Introduction to Machine Learning (67577) Lecture 5

Shai Shalev-Shwartz

School of CS and Engineering, The Hebrew University of Jerusalem

Nonuniform learning, MDL, SRM, Decision Trees, Nearest Neighbor

Outline

(1) Minimum Description Length
(2) Non-uniform learnability
(3) Structural Risk Minimization
(4) Decision Trees
(5) Nearest Neighbor and Consistency

How to Express Prior Knowledge

- So far, learner expresses prior knowledge by specifying the hypothesis class \mathcal{H}

Other Ways to Express Prior Knowledge

Occam's Razor: "A short explanation is preferred over a longer one"

Other Ways to Express Prior Knowledge

"Things that look alike must be alike"

Outline

(1) Minimum Description Length

(2) Non-uniform learnability

(3) Structural Risk Minimization

4 Decision Trees

(5) Nearest Neighbor and Consistency

Bias to Shorter Description

- Let \mathcal{H} be a countable hypothesis class
- Let $w: \mathcal{H} \rightarrow \mathbb{R}$ be such that $\sum_{h \in \mathcal{H}} w(h) \leq 1$
- The function w reflects prior knowledge on how important $w(h)$ is

Example: Description Length

- Suppose that each $h \in \mathcal{H}$ is described by some word $d(h) \in\{0,1\}^{*}$ E.g.: \mathcal{H} is the class of all python programs

Example: Description Length

- Suppose that each $h \in \mathcal{H}$ is described by some word $d(h) \in\{0,1\}^{*}$ E.g.: \mathcal{H} is the class of all python programs
- Suppose that the description language is prefix-free, namely, for every $h \neq h^{\prime}, d(h)$ is not a prefix of $d\left(h^{\prime}\right)$
(Always achievable by including an "end-of-word" symbol)

Example: Description Length

- Suppose that each $h \in \mathcal{H}$ is described by some word $d(h) \in\{0,1\}^{*}$ E.g.: \mathcal{H} is the class of all python programs
- Suppose that the description language is prefix-free, namely, for every $h \neq h^{\prime}, d(h)$ is not a prefix of $d\left(h^{\prime}\right)$
(Always achievable by including an "end-of-word" symbol)
- Let $|h|$ be the length of $d(h)$

Example: Description Length

- Suppose that each $h \in \mathcal{H}$ is described by some word $d(h) \in\{0,1\}^{*}$ E.g.: \mathcal{H} is the class of all python programs
- Suppose that the description language is prefix-free, namely, for every $h \neq h^{\prime}, d(h)$ is not a prefix of $d\left(h^{\prime}\right)$
(Always achievable by including an "end-of-word" symbol)
- Let $|h|$ be the length of $d(h)$
- Then, set $w(h)=2^{-|h|}$

Example: Description Length

- Suppose that each $h \in \mathcal{H}$ is described by some word $d(h) \in\{0,1\}^{*}$ E.g.: \mathcal{H} is the class of all python programs
- Suppose that the description language is prefix-free, namely, for every $h \neq h^{\prime}, d(h)$ is not a prefix of $d\left(h^{\prime}\right)$
(Always achievable by including an "end-of-word" symbol)
- Let $|h|$ be the length of $d(h)$
- Then, set $w(h)=2^{-|h|}$
- Kraft's inequality implies that $\sum_{h} w(h) \leq 1$

Example: Description Length

- Suppose that each $h \in \mathcal{H}$ is described by some word $d(h) \in\{0,1\}^{*}$ E.g.: \mathcal{H} is the class of all python programs
- Suppose that the description language is prefix-free, namely, for every $h \neq h^{\prime}, d(h)$ is not a prefix of $d\left(h^{\prime}\right)$
(Always achievable by including an "end-of-word" symbol)
- Let $|h|$ be the length of $d(h)$
- Then, set $w(h)=2^{-|h|}$
- Kraft's inequality implies that $\sum_{h} w(h) \leq 1$
- Proof: define probability over words in $d(\mathcal{H})$ as follows: repeatedly toss an unbiased coin, until the sequence of outcomes is a member of $d(\mathcal{H})$, and then stop. Since $d(\mathcal{H})$ is prefix-free, this is a valid probability over $d(\mathcal{H})$, and the probability to get $d(h)$ is $w(h)$.

Bias to Shorter Description

Theorem (Minimum Description Length (MDL) bound)

Let $w: \mathcal{H} \rightarrow \mathbb{R}$ be such that $\sum_{h \in \mathcal{H}} w(h) \leq 1$. Then, with probability of at least $1-\delta$ over $S \sim \mathcal{D}^{m}$ we have:

$$
\forall h \in \mathcal{H}, L_{D}(h) \leq L_{S}(h)+\sqrt{\frac{-\log (w(h))+\log (2 / \delta)}{2 m}}
$$

Bias to Shorter Description

Theorem (Minimum Description Length (MDL) bound)

Let $w: \mathcal{H} \rightarrow \mathbb{R}$ be such that $\sum_{h \in \mathcal{H}} w(h) \leq 1$. Then, with probability of at least $1-\delta$ over $S \sim \mathcal{D}^{m}$ we have:

$$
\forall h \in \mathcal{H}, L_{D}(h) \leq L_{S}(h)+\sqrt{\frac{-\log (w(h))+\log (2 / \delta)}{2 m}}
$$

Compare to VC bound:

$$
\forall h \in \mathcal{H}, L_{D}(h) \leq L_{S}(h)+C \sqrt{\frac{\mathrm{VCdim}(\mathcal{H})+\log (2 / \delta)}{2 m}}
$$

Proof

- For every h, define $\delta_{h}=w(h) \cdot \delta$

Proof

- For every h, define $\delta_{h}=w(h) \cdot \delta$
- By Hoeffding's bound, for every h,

$$
\mathcal{D}^{m}\left(\left\{S: L_{\mathcal{D}}(h)>L_{S}(h)+\sqrt{\frac{\log \left(2 / \delta_{h}\right)}{2 m}}\right\}\right) \leq \delta_{h}
$$

Proof

- For every h, define $\delta_{h}=w(h) \cdot \delta$
- By Hoeffding's bound, for every h,

$$
\mathcal{D}^{m}\left(\left\{S: L_{\mathcal{D}}(h)>L_{S}(h)+\sqrt{\frac{\log \left(2 / \delta_{h}\right)}{2 m}}\right\}\right) \leq \delta_{h}
$$

- Applying the union bound,

$$
\begin{aligned}
& \mathcal{D}^{m}\left(\left\{S: \exists h \in \mathcal{H}, L_{\mathcal{D}}(h)>L_{S}(h)+\sqrt{\frac{\log \left(2 / \delta_{h}\right)}{2 m}}\right\}\right)= \\
& \mathcal{D}^{m}\left(\cup_{h \in \mathcal{H}}\left\{S: L_{\mathcal{D}}(h)>L_{S}(h)+\sqrt{\frac{\log \left(2 / \delta_{h}\right)}{2 m}}\right\}\right) \leq \\
& \sum_{h \in \mathcal{H}} \delta_{h} \leq \delta .
\end{aligned}
$$

Bound Minimization

- MDL bound: $\forall h \in \mathcal{H}, L_{D}(h) \leq L_{S}(h)+\sqrt{\frac{-\log (w(h))+\log (2 / \delta)}{2 m}}$
- VC bound: $\forall h \in \mathcal{H}, L_{D}(h) \leq L_{S}(h)+C \sqrt{\frac{\mathrm{VCdim}(\mathcal{H})+\log (2 / \delta)}{2 m}}$

Bound Minimization

- MDL bound: $\forall h \in \mathcal{H}, L_{D}(h) \leq L_{S}(h)+\sqrt{\frac{-\log (w(h))+\log (2 / \delta)}{2 m}}$
- VC bound: $\forall h \in \mathcal{H}, L_{D}(h) \leq L_{S}(h)+C \sqrt{\frac{\mathrm{VCdim}(\mathcal{H})+\log (2 / \delta)}{2 m}}$
- Recall that our goal is to minimize $L_{\mathcal{D}}(h)$ over $h \in \mathcal{H}$

Bound Minimization

- MDL bound: $\forall h \in \mathcal{H}, L_{D}(h) \leq L_{S}(h)+\sqrt{\frac{-\log (w(h))+\log (2 / \delta)}{2 m}}$
- VC bound: $\forall h \in \mathcal{H}, L_{D}(h) \leq L_{S}(h)+C \sqrt{\frac{\mathrm{VCdim}(\mathcal{H})+\log (2 / \delta)}{2 m}}$
- Recall that our goal is to minimize $L_{\mathcal{D}}(h)$ over $h \in \mathcal{H}$
- Minimizing the VC bound leads to the ERM rule

Bound Minimization

- MDL bound: $\forall h \in \mathcal{H}, L_{D}(h) \leq L_{S}(h)+\sqrt{\frac{-\log (w(h))+\log (2 / \delta)}{2 m}}$
- VC bound: $\forall h \in \mathcal{H}, L_{D}(h) \leq L_{S}(h)+C \sqrt{\frac{\mathrm{VCdim}(\mathcal{H})+\log (2 / \delta)}{2 m}}$
- Recall that our goal is to minimize $L_{\mathcal{D}}(h)$ over $h \in \mathcal{H}$
- Minimizing the VC bound leads to the ERM rule
- Minimizing the MDL bound leads to the MDL rule:

$$
\operatorname{MDL}(S) \in \underset{h \in \mathcal{H}}{\operatorname{argmin}}\left[L_{S}(h)+\sqrt{\frac{-\log (w(h))+\log (2 / \delta)}{2 m}}\right]
$$

Bound Minimization

- MDL bound: $\forall h \in \mathcal{H}, L_{D}(h) \leq L_{S}(h)+\sqrt{\frac{-\log (w(h))+\log (2 / \delta)}{2 m}}$
- VC bound: $\forall h \in \mathcal{H}, L_{D}(h) \leq L_{S}(h)+C \sqrt{\frac{\mathrm{VCdim}(\mathcal{H})+\log (2 / \delta)}{2 m}}$
- Recall that our goal is to minimize $L_{\mathcal{D}}(h)$ over $h \in \mathcal{H}$
- Minimizing the VC bound leads to the ERM rule
- Minimizing the MDL bound leads to the MDL rule:

$$
\operatorname{MDL}(S) \in \underset{h \in \mathcal{H}}{\operatorname{argmin}}\left[L_{S}(h)+\sqrt{\frac{-\log (w(h))+\log (2 / \delta)}{2 m}}\right]
$$

- When $w(h)=2^{-|h|}$ we obtain $-\log (w(h))=|h| \log (2)$

Bound Minimization

- MDL bound: $\forall h \in \mathcal{H}, L_{D}(h) \leq L_{S}(h)+\sqrt{\frac{-\log (w(h))+\log (2 / \delta)}{2 m}}$
- VC bound: $\forall h \in \mathcal{H}, L_{D}(h) \leq L_{S}(h)+C \sqrt{\frac{\mathrm{VCdim}(\mathcal{H})+\log (2 / \delta)}{2 m}}$
- Recall that our goal is to minimize $L_{\mathcal{D}}(h)$ over $h \in \mathcal{H}$
- Minimizing the VC bound leads to the ERM rule
- Minimizing the MDL bound leads to the MDL rule:

$$
\operatorname{MDL}(S) \in \underset{h \in \mathcal{H}}{\operatorname{argmin}}\left[L_{S}(h)+\sqrt{\frac{-\log (w(h))+\log (2 / \delta)}{2 m}}\right]
$$

- When $w(h)=2^{-|h|}$ we obtain $-\log (w(h))=|h| \log (2)$
- Explicit tradeoff between bias (small $\left.L_{S}(h)\right)$ and complexity (small $|h|)$

MDL guarantee

Theorem

For every $h^{*} \in \mathcal{H}$, w.p. $\geq 1-\delta$ over $S \sim \mathcal{D}^{m}$ we have:

$$
L_{\mathcal{D}}(\operatorname{MDL}(S)) \leq L_{\mathcal{D}}\left(h^{*}\right)+\sqrt{\frac{-\log \left(w\left(h^{*}\right)\right)+\log (2 / \delta)}{2 m}}
$$

MDL guarantee

Theorem

For every $h^{*} \in \mathcal{H}$, w.p. $\geq 1-\delta$ over $S \sim \mathcal{D}^{m}$ we have:

$$
L_{\mathcal{D}}(\operatorname{MDL}(S)) \leq L_{\mathcal{D}}\left(h^{*}\right)+\sqrt{\frac{-\log \left(w\left(h^{*}\right)\right)+\log (2 / \delta)}{2 m}}
$$

- Example: Take \mathcal{H} to be the class of all python programs, with $|h|$ be the code length (in bits)

MDL guarantee

Theorem

For every $h^{*} \in \mathcal{H}$, w.p. $\geq 1-\delta$ over $S \sim \mathcal{D}^{m}$ we have:

$$
L_{\mathcal{D}}(\operatorname{MDL}(S)) \leq L_{\mathcal{D}}\left(h^{*}\right)+\sqrt{\frac{-\log \left(w\left(h^{*}\right)\right)+\log (2 / \delta)}{2 m}}
$$

- Example: Take \mathcal{H} to be the class of all python programs, with $|h|$ be the code length (in bits)
- Assume $\exists h^{*} \in \mathcal{H}$ with $L_{\mathcal{D}}\left(h^{*}\right)=0$. Then, for every ϵ, δ, exists sample size m s.t. $\mathcal{D}^{m}\left(\left\{S: L_{\mathcal{D}}(\operatorname{MDL}(S)) \leq \epsilon\right\}\right) \geq 1-\delta$

MDL guarantee

Theorem

For every $h^{*} \in \mathcal{H}$, w.p. $\geq 1-\delta$ over $S \sim \mathcal{D}^{m}$ we have:

$$
L_{\mathcal{D}}(\operatorname{MDL}(S)) \leq L_{\mathcal{D}}\left(h^{*}\right)+\sqrt{\frac{-\log \left(w\left(h^{*}\right)\right)+\log (2 / \delta)}{2 m}}
$$

- Example: Take \mathcal{H} to be the class of all python programs, with $|h|$ be the code length (in bits)
- Assume $\exists h^{*} \in \mathcal{H}$ with $L_{\mathcal{D}}\left(h^{*}\right)=0$. Then, for every ϵ, δ, exists sample size m s.t. $\mathcal{D}^{m}\left(\left\{S: L_{\mathcal{D}}(\operatorname{MDL}(S)) \leq \epsilon\right\}\right) \geq 1-\delta$
- MDL is a Universal Learner

MDL guarantee

Theorem

For every $h^{*} \in \mathcal{H}$, w.p. $\geq 1-\delta$ over $S \sim \mathcal{D}^{m}$ we have:

$$
L_{\mathcal{D}}(\operatorname{MDL}(S)) \leq L_{\mathcal{D}}\left(h^{*}\right)+\sqrt{\frac{-\log \left(w\left(h^{*}\right)\right)+\log (2 / \delta)}{2 m}}
$$

- Example: Take \mathcal{H} to be the class of all python programs, with $|h|$ be the code length (in bits)
- Assume $\exists h^{*} \in \mathcal{H}$ with $L_{\mathcal{D}}\left(h^{*}\right)=0$. Then, for every ϵ, δ, exists sample size m s.t. $\mathcal{D}^{m}\left(\left\{S: L_{\mathcal{D}}(\operatorname{MDL}(S)) \leq \epsilon\right\}\right) \geq 1-\delta$
- MDL is a Universal Learner

Contradiction to the fundamental theorem of learning ?

- Take again \mathcal{H} to be all python programs
- Note that $\operatorname{VCdim}(\mathcal{H})=\infty$
- The No-Free-Lunch theorem we can't learn \mathcal{H}
- So how come we can learn \mathcal{H} using MDL ???

Outline

(1) Minimum Description Length

(2) Non-uniform learnability

(3) Structural Risk Minimization

4 Decision Trees

(5) Nearest Neighbor and Consistency

Non-uniform learning

Definition (Non-uniformly learnable)

\mathcal{H} is non-uniformly learnable if $\exists A$ and $m_{\mathcal{H}}^{\text {NUL }}:(0,1)^{2} \times \mathcal{H} \rightarrow \mathbb{N}$ s.t., $\forall \epsilon, \delta \in(0,1), \forall h \in \mathcal{H}$, if $m \geq m_{\mathcal{H}}^{\mathrm{NUL}}(\epsilon, \delta, h)$ then $\forall \mathcal{D}$,

$$
\mathcal{D}^{m}\left(\left\{S: L_{\mathcal{D}}(A(S)) \leq L_{\mathcal{D}}(h)+\epsilon\right\}\right) \geq 1-\delta
$$

- Number of required examples depends on ϵ, δ, and h

Definition (Agnostic PAC learnable)

\mathcal{H} is agnostically PAC learnable if $\exists A$ and $m_{\mathcal{H}}:(0,1)^{2} \rightarrow \mathbb{N}$ s.t. $\forall \epsilon, \delta \in(0,1)$, if $m \geq m_{\mathcal{H}}(\epsilon, \delta)$, then $\forall \mathcal{D}$ and $\forall h \in \mathcal{H}$,

$$
\mathcal{D}^{m}\left(\left\{S: L_{\mathcal{D}}(A(S)) \leq L_{\mathcal{D}}(h)+\epsilon\right\}\right) \geq 1-\delta
$$

- Number of required examples depends only on ϵ, δ

Non-uniform learning vs. PAC learning

Corollary

Let \mathcal{H} be the class of all computable functions

- \mathcal{H} is non-uniform learnable, with sample complexity,

$$
m_{\mathcal{H}}^{\text {NUL }}(\epsilon, \delta, h) \leq \frac{-\log (w(h))+\log (2 / \delta)}{2 \epsilon^{2}}
$$

- \mathcal{H} is not PAC learnable.

Non-uniform learning vs. PAC learning

Corollary

Let \mathcal{H} be the class of all computable functions

- \mathcal{H} is non-uniform learnable, with sample complexity,

$$
m_{\mathcal{H}}^{N U L}(\epsilon, \delta, h) \leq \frac{-\log (w(h))+\log (2 / \delta)}{2 \epsilon^{2}}
$$

- \mathcal{H} is not PAC learnable.
- We saw that the VC dimension characterizes PAC learnability
- What characterizes non-uniform learnability ?

Characterizing Non-uniform Learnability

Theorem
 A class $\mathcal{H} \subset\{0,1\}^{\mathcal{X}}$ is non-uniform learnable if and only if it is a countable union of PAC learnable hypothesis classes.

Proof (Non-uniform learnable \Rightarrow countable union)

- Assume that \mathcal{H} is non-uniform learnable using A with sample complexity $m_{\mathcal{H}}^{\text {NUL }}$

Proof (Non-uniform learnable \Rightarrow countable union)

- Assume that \mathcal{H} is non-uniform learnable using A with sample complexity $m_{\mathcal{H}}^{\text {NUL }}$
- For every $n \in \mathbb{N}$, let $\mathcal{H}_{n}=\left\{h \in \mathcal{H}: m_{\mathcal{H}}^{\mathrm{NUL}}(1 / 8,1 / 7, h) \leq n\right\}$

Proof (Non-uniform learnable \Rightarrow countable union)

- Assume that \mathcal{H} is non-uniform learnable using A with sample complexity $m_{\mathcal{H}}^{\text {NUL }}$
- For every $n \in \mathbb{N}$, let $\mathcal{H}_{n}=\left\{h \in \mathcal{H}: m_{\mathcal{H}}^{\mathrm{NUL}}(1 / 8,1 / 7, h) \leq n\right\}$
- Clearly, $\mathcal{H}=\cup_{n \in \mathbb{N}} \mathcal{H}_{n}$.

Proof (Non-uniform learnable \Rightarrow countable union)

- Assume that \mathcal{H} is non-uniform learnable using A with sample complexity $m_{\mathcal{H}}^{\text {NUL }}$
- For every $n \in \mathbb{N}$, let $\mathcal{H}_{n}=\left\{h \in \mathcal{H}: m_{\mathcal{H}}^{\mathrm{NUL}}(1 / 8,1 / 7, h) \leq n\right\}$
- Clearly, $\mathcal{H}=\cup_{n \in \mathbb{N}} \mathcal{H}_{n}$.
- For every \mathcal{D} s.t. $\exists h \in \mathcal{H}_{n}$ with $L_{\mathcal{D}}(h)=0$ we have that $\mathcal{D}^{n}\left(\left\{S: L_{\mathcal{D}}(A(S)) \leq 1 / 8\right\}\right) \geq 6 / 7$

Proof (Non-uniform learnable \Rightarrow countable union)

- Assume that \mathcal{H} is non-uniform learnable using A with sample complexity $m_{\mathcal{H}}^{\mathrm{NUL}}$
- For every $n \in \mathbb{N}$, let $\mathcal{H}_{n}=\left\{h \in \mathcal{H}: m_{\mathcal{H}}^{\mathrm{NUL}}(1 / 8,1 / 7, h) \leq n\right\}$
- Clearly, $\mathcal{H}=\cup_{n \in \mathbb{N}} \mathcal{H}_{n}$.
- For every \mathcal{D} s.t. $\exists h \in \mathcal{H}_{n}$ with $L_{\mathcal{D}}(h)=0$ we have that $\mathcal{D}^{n}\left(\left\{S: L_{\mathcal{D}}(A(S)) \leq 1 / 8\right\}\right) \geq 6 / 7$
- The fundamental theorem of statistical learning implies that $\operatorname{VCdim}\left(\mathcal{H}_{n}\right)<\infty$, and therefore \mathcal{H}_{n} is agnostic PAC learnable

Proof (Countable union \Rightarrow non-uniform learnable)

- Assume $\mathcal{H}=\cup_{n \in \mathbb{N}} \mathcal{H}_{n}$, and $\operatorname{VCdim}\left(\mathcal{H}_{n}\right)=d_{n}<\infty$

Proof (Countable union \Rightarrow non-uniform learnable)

- Assume $\mathcal{H}=\cup_{n \in \mathbb{N}} \mathcal{H}_{n}$, and $\operatorname{VCdim}\left(\mathcal{H}_{n}\right)=d_{n}<\infty$
- Choose $w: \mathbb{N} \rightarrow[0,1]$ s.t. $\sum_{n} w(n) \leq 1$. E.g. $w(n)=\frac{6}{\pi^{2} n^{2}}$

Proof (Countable union \Rightarrow non-uniform learnable)

- Assume $\mathcal{H}=\cup_{n \in \mathbb{N}} \mathcal{H}_{n}$, and $\operatorname{VCdim}\left(\mathcal{H}_{n}\right)=d_{n}<\infty$
- Choose $w: \mathbb{N} \rightarrow[0,1]$ s.t. $\sum_{n} w(n) \leq 1$. E.g. $w(n)=\frac{6}{\pi^{2} n^{2}}$
- Choose $\delta_{n}=\delta \cdot w(n)$ and $\epsilon_{n}=\sqrt{C \frac{d_{n}+\log \left(1 / \delta_{n}\right)}{m}}$

Proof (Countable union \Rightarrow non-uniform learnable)

- Assume $\mathcal{H}=\cup_{n \in \mathbb{N}} \mathcal{H}_{n}$, and $\operatorname{VCdim}\left(\mathcal{H}_{n}\right)=d_{n}<\infty$
- Choose $w: \mathbb{N} \rightarrow[0,1]$ s.t. $\sum_{n} w(n) \leq 1$. E.g. $w(n)=\frac{6}{\pi^{2} n^{2}}$
- Choose $\delta_{n}=\delta \cdot w(n)$ and $\epsilon_{n}=\sqrt{C \frac{d_{n}+\log \left(1 / \delta_{n}\right)}{m}}$
- By the fundamental theorem, for every n,

$$
\mathcal{D}^{m}\left(\left\{S: \exists h \in \mathcal{H}_{n}, L_{\mathcal{D}}(h)>L_{S}(h)+\epsilon_{n}\right\}\right) \leq \delta_{n}
$$

Proof (Countable union \Rightarrow non-uniform learnable)

- Assume $\mathcal{H}=\cup_{n \in \mathbb{N}} \mathcal{H}_{n}$, and $\operatorname{VCdim}\left(\mathcal{H}_{n}\right)=d_{n}<\infty$
- Choose $w: \mathbb{N} \rightarrow[0,1]$ s.t. $\sum_{n} w(n) \leq 1$. E.g. $w(n)=\frac{6}{\pi^{2} n^{2}}$
- Choose $\delta_{n}=\delta \cdot w(n)$ and $\epsilon_{n}=\sqrt{C \frac{d_{n}+\log \left(1 / \delta_{n}\right)}{m}}$
- By the fundamental theorem, for every n,

$$
\mathcal{D}^{m}\left(\left\{S: \exists h \in \mathcal{H}_{n}, L_{\mathcal{D}}(h)>L_{S}(h)+\epsilon_{n}\right\}\right) \leq \delta_{n}
$$

- Applying the union bound over n we obtain

$$
\mathcal{D}^{m}\left(\left\{S: \exists n, h \in \mathcal{H}_{n}, L_{\mathcal{D}}(h)>L_{S}(h)+\epsilon_{n}\right\}\right) \leq \sum_{n} \delta_{n} \leq \delta .
$$

Proof (Countable union \Rightarrow non-uniform learnable)

- Assume $\mathcal{H}=\cup_{n \in \mathbb{N}} \mathcal{H}_{n}$, and $\operatorname{VCdim}\left(\mathcal{H}_{n}\right)=d_{n}<\infty$
- Choose $w: \mathbb{N} \rightarrow[0,1]$ s.t. $\sum_{n} w(n) \leq 1$. E.g. $w(n)=\frac{6}{\pi^{2} n^{2}}$
- Choose $\delta_{n}=\delta \cdot w(n)$ and $\epsilon_{n}=\sqrt{C \frac{d_{n}+\log \left(1 / \delta_{n}\right)}{m}}$
- By the fundamental theorem, for every n,

$$
\mathcal{D}^{m}\left(\left\{S: \exists h \in \mathcal{H}_{n}, L_{\mathcal{D}}(h)>L_{S}(h)+\epsilon_{n}\right\}\right) \leq \delta_{n} .
$$

- Applying the union bound over n we obtain

$$
\mathcal{D}^{m}\left(\left\{S: \exists n, h \in \mathcal{H}_{n}, L_{\mathcal{D}}(h)>L_{S}(h)+\epsilon_{n}\right\}\right) \leq \sum_{n} \delta_{n} \leq \delta .
$$

- This yields a generic non-uniform learning rule

Outline

(1) Minimum Description Length

(2) Non-uniform learnability

(3) Structural Risk Minimization

4 Decision Trees

(5) Nearest Neighbor and Consistency

Structural Risk Minimization (SRM)

$\operatorname{SRM}(S) \in \underset{h \in \mathcal{H}}{\operatorname{argmin}}\left[L_{S}(h)+\min _{n: h \in \mathcal{H}_{n}} \sqrt{C \frac{d_{n}-\log (w(n))+\log (1 / \delta)}{m}}\right]$

Structural Risk Minimization (SRM)

$\operatorname{SRM}(S) \in \underset{h \in \mathcal{H}}{\operatorname{argmin}}\left[L_{S}(h)+\min _{n: h \in \mathcal{H}_{n}} \sqrt{C \frac{d_{n}-\log (w(n))+\log (1 / \delta)}{m}}\right]$

- As in the analysis of MDL, it is easy to show that for every $h \in \mathcal{H}$,

$$
L_{\mathcal{D}}(\operatorname{SRM}(S)) \leq L_{S}(h)+\min _{n: h \in \mathcal{H}_{n}} \sqrt{C \frac{d_{n}-\log (w(n))+\log (1 / \delta)}{m}}
$$

Structural Risk Minimization (SRM)

$\operatorname{SRM}(S) \in \underset{h \in \mathcal{H}}{\operatorname{argmin}}\left[L_{S}(h)+\min _{n: h \in \mathcal{H}_{n}} \sqrt{C \frac{d_{n}-\log (w(n))+\log (1 / \delta)}{m}}\right]$

- As in the analysis of MDL, it is easy to show that for every $h \in \mathcal{H}$,

$$
L_{\mathcal{D}}(\operatorname{SRM}(S)) \leq L_{S}(h)+\min _{n: h \in \mathcal{H}_{n}} \sqrt{C \frac{d_{n}-\log (w(n))+\log (1 / \delta)}{m}}
$$

- Hence, SRM is a generic non-uniform learner with sample complexity

$$
m_{\mathcal{H}}^{\mathrm{NUL}}(\epsilon, \delta, h) \leq \min _{n: h \in \mathcal{H}_{n}} C \frac{d_{n}-\log (w(n))+\log (1 / \delta)}{\epsilon^{2}}
$$

No-free-lunch for non-uniform learnability

- Claim: For any infinite domain set, \mathcal{X}, the class $\mathcal{H}=\{0,1\}^{\mathcal{X}}$ is not a countable union of classes of finite VC-dimension.
- Hence, such classes \mathcal{H} are not non-uniformly learnable

The cost of weaker prior knowledge

- Suppose $\mathcal{H}=\cup_{n} \mathcal{H}_{n}$, where $\operatorname{VCdim}\left(\mathcal{H}_{n}\right)=n$
- Suppose that some $h^{*} \in \mathcal{H}_{n}$ has $L_{\mathcal{D}}\left(h^{*}\right)=0$
- With this prior knowledge, we can apply ERM on \mathcal{H}_{n}, and the sample complexity is $C \frac{n+\log (1 / \delta)}{\epsilon^{2}}$
- Without this prior knowledge, SRM will need $C \frac{n+\log \left(\pi^{2} n^{2} / 6\right)+\log (1 / \delta)}{\epsilon^{2}}$ examples
- That is, we pay order of $\log (n) / \epsilon^{2}$ more examples for not knowing n in advanced

The cost of weaker prior knowledge

- Suppose $\mathcal{H}=\cup_{n} \mathcal{H}_{n}$, where $\operatorname{VCdim}\left(\mathcal{H}_{n}\right)=n$
- Suppose that some $h^{*} \in \mathcal{H}_{n}$ has $L_{\mathcal{D}}\left(h^{*}\right)=0$
- With this prior knowledge, we can apply ERM on \mathcal{H}_{n}, and the sample complexity is $C \frac{n+\log (1 / \delta)}{\epsilon^{2}}$
- Without this prior knowledge, SRM will need $C \frac{n+\log \left(\pi^{2} n^{2} / 6\right)+\log (1 / \delta)}{\epsilon^{2}}$ examples
- That is, we pay order of $\log (n) / \epsilon^{2}$ more examples for not knowing n in advanced

SRM for model selection:

Outline

(1) Minimum Description Length

(2) Non-uniform learnability

(3) Structural Risk Minimization

4 Decision Trees

(5) Nearest Neighbor and Consistency

Decision Trees

VC dimension of Decision Trees

- Claim: Consider the class of decision trees over \mathcal{X} with k leaves. Then, the VC dimension of this class is k
- Proof: A set of k instances that arrive to the different leaves can be shattered. A set of $k+1$ instances can't be shattered since 2 instances must arrive to the same leaf

Description Language for Decision Trees

- Suppose $\mathcal{X}=\{0,1\}^{d}$ and splitting rules are according to $\mathbb{1}_{\left[x_{i}=1\right]}$ for some $i \in[d]$

Description Language for Decision Trees

- Suppose $\mathcal{X}=\{0,1\}^{d}$ and splitting rules are according to $\mathbb{1}_{\left[x_{i}=1\right]}$ for some $i \in[d]$
- Consider the class of all such decision trees over \mathcal{X}

Description Language for Decision Trees

- Suppose $\mathcal{X}=\{0,1\}^{d}$ and splitting rules are according to $\mathbb{1}_{\left[x_{i}=1\right]}$ for some $i \in[d]$
- Consider the class of all such decision trees over \mathcal{X}
- Claim: This class contains $\{0,1\}^{\mathcal{X}}$ and hence its VC dimension is $|\mathcal{X}|=2^{d}$

Description Language for Decision Trees

- Suppose $\mathcal{X}=\{0,1\}^{d}$ and splitting rules are according to $\mathbb{1}_{\left[x_{i}=1\right]}$ for some $i \in[d]$
- Consider the class of all such decision trees over \mathcal{X}
- Claim: This class contains $\{0,1\}^{\mathcal{X}}$ and hence its VC dimension is $|\mathcal{X}|=2^{d}$
- But, we can bias to "small trees"

Description Language for Decision Trees

- Suppose $\mathcal{X}=\{0,1\}^{d}$ and splitting rules are according to $\mathbb{1}_{\left[x_{i}=1\right]}$ for some $i \in[d]$
- Consider the class of all such decision trees over \mathcal{X}
- Claim: This class contains $\{0,1\}^{\mathcal{X}}$ and hence its VC dimension is $|\mathcal{X}|=2^{d}$
- But, we can bias to "small trees"
- A tree with n nodes can be described as $n+1$ blocks, each of size $\log _{2}(d+3)$ bits, indicating (in depth-first order)

Description Language for Decision Trees

- Suppose $\mathcal{X}=\{0,1\}^{d}$ and splitting rules are according to $\mathbb{1}_{\left[x_{i}=1\right]}$ for some $i \in[d]$
- Consider the class of all such decision trees over \mathcal{X}
- Claim: This class contains $\{0,1\}^{\mathcal{X}}$ and hence its VC dimension is $|\mathcal{X}|=2^{d}$
- But, we can bias to "small trees"
- A tree with n nodes can be described as $n+1$ blocks, each of size $\log _{2}(d+3)$ bits, indicating (in depth-first order)
- An internal node of the form ' $\mathbb{1}_{\left[x_{i}=1\right]}$ ' for some $i \in[d]$

Description Language for Decision Trees

- Suppose $\mathcal{X}=\{0,1\}^{d}$ and splitting rules are according to $\mathbb{1}_{\left[x_{i}=1\right]}$ for some $i \in[d]$
- Consider the class of all such decision trees over \mathcal{X}
- Claim: This class contains $\{0,1\}^{\mathcal{X}}$ and hence its VC dimension is $|\mathcal{X}|=2^{d}$
- But, we can bias to "small trees"
- A tree with n nodes can be described as $n+1$ blocks, each of size $\log _{2}(d+3)$ bits, indicating (in depth-first order)
- An internal node of the form ' $\mathbb{1}_{\left[x_{i}=1\right]}$ ' for some $i \in[d]$
- A leaf whose value is 1

Description Language for Decision Trees

- Suppose $\mathcal{X}=\{0,1\}^{d}$ and splitting rules are according to $\mathbb{1}_{\left[x_{i}=1\right]}$ for some $i \in[d]$
- Consider the class of all such decision trees over \mathcal{X}
- Claim: This class contains $\{0,1\}^{\mathcal{X}}$ and hence its VC dimension is $|\mathcal{X}|=2^{d}$
- But, we can bias to "small trees"
- A tree with n nodes can be described as $n+1$ blocks, each of size $\log _{2}(d+3)$ bits, indicating (in depth-first order)
- An internal node of the form ' $\mathbb{1}_{\left[x_{i}=1\right]}$ ' for some $i \in[d]$
- A leaf whose value is 1
- A leaf whose value is 0

Description Language for Decision Trees

- Suppose $\mathcal{X}=\{0,1\}^{d}$ and splitting rules are according to $\mathbb{1}_{\left[x_{i}=1\right]}$ for some $i \in[d]$
- Consider the class of all such decision trees over \mathcal{X}
- Claim: This class contains $\{0,1\}^{\mathcal{X}}$ and hence its VC dimension is $|\mathcal{X}|=2^{d}$
- But, we can bias to "small trees"
- A tree with n nodes can be described as $n+1$ blocks, each of size $\log _{2}(d+3)$ bits, indicating (in depth-first order)
- An internal node of the form ' $\mathbb{1}_{\left[x_{i}=1\right]}$ ' for some $i \in[d]$
- A leaf whose value is 1
- A leaf whose value is 0
- End of the code

Description Language for Decision Trees

- Suppose $\mathcal{X}=\{0,1\}^{d}$ and splitting rules are according to $\mathbb{1}_{\left[x_{i}=1\right]}$ for some $i \in[d]$
- Consider the class of all such decision trees over \mathcal{X}
- Claim: This class contains $\{0,1\}^{\mathcal{X}}$ and hence its VC dimension is $|\mathcal{X}|=2^{d}$
- But, we can bias to "small trees"
- A tree with n nodes can be described as $n+1$ blocks, each of size $\log _{2}(d+3)$ bits, indicating (in depth-first order)
- An internal node of the form ' $\mathbb{1}_{\left[x_{i}=1\right]}$ ' for some $i \in[d]$
- A leaf whose value is 1
- A leaf whose value is 0
- End of the code
- Can apply MDL learning rule: search tree with n nodes that minimizes

$$
L_{S}(h)+\sqrt{\frac{(n+1) \log _{2}(d+3)+\log (2 / \delta)}{2 m}}
$$

Decision Tree Algorithms

- NP hard problem ...
- Greedy approach: 'Iterative Dichotomizer 3'
- Following the MDL principle, attempts to create a small tree with low train error
- Proposed by Ross Quinlan

$\operatorname{ID} 3(S, A)$

- Input: training set S, feature subset $A \subseteq[d]$
- if all examples in S are labeled by 1 , return a leaf 1
- if all examples in S are labeled by 0 , return a leaf 0
- if $A=\emptyset$, return a leaf whose value $=$ majority of labels in S. else :
- Let $j=\operatorname{argmax}_{i \in A} \operatorname{Gain}(S, i)$
- if all examples in S have the same label

Return a leaf whose value $=$ majority of labels in S

- else

Let T_{1} be the tree returned by $\operatorname{ID} 3\left(\left\{(\mathbf{x}, y) \in S: x_{j}=1\right\}, A \backslash\{j\}\right)$.
Let T_{2} be the tree returned by $\operatorname{ID3}\left(\left\{(\mathbf{x}, y) \in S: x_{j}=0\right\}, A \backslash\{j\}\right)$.
Return the tree:

Gain Measures

$$
\operatorname{Gain}(S, i)=C(\underset{S}{\mathbb{P}}[y])-\left(\underset{S}{\mathbb{P}}\left[x_{i}\right] C\left(\underset{S}{\mathbb{P}}\left[y \mid x_{i}\right]\right)+\underset{S}{\mathbb{P}}\left[\neg x_{i}\right] C\left(\underset{S}{\mathbb{P}}\left[y \mid \neg x_{i}\right]\right)\right)
$$

- Train error: $C(a)=\min \{a, 1-a\}$
- Information gain: $C(a)=-a \log (a)-(1-a) \log (1-a)$
- Gini index: $C(a)=2 a(1-a)$

Pruning, Random Forests, ...

In the exercise you'll learn about additional practical variants:

- Pruning the tree
- Random Forests
- Dealing with real valued features

Outline

(1) Minimum Description Length

(2) Non-uniform learnability

(3) Structural Risk Minimization

4 Decision Trees
(5) Nearest Neighbor and Consistency

Nearest Neighbor

"Things that look alike must be alike"

- Memorize the training set $S=\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right)$
- Given new x, find the k closest points in S and return majority vote among their labels

1-Nearest Neighbor: Voronoi Tessellation

1-Nearest Neighbor: Voronoi Tessellation

- Unlike ERM,SRM,MDL, etc., there's no \mathcal{H}
- At training time: "do nothing"
- At test time: search S for the nearest neighbors

Analysis of k-NN

- $\mathcal{X}=[0,1]^{d}, Y=\{0,1\}, \mathcal{D}$ is a distribution over $\mathcal{X} \times \mathcal{Y}, \mathcal{D}_{\mathcal{X}}$ is the marginal distribution over \mathcal{X}, and $\eta: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is the conditional probability over the labels, that is, $\eta(\mathbf{x})=\mathbb{P}[y=1 \mid \mathbf{x}]$.

Analysis of k-NN

- $\mathcal{X}=[0,1]^{d}, Y=\{0,1\}, \mathcal{D}$ is a distribution over $\mathcal{X} \times \mathcal{Y}, \mathcal{D}_{\mathcal{X}}$ is the marginal distribution over \mathcal{X}, and $\eta: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is the conditional probability over the labels, that is, $\eta(\mathbf{x})=\mathbb{P}[y=1 \mid \mathbf{x}]$.
- Recall: the Bayes optimal rule (that is, the hypothesis that minimizes $L_{\mathcal{D}}(h)$ over all functions) is

$$
h^{\star}(\mathbf{x})=\mathbb{1}_{[\eta(\mathbf{x})>1 / 2]} .
$$

Analysis of k-NN

- $\mathcal{X}=[0,1]^{d}, Y=\{0,1\}, \mathcal{D}$ is a distribution over $\mathcal{X} \times \mathcal{Y}, \mathcal{D}_{\mathcal{X}}$ is the marginal distribution over \mathcal{X}, and $\eta: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is the conditional probability over the labels, that is, $\eta(\mathbf{x})=\mathbb{P}[y=1 \mid \mathbf{x}]$.
- Recall: the Bayes optimal rule (that is, the hypothesis that minimizes $L_{\mathcal{D}}(h)$ over all functions) is

$$
h^{\star}(\mathbf{x})=\mathbb{1}_{[\eta(\mathbf{x})>1 / 2]} .
$$

- Prior knowledge: η is c-Lipschitz. Namely, for all $\mathbf{x}, \mathbf{x}^{\prime} \in \mathcal{X}, \quad\left|\eta(\mathbf{x})-\eta\left(\mathbf{x}^{\prime}\right)\right| \leq c\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|$

Analysis of k-NN

- $\mathcal{X}=[0,1]^{d}, Y=\{0,1\}, \mathcal{D}$ is a distribution over $\mathcal{X} \times \mathcal{Y}, \mathcal{D}_{\mathcal{X}}$ is the marginal distribution over \mathcal{X}, and $\eta: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is the conditional probability over the labels, that is, $\eta(\mathbf{x})=\mathbb{P}[y=1 \mid \mathbf{x}]$.
- Recall: the Bayes optimal rule (that is, the hypothesis that minimizes $L_{\mathcal{D}}(h)$ over all functions) is

$$
h^{\star}(\mathbf{x})=\mathbb{1}_{[\eta(\mathbf{x})>1 / 2]} .
$$

- Prior knowledge: η is c-Lipschitz. Namely, for all $\mathbf{x}, \mathbf{x}^{\prime} \in \mathcal{X}, \quad\left|\eta(\mathbf{x})-\eta\left(\mathbf{x}^{\prime}\right)\right| \leq c\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|$
- Theorem: Let h_{S} be the k-NN rule, then,

$$
\underset{S \sim \mathcal{D}^{m}}{\mathbb{E}}\left[L_{\mathcal{D}}\left(h_{S}\right)\right] \leq\left(1+\sqrt{\frac{8}{k}}\right) L_{\mathcal{D}}\left(h^{\star}\right)+(6 c \sqrt{d}+k) m^{-1 /(d+1)}
$$

k-Nearest Neighbor: Bias-Complexity Tradeoff

Shai Shalev-Shwartz (Hebrew U)

IML Lecture 5

MDL,SRM,trees, neighbors

Curse of Dimensionality

$$
\underset{S \sim \sim^{m}}{\mathbb{E}}\left[L_{\mathcal{D}}\left(h_{S}\right)\right] \leq\left(1+\sqrt{\frac{8}{k}}\right) L_{\mathcal{D}}\left(h^{\star}\right)+(6 c \sqrt{d}+k) m^{-1 /(d+1)}
$$

- Suppose $L_{\mathcal{D}}\left(h^{\star}\right)=0$. Then, to have error $\leq \epsilon$ we need $m \geq(4 c \sqrt{d} / \epsilon)^{d+1}$.
- Number of examples grows exponentially with the dimension
- This is not an artifact of the analysis

Curse of Dimensionality

$$
\underset{S \sim \mathcal{D}^{m}}{\mathbb{E}}\left[L_{\mathcal{D}}\left(h_{S}\right)\right] \leq\left(1+\sqrt{\frac{8}{k}}\right) L_{\mathcal{D}}\left(h^{\star}\right)+(6 c \sqrt{d}+k) m^{-1 /(d+1)}
$$

- Suppose $L_{\mathcal{D}}\left(h^{\star}\right)=0$. Then, to have error $\leq \epsilon$ we need $m \geq(4 c \sqrt{d} / \epsilon)^{d+1}$.
- Number of examples grows exponentially with the dimension
- This is not an artifact of the analysis

Theorem

For any $c>1$, and every learner, there exists a distribution over $[0,1]^{d} \times\{0,1\}$, such that $\eta(\mathbf{x})$ is c-Lipschitz, the Bayes error of the distribution is 0 , but for sample sizes $m \leq(c+1)^{d} / 2$, the true error of the learner is greater than $1 / 4$.

Contradicting the No-Free-Lunch?

$$
\underset{S \sim \mathcal{D}^{m}}{\mathbb{E}}\left[L_{\mathcal{D}}\left(h_{S}\right)\right] \leq\left(1+\sqrt{\frac{8}{k}}\right) L_{\mathcal{D}}\left(h^{\star}\right)+(6 c \sqrt{d}+k) m^{-1 /(d+1)}
$$

- Seemingly, we learn the class of all functions over $[0,1]^{d}$
- But this class is not learnable even in the non-uniform model ...

Contradicting the No-Free-Lunch?

$$
\underset{S \sim \mathcal{D}^{m}}{\mathbb{E}}\left[L_{\mathcal{D}}\left(h_{S}\right)\right] \leq\left(1+\sqrt{\frac{8}{k}}\right) L_{\mathcal{D}}\left(h^{\star}\right)+(6 c \sqrt{d}+k) m^{-1 /(d+1)}
$$

- Seemingly, we learn the class of all functions over $[0,1]^{d}$
- But this class is not learnable even in the non-uniform model ...
- There's no contradiction: The number of required examples depends on the Lipschitzness of η (the parameter c), which depends on \mathcal{D}.
- PAC: $m(\epsilon, \delta)$
- non-uniform: $m(\epsilon, \delta, h)$
- consistency: $m(\epsilon, \delta, h, \mathcal{D})$

Issues with Nearest Neighbor

- Need to store entire training set "Replace intelligence with fast memory"
- Curse of dimensionality We'll later learn dimensionality reduction methods
- Computational problem of finding nearest neighbor
- What is the "correct" metric between objects ? Success depends on Lipschitzness of η, which depends on the right metric

Summary

- Expressing prior knowledge: Hypothesis class, weighting hypotheses, metric
- Weaker notions of learnability:
"PAC" stronger than "non-uniform" stronger than "consistency"
- Learning rules: ERM, MDL, SRM
- Decision trees
- Nearest Neighbor

