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How to Express Prior Knowledge

So far, learner expresses prior knowledge by specifying the hypothesis
class H
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Other Ways to Express Prior Knowledge

William&of&Occam&
(128701347)&

Occam’s&Razor:&“A&short&explanaBon&is&
preferred&over&a&longer&one”&

“Things(that(look(alike(must(be(alike”(
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Bias to Shorter Description

Let H be a countable hypothesis class

Let w : H → R be such that
∑

h∈Hw(h) ≤ 1

The function w reflects prior knowledge on how important w(h) is
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Example: Description Length

Suppose that each h ∈ H is described by some word d(h) ∈ {0, 1}∗
E.g.: H is the class of all python programs

Suppose that the description language is prefix-free, namely, for every
h 6= h′, d(h) is not a prefix of d(h′)
(Always achievable by including an “end-of-word” symbol)

Let |h| be the length of d(h)

Then, set w(h) = 2−|h|

Kraft’s inequality implies that
∑

hw(h) ≤ 1

Proof: define probability over words in d(H) as follows: repeatedly toss
an unbiased coin, until the sequence of outcomes is a member of d(H),
and then stop. Since d(H) is prefix-free, this is a valid probability over
d(H), and the probability to get d(h) is w(h).
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Bias to Shorter Description

Theorem (Minimum Description Length (MDL) bound)

Let w : H → R be such that
∑

h∈Hw(h) ≤ 1. Then, with probability of at
least 1− δ over S ∼ Dm we have:

∀h ∈ H, LD(h) ≤ LS(h) +
√
− log(w(h)) + log(2/δ)

2m

Compare to VC bound:

∀h ∈ H, LD(h) ≤ LS(h) + C

√
VCdim(H) + log(2/δ)

2m
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Proof

For every h, define δh = w(h) · δ

By Hoeffding’s bound, for every h,

Dm
({

S : LD(h) > LS(h) +

√
log(2/δh)

2m

})
≤ δh

Applying the union bound,

Dm
({

S : ∃h ∈ H, LD(h) > LS(h) +

√
log(2/δh)

2m

})
=

Dm
(
∪h∈H

{
S : LD(h) > LS(h) +

√
log(2/δh)

2m

})
≤∑

h∈H
δh ≤ δ .
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Bound Minimization

MDL bound: ∀h ∈ H, LD(h) ≤ LS(h) +
√
− log(w(h))+log(2/δ)

2m

VC bound: ∀h ∈ H, LD(h) ≤ LS(h) + C

√
VCdim(H)+log(2/δ)

2m

Recall that our goal is to minimize LD(h) over h ∈ H
Minimizing the VC bound leads to the ERM rule

Minimizing the MDL bound leads to the MDL rule:

MDL(S) ∈ argmin
h∈H

[
LS(h) +

√
− log(w(h)) + log(2/δ)

2m

]

When w(h) = 2−|h| we obtain − log(w(h)) = |h| log(2)
Explicit tradeoff between bias (small LS(h)) and complexity (small
|h|)
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MDL guarantee

Theorem

For every h∗ ∈ H, w.p. ≥ 1− δ over S ∼ Dm we have:

LD(MDL(S)) ≤ LD(h∗) +
√
− log(w(h∗)) + log(2/δ)

2m

Example: Take H to be the class of all python programs, with |h| be
the code length (in bits)

Assume ∃h∗ ∈ H with LD(h
∗) = 0. Then, for every ε, δ, exists

sample size m s.t. Dm({S : LD(MDL(S)) ≤ ε}) ≥ 1− δ
MDL is a Universal Learner
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Bias to Shorter Description
𝑝:𝒴𝒳 → [0,1] ∑ 𝑝 ℎ ≤ 1

• Based on length of (prefix-ambiguous) description 𝑑 ℎ
• 𝑑:ℋ → 0,1 ∗, 𝑑(ℎ) is never a prefix of 𝑑(ℎ ) for any ℎ, ℎ′
• 𝑝 ℎ = 2
• Kraft Inequality: ∑ = ∑𝑝 ℎ ≤ 1

• Based on c: 𝑈 → 𝒴𝒳 (e.g. python code↦function it implements)
• Set of prefix-ambiguous  “legal  programs”  𝑈 ⊂ 0,1 ∗

• 𝑝 ℎ = 2 (can think of: 𝑑 ℎ = arg min 𝜎 )

• Minimum Description Length learning rule:

𝑀𝐷𝐿 𝑆 = arg max 𝑝(ℎ) = arg min |𝑑 ℎ |

Kolmogorov Complexity
Andrei

Kolmogorov
(1903-1987)

Ray
Solomonoff
(1926-2009)
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Contradiction to the fundamental theorem of learning ?

Take again H to be all python programs

Note that VCdim(H) =∞
The No-Free-Lunch theorem we can’t learn H
So how come we can learn H using MDL ???

Shai Shalev-Shwartz (Hebrew U) IML Lecture 5 MDL,SRM,trees,neighbors 12 / 39



Outline

1 Minimum Description Length

2 Non-uniform learnability

3 Structural Risk Minimization

4 Decision Trees

5 Nearest Neighbor and Consistency

Shai Shalev-Shwartz (Hebrew U) IML Lecture 5 MDL,SRM,trees,neighbors 13 / 39



Non-uniform learning

Definition (Non-uniformly learnable)

H is non-uniformly learnable if ∃A and mNUL
H : (0, 1)2 ×H → N s.t.,

∀ε, δ ∈ (0, 1), ∀h ∈ H, if m ≥ mNUL
H (ε, δ, h) then ∀D,

Dm ({S : LD(A(S)) ≤ LD(h) + ε}) ≥ 1− δ .

Number of required examples depends on ε, δ, and h

Definition (Agnostic PAC learnable)

H is agnostically PAC learnable if ∃A and mH : (0, 1)2 → N s.t.
∀ε, δ ∈ (0, 1), if m ≥ mH(ε, δ), then ∀D and ∀h ∈ H,

Dm ({S : LD(A(S)) ≤ LD(h) + ε}) ≥ 1− δ .

Number of required examples depends only on ε, δ
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Non-uniform learning vs. PAC learning

Corollary

Let H be the class of all computable functions

H is non-uniform learnable, with sample complexity,

mNUL
H (ε, δ, h) ≤ − log(w(h)) + log(2/δ)

2ε2

H is not PAC learnable.

We saw that the VC dimension characterizes PAC learnability

What characterizes non-uniform learnability ?
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Characterizing Non-uniform Learnability

Theorem

A class H ⊂ {0, 1}X is non-uniform learnable if and only if it is a
countable union of PAC learnable hypothesis classes.
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Proof (Non-uniform learnable ⇒ countable union)

Assume that H is non-uniform learnable using A with sample
complexity mNUL

H

For every n ∈ N, let Hn = {h ∈ H : mNUL
H (1/8, 1/7, h) ≤ n}

Clearly, H = ∪n∈NHn.

For every D s.t. ∃h ∈ Hn with LD(h) = 0 we have that
Dn({S : LD(A(S)) ≤ 1/8}) ≥ 6/7

The fundamental theorem of statistical learning implies that
VCdim(Hn) <∞, and therefore Hn is agnostic PAC learnable
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The fundamental theorem of statistical learning implies that
VCdim(Hn) <∞, and therefore Hn is agnostic PAC learnable
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Proof (Countable union ⇒ non-uniform learnable)

Assume H = ∪n∈NHn, and VCdim(Hn) = dn <∞

Choose w : N→ [0, 1] s.t.
∑

nw(n) ≤ 1. E.g. w(n) = 6
π2n2

Choose δn = δ · w(n) and εn =

√
C dn+log(1/δn)

m

By the fundamental theorem, for every n,

Dm({S : ∃h ∈ Hn, LD(h) > LS(h) + εn}) ≤ δn .

Applying the union bound over n we obtain

Dm({S : ∃n, h ∈ Hn, LD(h) > LS(h) + εn}) ≤
∑
n

δn ≤ δ .

This yields a generic non-uniform learning rule
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Structural Risk Minimization (SRM)

SRM(S) ∈ argmin
h∈H

[
LS(h) + min

n:h∈Hn

√
C
dn − log(w(n)) + log(1/δ)

m

]

As in the analysis of MDL, it is easy to show that for every h ∈ H,

LD(SRM(S)) ≤ LS(h) + min
n:h∈Hn

√
C
dn − log(w(n)) + log(1/δ)

m

Hence, SRM is a generic non-uniform learner with sample complexity

mNUL
H (ε, δ, h) ≤ min

n:h∈Hn

C
dn − log(w(n)) + log(1/δ)

ε2
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No-free-lunch for non-uniform learnability

Claim: For any infinite domain set, X , the class H = {0, 1}X is not a
countable union of classes of finite VC-dimension.

Hence, such classes H are not non-uniformly learnable
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The cost of weaker prior knowledge

Suppose H = ∪nHn, where VCdim(Hn) = n

Suppose that some h∗ ∈ Hn has LD(h
∗) = 0

With this prior knowledge, we can apply ERM on Hn, and the sample
complexity is C n+log(1/δ)

ε2

Without this prior knowledge, SRM will need C n+log(π2n2/6)+log(1/δ)
ε2

examples

That is, we pay order of log(n)/ε2 more examples for not knowing n
in advanced

SRM for model selection:
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Decision Trees

Color?

not-tasty

other

Softness?

not-tasty

other

tasty

gives slightly to palm pressure

pale green to pale yellow
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VC dimension of Decision Trees

Claim: Consider the class of decision trees over X with k leaves.
Then, the VC dimension of this class is k

Proof: A set of k instances that arrive to the different leaves can be
shattered. A set of k + 1 instances can’t be shattered since 2
instances must arrive to the same leaf
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Description Language for Decision Trees

Suppose X = {0, 1}d and splitting rules are according to 1[xi=1] for
some i ∈ [d]

Consider the class of all such decision trees over X
Claim: This class contains {0, 1}X and hence its VC dimension is
|X | = 2d

But, we can bias to “small trees”
A tree with n nodes can be described as n+ 1 blocks, each of size
log2(d+ 3) bits, indicating (in depth-first order)

An internal node of the form ’1[xi=1]’ for some i ∈ [d]
A leaf whose value is 1
A leaf whose value is 0
End of the code

Can apply MDL learning rule: search tree with n nodes that minimizes

LS(h) +

√
(n+ 1) log2(d+ 3) + log(2/δ)

2m
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Decision Tree Algorithms

NP hard problem ...

Greedy approach: ‘Iterative Dichotomizer 3’

Following the MDL principle, attempts to create a small tree with low
train error

Proposed by Ross Quinlan
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ID3(S,A)

Input: training set S, feature subset A ⊆ [d]

if all examples in S are labeled by 1, return a leaf 1

if all examples in S are labeled by 0, return a leaf 0

if A = ∅, return a leaf whose value = majority of labels in S. else :

Let j = argmaxi∈A Gain(S, i)
if all examples in S have the same label
Return a leaf whose value = majority of labels in S
else
Let T1 be the tree returned by ID3({(x, y) ∈ S : xj = 1}, A \ {j}).
Let T2 be the tree returned by ID3({(x, y) ∈ S : xj = 0}, A \ {j}).
Return the tree:

xj = 1?

T2 T1
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Gain Measures

Gain(S, i) = C(P
S
[y])−

(
P
S
[xi]C(P

S
[y|xi]) + P

S
[¬xi]C(P

S
[y|¬xi])

)
.

Train error: C(a) = min{a, 1− a}
Information gain: C(a) = −a log(a)− (1− a) log(1− a)
Gini index: C(a) = 2a(1− a)

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

a

C
(a
)

Error
Info Gain

Gini
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Pruning, Random Forests,...

In the exercise you’ll learn about additional practical variants:

Pruning the tree

Random Forests

Dealing with real valued features
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Nearest Neighbor

“Things(that(look(alike(must(be(alike”(

Memorize the training set S = (x1, y1), . . . , (xm, ym)

Given new x, find the k closest points in S and return majority vote
among their labels
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1-Nearest Neighbor: Voronoi Tessellation

Unlike ERM,SRM,MDL, etc., there’s no H
At training time: “do nothing”

At test time: search S for the nearest neighbors
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Analysis of k-NN

X = [0, 1]d, Y = {0, 1}, D is a distribution over X × Y, DX is the
marginal distribution over X , and η : Rd → R is the conditional
probability over the labels, that is, η(x) = P[y = 1|x].

Recall: the Bayes optimal rule (that is, the hypothesis that minimizes
LD(h) over all functions) is

h?(x) = 1[η(x)>1/2] .

Prior knowledge: η is c-Lipschitz. Namely, for all
x,x′ ∈ X , |η(x)− η(x′)| ≤ c ‖x− x′‖
Theorem: Let hS be the k-NN rule, then,

E
S∼Dm

[LD(hS)] ≤

(
1 +

√
8

k

)
LD(h

?) +
(
6 c
√
d+ k

)
m−1/(d+1) .
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x,x′ ∈ X , |η(x)− η(x′)| ≤ c ‖x− x′‖
Theorem: Let hS be the k-NN rule, then,

E
S∼Dm

[LD(hS)] ≤

(
1 +

√
8

k

)
LD(h

?) +
(
6 c
√
d+ k

)
m−1/(d+1) .
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k-Nearest Neighbor: Bias-Complexity Tradeoffk-Nearest Neighbor:
Data Fit / Complexity Tradeoff

k=1 k=5 k=12

k=50 k=100 k=200

S= h*=
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Curse of Dimensionality

E
S∼Dm

[LD(hS)] ≤

(
1 +

√
8

k

)
LD(h

?) +
(
6 c
√
d+ k

)
m−1/(d+1) .

Suppose LD(h
?) = 0. Then, to have error ≤ ε we need

m ≥ (4 c
√
d/ε)d+1.

Number of examples grows exponentially with the dimension

This is not an artifact of the analysis

Theorem

For any c > 1, and every learner, there exists a distribution over
[0, 1]d × {0, 1}, such that η(x) is c-Lipschitz, the Bayes error of the
distribution is 0, but for sample sizes m ≤ (c+ 1)d/2, the true error of the
learner is greater than 1/4.
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Contradicting the No-Free-Lunch?

E
S∼Dm

[LD(hS)] ≤

(
1 +

√
8

k

)
LD(h

?) +
(
6 c
√
d+ k

)
m−1/(d+1) .

Seemingly, we learn the class of all functions over [0, 1]d

But this class is not learnable even in the non-uniform model ...

There’s no contradiction: The number of required examples depends
on the Lipschitzness of η (the parameter c), which depends on D.

PAC: m(ε, δ)
non-uniform: m(ε, δ, h)
consistency: m(ε, δ, h,D)
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Issues with Nearest Neighbor

Need to store entire training set
“Replace intelligence with fast memory”

Curse of dimensionality
We’ll later learn dimensionality reduction methods

Computational problem of finding nearest neighbor

What is the “correct” metric between objects ?
Success depends on Lipschitzness of η, which depends on the right
metric
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Summary

Expressing prior knowledge: Hypothesis class, weighting hypotheses,
metric

Weaker notions of learnability:
“PAC” stronger than “non-uniform” stronger than “consistency”

Learning rules: ERM, MDL, SRM

Decision trees

Nearest Neighbor
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