is a constant m, such that ERM_{B} over m examples is a (5/12, 1/2)-weak learner for \mathcal{H}
- Proof:
- Observe that there's always a decision stump with $L_{\mathcal{D}, f}(h) \leq 1 / 3$
- Apply VC bound for the class of decision stumps

The problem of boosting

- Suppose we have an $\left(\epsilon_{0}, \delta_{0}\right)$-weak-learner algorithm, A, for some class H

The problem of boosting

- Suppose we have an $\left(\epsilon_{0}, \delta_{0}\right)$-weak-learner algorithm, A, for some class \mathcal{H}
- Can we use A to construct a strong learner ?

The problem of boosting

- Suppose we have an $\left(\epsilon_{0}, \delta_{0}\right)$-weak-learner algorithm, A, for some class H
- Can we use A to construct a strong learner ?
- If A is computationally efficient, can we boost it efficiently ?

The problem of boosting

- Suppose we have an $\left(\epsilon_{0}, \delta_{0}\right)$-weak-learner algorithm, A, for some class H
- Can we use A to construct a strong learner ?
- If A is computationally efficient, can we boost it efficiently ?
- Two questions:

The problem of boosting

- Suppose we have an $\left(\epsilon_{0}, \delta_{0}\right)$-weak-learner algorithm, A, for some class H
- Can we use A to construct a strong learner ?
- If A is computationally efficient, can we boost it efficiently ?
- Two questions:
- Boosting the confidence

The problem of boosting

- Suppose we have an $\left(\epsilon_{0}, \delta_{0}\right)$-weak-learner algorithm, A, for some class H
- Can we use A to construct a strong learner ?
- If A is computationally efficient, can we boost it efficiently ?
- Two questions:
- Boosting the confidence
- Boosting the accuracy

Outline

(1) Weak learnability
(2) Boosting the confidence
(3) Boosting the accuracy using AdaBoost
4) AdaBoost as a learner for Halfspaces++
(5) AdaBoost and the Bias-Complexity Tradeoff
(6) Weak Learnability and Separability with Margin
(7) AdaBoost for Face Detection

Boosting the confidence

- Suppose A is an $\left(\epsilon_{0}, \delta_{0}\right)$-weak learner for \mathcal{H} that requires m_{0} examples

Boosting the confidence

- Suppose A is an $\left(\epsilon_{0}, \delta_{0}\right)$-weak learner for \mathcal{H} that requires m_{0} examples
- For any $\delta, \epsilon \in(0,1)$ we show how to learn \mathcal{H} to accuracy $\epsilon_{0}+\epsilon$ with confidence δ

Boosting the confidence

- Suppose A is an $\left(\epsilon_{0}, \delta_{0}\right)$-weak learner for \mathcal{H} that requires m_{0} examples
- For any $\delta, \epsilon \in(0,1)$ we show how to learn \mathcal{H} to accuracy $\epsilon_{0}+\epsilon$ with confidence δ
- Step 1: Apply A on $k=\left\lceil\frac{\log (2 / \delta)}{\log \left(1 / \delta_{0}\right)}\right\rceil$ i.i.d. samples, each of which of m_{0} examples, to obtain h_{1}, \ldots, h_{k}

Boosting the confidence

- Suppose A is an $\left(\epsilon_{0}, \delta_{0}\right)$-weak learner for \mathcal{H} that requires m_{0} examples
- For any $\delta, \epsilon \in(0,1)$ we show how to learn \mathcal{H} to accuracy $\epsilon_{0}+\epsilon$ with confidence δ
- Step 1: Apply A on $k=\left\lceil\frac{\log (2 / \delta)}{\log \left(1 / \delta_{0}\right)}\right\rceil$ i.i.d. samples, each of which of m_{0} examples, to obtain h_{1}, \ldots, h_{k}
- Step 2: Take additional validation sample of size $|V| \geq \frac{2 \log (4 k / \delta)}{\epsilon^{2}}$ and output $\hat{h} \in \operatorname{argmin}_{h_{i}} L_{V}\left(h_{i}\right)$

Boosting the confidence

- Suppose A is an $\left(\epsilon_{0}, \delta_{0}\right)$-weak learner for \mathcal{H} that requires m_{0} examples
- For any $\delta, \epsilon \in(0,1)$ we show how to learn \mathcal{H} to accuracy $\epsilon_{0}+\epsilon$ with confidence δ
- Step 1: Apply A on $k=\left\lceil\frac{\log (2 / \delta)}{\log \left(1 / \delta_{0}\right)}\right\rceil$ i.i.d. samples, each of which of m_{0} examples, to obtain h_{1}, \ldots, h_{k}
- Step 2: Take additional validation sample of size $|V| \geq \frac{2 \log (4 k / \delta)}{\epsilon^{2}}$ and output $\hat{h} \in \operatorname{argmin}_{h_{i}} L_{V}\left(h_{i}\right)$
- Claim: W.p. at least $1-\delta$, we have $L_{\mathcal{D}}(\hat{h}) \leq \epsilon_{0}+\epsilon$

Proof

- First, by the validation procedure guarantees

$$
\mathbb{P}\left[L_{\mathcal{D}}(\hat{h})>\min _{i} L_{\mathcal{D}}\left(h_{i}\right)+\epsilon\right] \leq \delta / 2 .
$$

Proof

- First, by the validation procedure guarantees

$$
\mathbb{P}\left[L_{\mathcal{D}}(\hat{h})>\min _{i} L_{\mathcal{D}}\left(h_{i}\right)+\epsilon\right] \leq \delta / 2 .
$$

- Second,

$$
\begin{aligned}
\mathbb{P}\left[\min _{i} L_{\mathcal{D}}\left(h_{i}\right)>\epsilon_{0}\right] & =\mathbb{P}\left[\forall_{i} L_{\mathcal{D}}\left(h_{i}\right)>\epsilon_{0}\right] \\
& =\prod_{i=1}^{k} \mathbb{P}\left[L_{\mathcal{D}}\left(h_{i}\right)>\epsilon_{0}\right] \\
& \leq \delta_{0}^{k} \leq \delta / 2
\end{aligned}
$$

Proof

- First, by the validation procedure guarantees

$$
\mathbb{P}\left[L_{\mathcal{D}}(\hat{h})>\min _{i} L_{\mathcal{D}}\left(h_{i}\right)+\epsilon\right] \leq \delta / 2 .
$$

- Second,

$$
\begin{aligned}
\mathbb{P}\left[\min _{i} L_{\mathcal{D}}\left(h_{i}\right)>\epsilon_{0}\right] & =\mathbb{P}\left[\forall_{i} L_{\mathcal{D}}\left(h_{i}\right)>\epsilon_{0}\right] \\
& =\prod_{i=1}^{k} \mathbb{P}\left[L_{\mathcal{D}}\left(h_{i}\right)>\epsilon_{0}\right] \\
& \leq \delta_{0}^{k} \leq \delta / 2 .
\end{aligned}
$$

- Apply the union bound to conclude the proof.

Boosting a learner that succeeds on expectation

- Suppose that A is a learner that guarantees:

$$
\underset{S \sim \mathcal{D}^{m}}{\mathbb{E}}\left[L_{\mathcal{D}}(A(S))\right] \leq \min _{h \in \mathcal{H}} L_{\mathcal{D}}(h)+\epsilon
$$

Boosting a learner that succeeds on expectation

- Suppose that A is a learner that guarantees:

$$
\underset{S \sim \mathcal{D}^{m}}{\mathbb{E}}\left[L_{\mathcal{D}}(A(S))\right] \leq \min _{h \in \mathcal{H}} L_{\mathcal{D}}(h)+\epsilon
$$

- Denote $\theta=L_{\mathcal{D}}(A(S))-\min _{h \in \mathcal{H}} L_{\mathcal{D}}(h)$, so we obtain

$$
\underset{S \sim D^{m}}{\mathbb{E}}[\theta] \leq \epsilon
$$

Boosting a learner that succeeds on expectation

- Suppose that A is a learner that guarantees:

$$
\underset{S \sim D^{m}}{\mathbb{E}}\left[L_{\mathcal{D}}(A(S))\right] \leq \min _{h \in \mathcal{H}} L_{\mathcal{D}}(h)+\epsilon
$$

- Denote $\theta=L_{\mathcal{D}}(A(S))-\min _{h \in \mathcal{H}} L_{\mathcal{D}}(h)$, so we obtain

$$
\underset{S \sim \mathcal{D}^{m}}{\mathbb{E}}[\theta] \leq \epsilon
$$

- Since θ is a non-negative random variable, we can apply Markov's inequality to obtain

$$
\mathbb{P}[\theta \geq 2 \epsilon] \leq \frac{\mathbb{E}[\theta]}{2 \epsilon} \leq \frac{1}{2}
$$

Boosting a learner that succeeds on expectation

- Suppose that A is a learner that guarantees:

$$
\underset{S \sim D^{m}}{\mathbb{E}}\left[L_{\mathcal{D}}(A(S))\right] \leq \min _{h \in \mathcal{H}} L_{\mathcal{D}}(h)+\epsilon
$$

- Denote $\theta=L_{\mathcal{D}}(A(S))-\min _{h \in \mathcal{H}} L_{\mathcal{D}}(h)$, so we obtain

$$
\underset{S \sim \mathcal{D}^{m}}{\mathbb{E}}[\theta] \leq \epsilon
$$

- Since θ is a non-negative random variable, we can apply Markov's inequality to obtain

$$
\mathbb{P}[\theta \geq 2 \epsilon] \leq \frac{\mathbb{E}[\theta]}{2 \epsilon} \leq \frac{1}{2}
$$

- Corollary: A is $(2 \epsilon, 1 / 2)$-weak learner.

Outline

(1) Weak learnability
(2) Boosting the confidence
(3) Boosting the accuracy using AdaBoost
4) AdaBoost as a learner for Halfspaces++
(5) AdaBoost and the Bias-Complexity Tradeoff
(6) Weak Learnability and Separability with Margin
(7) AdaBoost for Face Detection

Boosting the accuracy

Problem raised in 1988 by Kearns and Valiant

Solved in 1990 by Robert Schapire, then a graduate student at MIT

> In 1995, Schapire \& Freund proposed the AdaBoost algorithm

AdaBoost ('Adaptive Boosting')

- Input: $S=\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{m}, y_{m}\right)$, where for each $i, y_{i}=f\left(\mathbf{x}_{i}\right)$

AdaBoost ('Adaptive Boosting')

- Input: $S=\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{m}, y_{m}\right)$, where for each $i, y_{i}=f\left(\mathbf{x}_{i}\right)$
- Output: hypothesis h with small error on S

AdaBoost ('Adaptive Boosting')

- Input: $S=\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{m}, y_{m}\right)$, where for each $i, y_{i}=f\left(\mathbf{x}_{i}\right)$
- Output: hypothesis h with small error on S
- We'll later analyze $L_{(\mathcal{D}, f)}(h)$ as well

AdaBoost ('Adaptive Boosting')

- Input: $S=\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{m}, y_{m}\right)$, where for each $i, y_{i}=f\left(\mathbf{x}_{i}\right)$
- Output: hypothesis h with small error on S
- We'll later analyze $L_{(\mathcal{D}, f)}(h)$ as well
- AdaBoost calls the weak learner on distributions over S

The AdaBoost Algorithm

- input: training set $S=\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{m}, y_{m}\right)$, weak learner WL, number of rounds T

The AdaBoost Algorithm

- input: training set $S=\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{m}, y_{m}\right)$, weak learner WL, number of rounds T
- initialize $\mathbf{D}^{(1)}=\left(\frac{1}{m}, \ldots, \frac{1}{m}\right)$

The AdaBoost Algorithm

- input: training set $S=\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{m}, y_{m}\right)$, weak learner WL, number of rounds T
- initialize $\mathbf{D}^{(1)}=\left(\frac{1}{m}, \ldots, \frac{1}{m}\right)$
- for $t=1, \ldots, T$:

The AdaBoost Algorithm

- input: training set $S=\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{m}, y_{m}\right)$, weak learner WL, number of rounds T
- initialize $\mathbf{D}^{(1)}=\left(\frac{1}{m}, \ldots, \frac{1}{m}\right)$
- for $t=1, \ldots, T$:
- invoke weak learner $h_{t}=\mathrm{WL}\left(\mathbf{D}^{(t)}, S\right)$

The AdaBoost Algorithm

- input: training set $S=\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{m}, y_{m}\right)$, weak learner WL, number of rounds T
- initialize $\mathbf{D}^{(1)}=\left(\frac{1}{m}, \ldots, \frac{1}{m}\right)$
- for $t=1, \ldots, T$:
- invoke weak learner $h_{t}=\mathrm{WL}\left(\mathbf{D}^{(t)}, S\right)$
- compute $\epsilon_{t}=L_{\mathbf{D}^{(t)}}\left(h_{t}\right)=\sum_{i=1}^{m} D_{i}^{(t)} \mathbb{1}_{\left[y_{i} \neq h_{t}\left(\mathbf{x}_{i}\right)\right]}$

The AdaBoost Algorithm

- input: training set $S=\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{m}, y_{m}\right)$, weak learner WL, number of rounds T
- initialize $\mathbf{D}^{(1)}=\left(\frac{1}{m}, \ldots, \frac{1}{m}\right)$
- for $t=1, \ldots, T$:
- invoke weak learner $h_{t}=\mathrm{WL}\left(\mathbf{D}^{(t)}, S\right)$
- compute $\epsilon_{t}=L_{\mathbf{D}^{(t)}}\left(h_{t}\right)=\sum_{i=1}^{m} D_{i}^{(t)} \mathbb{1}_{\left[y_{i} \neq h_{t}\left(\mathbf{x}_{i}\right)\right]}$
- let $w_{t}=\frac{1}{2} \log \left(\frac{1}{\epsilon_{t}}-1\right)$

The AdaBoost Algorithm

- input: training set $S=\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{m}, y_{m}\right)$, weak learner WL, number of rounds T
- initialize $\mathbf{D}^{(1)}=\left(\frac{1}{m}, \ldots, \frac{1}{m}\right)$
- for $t=1, \ldots, T$:
- invoke weak learner $h_{t}=\mathrm{WL}\left(\mathbf{D}^{(t)}, S\right)$
- compute $\epsilon_{t}=L_{\mathbf{D}^{(t)}}\left(h_{t}\right)=\sum_{i=1}^{m} D_{i}^{(t)} \mathbb{1}_{\left[y_{i} \neq h_{t}\left(\mathbf{x}_{i}\right)\right]}$
- let $w_{t}=\frac{1}{2} \log \left(\frac{1}{\epsilon_{t}}-1\right)$
- update $D_{i}^{(t+1)}=\frac{D_{i}^{(t)} \exp \left(-w_{t} y_{i} h_{t}\left(\mathbf{x}_{i}\right)\right)}{\sum_{j=1}^{m} D_{j}^{(t)} \exp \left(-w_{t} y_{j} h_{t}\left(\mathbf{x}_{j}\right)\right)}$ for all $i=1, \ldots, m$

The AdaBoost Algorithm

- input: training set $S=\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{m}, y_{m}\right)$, weak learner WL, number of rounds T
- initialize $\mathbf{D}^{(1)}=\left(\frac{1}{m}, \ldots, \frac{1}{m}\right)$
- for $t=1, \ldots, T$:
- invoke weak learner $h_{t}=\mathrm{WL}\left(\mathbf{D}^{(t)}, S\right)$
- compute $\epsilon_{t}=L_{\mathbf{D}^{(t)}}\left(h_{t}\right)=\sum_{i=1}^{m} D_{i}^{(t)} \mathbb{1}_{\left[y_{i} \neq h_{t}\left(\mathbf{x}_{i}\right)\right]}$
- let $w_{t}=\frac{1}{2} \log \left(\frac{1}{\epsilon_{t}}-1\right)$
- update $D_{i}^{(t+1)}=\frac{D_{i}^{(t)} \exp \left(-w_{t} y_{i} h_{t}\left(\mathbf{x}_{i}\right)\right)}{\sum_{j=1}^{m} D_{j}^{(t)} \exp \left(-w_{t} y_{j} h_{t}\left(\mathbf{x}_{j}\right)\right)}$ for all $i=1, \ldots, m$
- output the hypothesis $h_{s}(\mathbf{x})=\operatorname{sign}\left(\sum_{t=1}^{T} w_{t} h_{t}(\mathbf{x})\right)$.

Intuition: AdaBoost forces WL to focus on problematic examples

- Claim: The error of h_{t} w.r.t. $\mathbf{D}^{(t+1)}$ is exactly $1 / 2$
- Proof:

$$
\sum_{i=1}^{m} D_{i}^{(t+1)} \mathbb{1}_{\left[y_{i} \neq h_{t}\left(\mathbf{x}_{i}\right)\right]}=\frac{\sum_{i=1}^{m} D_{i}^{(t)} e^{-w_{t} y_{i} h_{t}\left(\mathbf{x}_{i}\right)} \mathbb{1}_{\left[y_{i} \neq h_{t}\left(\mathbf{x}_{i}\right)\right]}}{\sum_{j=1}^{m} D_{j}^{(t)} e^{-w_{t} y_{j} h_{t}\left(\mathbf{x}_{j}\right)}}
$$

Intuition: AdaBoost forces WL to focus on problematic examples

- Claim: The error of h_{t} w.r.t. $\mathbf{D}^{(t+1)}$ is exactly $1 / 2$
- Proof:

$$
\begin{aligned}
& \sum_{i=1}^{m} D_{i}^{(t+1)} \mathbb{1}_{\left[y_{i} \neq h_{t}\left(\mathbf{x}_{i}\right)\right]}=\frac{\sum_{i=1}^{m} D_{i}^{(t)} e^{-w_{t} y_{i} h_{t}\left(\mathbf{x}_{i}\right)} \mathbb{1}_{\left[y_{i} \neq h_{t}\left(\mathbf{x}_{i}\right)\right]}}{\sum_{j=1}^{m} D_{j}^{(t)} e^{-w_{t} y_{j} h_{t}\left(\mathbf{x}_{j}\right)}} \\
& =\frac{e^{w_{t}} \epsilon_{t}}{e^{w_{t}} \epsilon_{t}+e^{-w_{t}}\left(1-\epsilon_{t}\right)}=\frac{\epsilon_{t}}{\epsilon_{t}+e^{-2 w_{t}}\left(1-\epsilon_{t}\right)}
\end{aligned}
$$

Intuition: AdaBoost forces WL to focus on problematic examples

- Claim: The error of h_{t} w.r.t. $\mathbf{D}^{(t+1)}$ is exactly $1 / 2$
- Proof:

$$
\begin{aligned}
& \sum_{i=1}^{m} D_{i}^{(t+1)} \mathbb{1}_{\left[y_{i} \neq h_{t}\left(\mathbf{x}_{i}\right)\right]}=\frac{\sum_{i=1}^{m} D_{i}^{(t)} e^{-w_{t} y_{i} h_{t}\left(\mathbf{x}_{i}\right)} \mathbb{1}_{\left[y_{i} \neq h_{t}\left(\mathbf{x}_{i}\right)\right]}}{\sum_{j=1}^{m} D_{j}^{(t)} e^{-w_{t} y_{j} h_{t}\left(\mathbf{x}_{j}\right)}} \\
& =\frac{e^{w_{t}} \epsilon_{t}}{e^{w_{t}} \epsilon_{t}+e^{-w_{t}}\left(1-\epsilon_{t}\right)}=\frac{\epsilon_{t}}{\epsilon_{t}+e^{-2 w_{t}}\left(1-\epsilon_{t}\right)} \\
& =\frac{\epsilon_{t}}{\epsilon_{t}+\frac{\epsilon_{t}}{1-\epsilon_{t}}\left(1-\epsilon_{t}\right)}=\frac{1}{2} .
\end{aligned}
$$

Theorem

If $W \mathrm{~L}$ is $(1 / 2-\gamma, \delta)$ weak learner then, with probability at least $1-\delta T$,

$$
L_{S}\left(h_{s}\right) \leq \exp \left(-2 \gamma^{2} T\right)
$$

Theorem

If $W \mathrm{~L}$ is $(1 / 2-\gamma, \delta)$ weak learner then, with probability at least $1-\delta T$,

$$
L_{S}\left(h_{s}\right) \leq \exp \left(-2 \gamma^{2} T\right)
$$

Remarks:

- For any $\epsilon>0$ and $\gamma \in(0,1 / 2)$, if $T \geq \frac{\log (1 / \epsilon)}{2 \gamma^{2}}$, then AdaBoost will output a hypothesis h_{s} with $L_{S}\left(h_{s}\right) \leq \epsilon$.

Theorem

If $W \mathrm{~L}$ is $(1 / 2-\gamma, \delta)$ weak learner then, with probability at least $1-\delta T$,

$$
L_{S}\left(h_{s}\right) \leq \exp \left(-2 \gamma^{2} T\right)
$$

Remarks:

- For any $\epsilon>0$ and $\gamma \in(0,1 / 2)$, if $T \geq \frac{\log (1 / \epsilon)}{2 \gamma^{2}}$, then AdaBoost will output a hypothesis h_{s} with $L_{S}\left(h_{s}\right) \leq \epsilon$.
- Setting $\epsilon=1 /(2 m)$ the hypothesis h_{s} must have a zero training error

Theorem

If $W \mathrm{~L}$ is $(1 / 2-\gamma, \delta)$ weak learner then, with probability at least $1-\delta T$,

$$
L_{S}\left(h_{s}\right) \leq \exp \left(-2 \gamma^{2} T\right)
$$

Remarks:

- For any $\epsilon>0$ and $\gamma \in(0,1 / 2)$, if $T \geq \frac{\log (1 / \epsilon)}{2 \gamma^{2}}$, then AdaBoost will output a hypothesis h_{s} with $L_{S}\left(h_{s}\right) \leq \epsilon$.
- Setting $\epsilon=1 /(2 m)$ the hypothesis h_{s} must have a zero training error
- Since the weak learner is invoked on a distribution over S, in many cases δ can be 0 . In any case, by "boosting the confidence", we can assume w.l.o.g. that δ is very small.

Outline

(1) Weak learnability
(2) Boosting the confidence
(3) Boosting the accuracy using AdaBoost

4 AdaBoost as a learner for Halfspaces++
(5) AdaBoost and the Bias-Complexity Tradeoff
(6) Weak Learnability and Separability with Margin
(7) AdaBoost for Face Detection

AdaBoost as a Learner for Halfspaces++

- Let B be the set of all hypotheses the WL may return

AdaBoost as a Learner for Halfspaces++

- Let B be the set of all hypotheses the WL may return
- Observe that AdaBoost outputs a hypothesis from the class

$$
L(B, T)=\left\{x \mapsto \operatorname{sign}\left(\sum_{t=1}^{T} w_{t} h_{t}(x)\right): \mathbf{w} \in \mathbb{R}^{T}, \forall t, \quad h_{t} \in B\right\}
$$

AdaBoost as a Learner for Halfspaces++

- Let B be the set of all hypotheses the WL may return
- Observe that AdaBoost outputs a hypothesis from the class

$$
L(B, T)=\left\{x \mapsto \operatorname{sign}\left(\sum_{t=1}^{T} w_{t} h_{t}(x)\right): \mathbf{w} \in \mathbb{R}^{T}, \forall t, \quad h_{t} \in B\right\}
$$

- Since WL is invoked only on distributions over S we can assume w.l.o.g. that $B=\left\{g_{1}, \ldots, g_{d}\right\}$ for some $d \leq 2^{m}$.

AdaBoost as a Learner for Halfspaces++

- Let B be the set of all hypotheses the WL may return
- Observe that AdaBoost outputs a hypothesis from the class

$$
L(B, T)=\left\{x \mapsto \operatorname{sign}\left(\sum_{t=1}^{T} w_{t} h_{t}(x)\right): \mathbf{w} \in \mathbb{R}^{T}, \forall t, \quad h_{t} \in B\right\}
$$

- Since WL is invoked only on distributions over S we can assume w.l.o.g. that $B=\left\{g_{1}, \ldots, g_{d}\right\}$ for some $d \leq 2^{m}$.
- Denote $\psi(x)=\left(g_{1}(x), \ldots, g_{d}(x)\right)$. Therefore:

$$
L(B, T)=\left\{x \mapsto \operatorname{sign}(\langle w, \psi(x)\rangle): \mathbf{w} \in \mathbb{R}^{d},\|\mathbf{w}\|_{0} \leq T\right\}
$$

where $\|\mathbf{w}\|_{0}=\left|\left\{i: w_{i} \neq 0\right\}\right|$.

AdaBoost as a Learner for Halfspaces++

- Let B be the set of all hypotheses the WL may return
- Observe that AdaBoost outputs a hypothesis from the class

$$
L(B, T)=\left\{x \mapsto \operatorname{sign}\left(\sum_{t=1}^{T} w_{t} h_{t}(x)\right): \mathbf{w} \in \mathbb{R}^{T}, \forall t, \quad h_{t} \in B\right\}
$$

- Since WL is invoked only on distributions over S we can assume w.l.o.g. that $B=\left\{g_{1}, \ldots, g_{d}\right\}$ for some $d \leq 2^{m}$.
- Denote $\psi(x)=\left(g_{1}(x), \ldots, g_{d}(x)\right)$. Therefore:

$$
L(B, T)=\left\{x \mapsto \operatorname{sign}(\langle w, \psi(x)\rangle): \mathbf{w} \in \mathbb{R}^{d},\|\mathbf{w}\|_{0} \leq T\right\}
$$

where $\|\mathbf{w}\|_{0}=\left|\left\{i: w_{i} \neq 0\right\}\right|$.

- That is, AdaBoost learns a composition of the class of halfspaces with sparse coefficients over the mapping $x \mapsto \psi(x)$

Expressiveness of $L(B, T)$

- Suppose $\mathcal{X}=\mathbb{R}$ and B is Decision Stumps,

$$
B=\{x \mapsto \operatorname{sign}(x-\theta) \cdot b: \quad \theta \in \mathbb{R}, b \in\{ \pm 1\}\}
$$

Expressiveness of $L(B, T)$

- Suppose $\mathcal{X}=\mathbb{R}$ and B is Decision Stumps,

$$
B=\{x \mapsto \operatorname{sign}(x-\theta) \cdot b: \quad \theta \in \mathbb{R}, b \in\{ \pm 1\}\}
$$

- Let \mathcal{G}_{T} be the class of piece-wise constant functions with T pieces

Expressiveness of $L(B, T)$

- Suppose $\mathcal{X}=\mathbb{R}$ and B is Decision Stumps,

$$
B=\{x \mapsto \operatorname{sign}(x-\theta) \cdot b: \quad \theta \in \mathbb{R}, b \in\{ \pm 1\}\}
$$

- Let \mathcal{G}_{T} be the class of piece-wise constant functions with T pieces
- Claim: $\mathcal{G}_{T} \subseteq L(B, T)$

Expressiveness of $L(B, T)$

- Suppose $\mathcal{X}=\mathbb{R}$ and B is Decision Stumps,

$$
B=\{x \mapsto \operatorname{sign}(x-\theta) \cdot b: \quad \theta \in \mathbb{R}, b \in\{ \pm 1\}\}
$$

- Let \mathcal{G}_{T} be the class of piece-wise constant functions with T pieces
- Claim: $\mathcal{G}_{T} \subseteq L(B, T)$

Expressiveness of $L(B, T)$

- Suppose $\mathcal{X}=\mathbb{R}$ and B is Decision Stumps,

$$
B=\{x \mapsto \operatorname{sign}(x-\theta) \cdot b: \quad \theta \in \mathbb{R}, b \in\{ \pm 1\}\}
$$

- Let \mathcal{G}_{T} be the class of piece-wise constant functions with T pieces
- Claim: $\mathcal{G}_{T} \subseteq L(B, T)$

Composing halfspaces on top of simple classes can be very expressive !

Outline

(1) Weak learnability
(2) Boosting the confidence
(3) Boosting the accuracy using AdaBoost
4) AdaBoost as a learner for Halfspaces++
(5) AdaBoost and the Bias-Complexity Tradeoff
(6) Weak Learnability and Separability with Margin
(7) AdaBoost for Face Detection

Bias-complexity

Recall:

- We have argued that the expressiveness of $L(B, T)$ grows with T

Bias-complexity

Recall:

- We have argued that the expressiveness of $L(B, T)$ grows with T
- In other words, the approximation error decreases with T

Bias-complexity

Recall:

- We have argued that the expressiveness of $L(B, T)$ grows with T
- In other words, the approximation error decreases with T
- We'll show that the estimation error increases with T

Bias-complexity

Recall:

- We have argued that the expressiveness of $L(B, T)$ grows with T
- In other words, the approximation error decreases with T
- We'll show that the estimation error increases with T
- Therefore, the parameter T of AdaBoost enables us to control the bias-complexity tradeoff

The Estimation Error of $L(B, T)$

- Claim:

$$
\operatorname{VCdim}(L(B, T)) \leq \tilde{O}(T \cdot \operatorname{VCdim}(B))
$$

The Estimation Error of $L(B, T)$

- Claim:

$$
\operatorname{VCdim}(L(B, T)) \leq \tilde{O}(T \cdot \operatorname{VCdim}(B))
$$

- Corollary: if $m \geq \tilde{\Omega}\left(\frac{\log (1 / \delta)}{\gamma^{2} \epsilon}\right)$ and $T=\log (m) /\left(2 \gamma^{2}\right)$, then w.p. of at least $1-\delta$,

$$
L_{(\mathcal{D}, f)}\left(h_{s}\right) \leq \epsilon .
$$

Outline

(1) Weak learnability
(2) Boosting the confidence
(3) Boosting the accuracy using AdaBoost
4) AdaBoost as a learner for Halfspaces++
(5) AdaBoost and the Bias-Complexity Tradeoff
(6) Weak Learnability and Separability with Margin
(7) AdaBoost for Face Detection

Weak Learnability and Separability with Margin

- We have essentially shown: if \mathcal{H} is weak learnable, then $\mathcal{H} \subseteq L(B, \infty)$

Weak Learnability and Separability with Margin

- We have essentially shown: if \mathcal{H} is weak learnable, then $\mathcal{H} \subseteq L(B, \infty)$
- What about the other direction ?

Weak Learnability and Separability with Margin

- We have essentially shown: if \mathcal{H} is weak learnable, then $\mathcal{H} \subseteq L(B, \infty)$
- What about the other direction ?
- Using von Neumanns minimax theorem, it can be shown that if $L(B, \infty)$ separates a training set with ℓ_{1} margin γ then ERM_{B} is a γ weak learner for \mathcal{H}

Weak Learnability and Separability with Margin

- We have essentially shown: if \mathcal{H} is weak learnable, then $\mathcal{H} \subseteq L(B, \infty)$
- What about the other direction ?
- Using von Neumanns minimax theorem, it can be shown that if $L(B, \infty)$ separates a training set with ℓ_{1} margin γ then ERM_{B} is a γ weak learner for \mathcal{H}
- This is beyond the scope of the course

Outline

(1) Weak learnability
(2) Boosting the confidence
(3) Boosting the accuracy using AdaBoost
4) AdaBoost as a learner for Halfspaces++
(5) AdaBoost and the Bias-Complexity Tradeoff
(6) Weak Learnability and Separability with Margin
(7) AdaBoost for Face Detection

Face Detection

- Classify rectangles in an image as face or non-face

Weak Learner for Face Detection

Rules of thumb:

- "eye region is often darker than the cheeks"
- "bridge of the noise is brighter than the eyes"

Weak Learner for Face Detection

Rules of thumb:

- "eye region is often darker than the cheeks"
- "bridge of the noise is brighter than the eyes"

Goal:

- We want to combine few rules of thumb to obtain a face detector
- "Sparsity" reflects both small estimation error but also speed !

Weak Learner for Face Detection

Each hypothesis in the base class is of the form $h(x)=f(g(x))$, where f is a decision stump and $g: \mathbb{R}^{24,24} \rightarrow \mathbb{R}$ is parameterized by:

- An axis-aligned rectangle R. Since each image is of size 24×24, there are at most 24^{4} axis-aligned rectangles.
- A type, $t \in\{A, B, C, D\}$. Each type corresponds to a mask:

D

AdaBoost for Face Detection

The first and second features selected by AdaBoost, as implemented by Viola and Jones.

Summary

- Boosting the confidence using validation
- Boosting the accuracy using AdaBoost
- The power of composing halfspaces over simple classes
- The bias-complexity tradeoff
- AdaBoost works in many practical problems !

