Introduction to Machine Learning (67577) Lecture 6

Shai Shalev-Shwartz

School of CS and Engineering, The Hebrew University of Jerusalem

Convexity,Optimization,Surrogates,SGD

Outline

(1) Convexity
(2) Convex Optimization

- Ellipsoid
- Gradient Descent
(3) Convex Learning Problems

4 Surrogate Loss Functions
(5) Learning Using Stochastic Gradient Descent

Definition (Convex Set)

A set C in a vector space is convex if for any two vectors \mathbf{u}, \mathbf{v} in C, the line segment between \mathbf{u} and \mathbf{v} is contained in C. That is, for any $\alpha \in[0,1]$ we have that the convex combination $\alpha \mathbf{u}+(1-\alpha) \mathbf{v}$ is in C.

Definition (Convex function)

Let C be a convex set. A function $f: C \rightarrow \mathbb{R}$ is convex if for every $\mathbf{u}, \mathbf{v} \in C$ and $\alpha \in[0,1]$,

$$
f(\alpha \mathbf{u}+(1-\alpha) \mathbf{v}) \leq \alpha f(\mathbf{u})+(1-\alpha) f(\mathbf{v})
$$

Epigraph

A function f is convex if and only if its epigraph is a convex set:

$$
\operatorname{epigraph}(\mathrm{f})=\{(\mathbf{x}, \beta): f(\mathbf{x}) \leq \beta\}
$$

Property I: local minima are global

If f is convex then every local minimum of f is also a global minimum.

Property I: local minima are global

If f is convex then every local minimum of f is also a global minimum.

- let $B(\mathbf{u}, r)=\{\mathbf{v}:\|\mathbf{v}-\mathbf{u}\| \leq r\}$

Property I: local minima are global

If f is convex then every local minimum of f is also a global minimum.

- let $B(\mathbf{u}, r)=\{\mathbf{v}:\|\mathbf{v}-\mathbf{u}\| \leq r\}$
- $f(\mathbf{u})$ is a local minimum of f at \mathbf{u} if $\exists r>0$ s.t. $\forall \mathbf{v} \in B(\mathbf{u}, r)$ we have $f(\mathbf{v}) \geq f(\mathbf{u})$

Property I: local minima are global

If f is convex then every local minimum of f is also a global minimum.

- let $B(\mathbf{u}, r)=\{\mathbf{v}:\|\mathbf{v}-\mathbf{u}\| \leq r\}$
- $f(\mathbf{u})$ is a local minimum of f at \mathbf{u} if $\exists r>0$ s.t. $\forall \mathbf{v} \in B(\mathbf{u}, r)$ we have $f(\mathbf{v}) \geq f(\mathbf{u})$
- It follows that for any \mathbf{v} (not necessarily in B), there is a small enough $\alpha>0$ such that $\mathbf{u}+\alpha(\mathbf{v}-\mathbf{u}) \in B(\mathbf{u}, r)$ and therefore

$$
f(\mathbf{u}) \leq f(\mathbf{u}+\alpha(\mathbf{v}-\mathbf{u}))
$$

Property I: local minima are global

If f is convex then every local minimum of f is also a global minimum.

- let $B(\mathbf{u}, r)=\{\mathbf{v}:\|\mathbf{v}-\mathbf{u}\| \leq r\}$
- $f(\mathbf{u})$ is a local minimum of f at \mathbf{u} if $\exists r>0$ s.t. $\forall \mathbf{v} \in B(\mathbf{u}, r)$ we have $f(\mathbf{v}) \geq f(\mathbf{u})$
- It follows that for any \mathbf{v} (not necessarily in B), there is a small enough $\alpha>0$ such that $\mathbf{u}+\alpha(\mathbf{v}-\mathbf{u}) \in B(\mathbf{u}, r)$ and therefore

$$
f(\mathbf{u}) \leq f(\mathbf{u}+\alpha(\mathbf{v}-\mathbf{u}))
$$

- If f is convex, we also have that

$$
f(\mathbf{u}+\alpha(\mathbf{v}-\mathbf{u}))=f(\alpha \mathbf{v}+(1-\alpha) \mathbf{u}) \leq(1-\alpha) f(\mathbf{u})+\alpha f(\mathbf{v}) .
$$

Property I: local minima are global

If f is convex then every local minimum of f is also a global minimum.

- let $B(\mathbf{u}, r)=\{\mathbf{v}:\|\mathbf{v}-\mathbf{u}\| \leq r\}$
- $f(\mathbf{u})$ is a local minimum of f at \mathbf{u} if $\exists r>0$ s.t. $\forall \mathbf{v} \in B(\mathbf{u}, r)$ we have $f(\mathbf{v}) \geq f(\mathbf{u})$
- It follows that for any \mathbf{v} (not necessarily in B), there is a small enough $\alpha>0$ such that $\mathbf{u}+\alpha(\mathbf{v}-\mathbf{u}) \in B(\mathbf{u}, r)$ and therefore

$$
f(\mathbf{u}) \leq f(\mathbf{u}+\alpha(\mathbf{v}-\mathbf{u}))
$$

- If f is convex, we also have that

$$
f(\mathbf{u}+\alpha(\mathbf{v}-\mathbf{u}))=f(\alpha \mathbf{v}+(1-\alpha) \mathbf{u}) \leq(1-\alpha) f(\mathbf{u})+\alpha f(\mathbf{v}) .
$$

- Combining, we obtain that $f(\mathbf{u}) \leq f(\mathbf{v})$.

Property I: local minima are global

If f is convex then every local minimum of f is also a global minimum.

- let $B(\mathbf{u}, r)=\{\mathbf{v}:\|\mathbf{v}-\mathbf{u}\| \leq r\}$
- $f(\mathbf{u})$ is a local minimum of f at \mathbf{u} if $\exists r>0$ s.t. $\forall \mathbf{v} \in B(\mathbf{u}, r)$ we have $f(\mathbf{v}) \geq f(\mathbf{u})$
- It follows that for any \mathbf{v} (not necessarily in B), there is a small enough $\alpha>0$ such that $\mathbf{u}+\alpha(\mathbf{v}-\mathbf{u}) \in B(\mathbf{u}, r)$ and therefore

$$
f(\mathbf{u}) \leq f(\mathbf{u}+\alpha(\mathbf{v}-\mathbf{u}))
$$

- If f is convex, we also have that

$$
f(\mathbf{u}+\alpha(\mathbf{v}-\mathbf{u}))=f(\alpha \mathbf{v}+(1-\alpha) \mathbf{u}) \leq(1-\alpha) f(\mathbf{u})+\alpha f(\mathbf{v})
$$

- Combining, we obtain that $f(\mathbf{u}) \leq f(\mathbf{v})$.
- This holds for every \mathbf{v}, hence $f(\mathbf{u})$ is also a global minimum of f.

Property II: tangents lie below f

If f is convex and differentiable, then

$$
\forall \mathbf{u}, \quad f(\mathbf{u}) \geq f(\mathbf{w})+\langle\nabla f(\mathbf{w}), \mathbf{u}-\mathbf{w}\rangle
$$

(recall, $\nabla f(\mathbf{w})=\left(\frac{\partial f(\mathbf{w})}{\partial w_{1}}, \ldots, \frac{\partial f(\mathbf{w})}{\partial w_{d}}\right)$ is the gradient of f at \mathbf{w})

Sub-gradients

- \mathbf{v} is sub-gradient of f at \mathbf{w} if $\forall \mathbf{u}, \quad f(\mathbf{u}) \geq f(\mathbf{w})+\langle\mathbf{v}, \mathbf{u}-\mathbf{w}\rangle$
- The differential set, $\partial f(\mathbf{w})$, is the set of sub-gradients of f at \mathbf{w}
- Lemma: f is convex iff for every $\mathbf{w}, \partial f(\mathbf{w}) \neq \emptyset$

Property II: tangents lie below f

f is "locally flat" around \mathbf{w} (i.e. $\mathbf{0}$ is a sub-gradient) iff \mathbf{w} is a global minimizer

Lipschitzness

Definition (Lipschitzness)

A function $f: C \rightarrow \mathbb{R}$ is ρ-Lipschitz if for every $\mathbf{w}_{1}, \mathbf{w}_{2} \in C$ we have that $\left|f\left(\mathbf{w}_{1}\right)-f\left(\mathbf{w}_{2}\right)\right| \leq \rho\left\|\mathbf{w}_{1}-\mathbf{w}_{2}\right\|$.

Lipschitzness

Definition (Lipschitzness)

A function $f: C \rightarrow \mathbb{R}$ is ρ-Lipschitz if for every $\mathbf{w}_{1}, \mathbf{w}_{2} \in C$ we have that $\left|f\left(\mathbf{w}_{1}\right)-f\left(\mathbf{w}_{2}\right)\right| \leq \rho\left\|\mathbf{w}_{1}-\mathbf{w}_{2}\right\|$.

Lemma

If f is convex then f is ρ-Lipschitz iff the norm of all sub-gradients of f is at most ρ

Outline

(1) Convexity
(2) Convex Optimization

- Ellipsoid
- Gradient Descent

(3) Convex Learning Problems

4 Surrogate Loss Functions
(5) Learning Using Stochastic Gradient Descent

Convex optimization

Approximately solve:

$$
\underset{\mathbf{w} \in C}{\operatorname{argmin}} f(\mathbf{w})
$$

where C is a convex set and f is a convex function.

Convex optimization

Approximately solve:

$$
\underset{\mathbf{w} \in C}{\operatorname{argmin}} f(\mathbf{w})
$$

where C is a convex set and f is a convex function.

Special cases:

- Feasibility problem: f is a constant function

Convex optimization

Approximately solve:

$$
\underset{\mathbf{w} \in C}{\operatorname{argmin}} f(\mathbf{w})
$$

where C is a convex set and f is a convex function.

Special cases:

- Feasibility problem: f is a constant function
- Unconstrained minimization: $C=\mathbb{R}^{d}$

Convex optimization

Approximately solve:

$$
\underset{\mathbf{w} \in C}{\operatorname{argmin}} f(\mathbf{w})
$$

where C is a convex set and f is a convex function.

Special cases:

- Feasibility problem: f is a constant function
- Unconstrained minimization: $C=\mathbb{R}^{d}$
- Can reduce one to another:

Convex optimization

Approximately solve:

$$
\underset{\mathbf{w} \in C}{\operatorname{argmin}} f(\mathbf{w})
$$

where C is a convex set and f is a convex function.

Special cases:

- Feasibility problem: f is a constant function
- Unconstrained minimization: $C=\mathbb{R}^{d}$
- Can reduce one to another:
- Adding the function $I_{C}(\mathbf{w})$ to the objective eliminates the constraint

Convex optimization

Approximately solve:

$$
\underset{\mathbf{w} \in C}{\operatorname{argmin}} f(\mathbf{w})
$$

where C is a convex set and f is a convex function.

Special cases:

- Feasibility problem: f is a constant function
- Unconstrained minimization: $C=\mathbb{R}^{d}$
- Can reduce one to another:
- Adding the function $I_{C}(\mathbf{w})$ to the objective eliminates the constraint
- Adding the constraint $f(\mathbf{w}) \leq f^{*}+\epsilon$ eliminates the objective

Outline

(1) Convexity
(2) Convex Optimization

- Ellipsoid
- Gradient Descent
(3) Convex Learning Problems

4 Surrogate Loss Functions
(5) Learning Using Stochastic Gradient Descent

The Ellipsoid Algorithm

- Consider a feasibility problem: find $\mathbf{w} \in C$
- Assumptions:
- $B\left(\mathbf{w}^{*}, r\right) \subseteq C \subset B(0, R)$
- Separation oracle: Given \mathbf{w}, the oracle tells if it's in C or not. If $\mathbf{w} \notin C$ then the oracle finds \mathbf{v} s.t. for every $\mathbf{w}^{\prime} \in C$ we have $\langle\mathbf{w}, \mathbf{v}\rangle<\left\langle\mathbf{w}^{\prime}, \mathbf{v}\right\rangle$

The Ellipsoid Algorithm

- We implicitly maintain an ellipsoid: $\mathcal{E}_{t}=\mathcal{E}\left(A_{t}^{1 / 2}, \mathbf{w}_{t}\right)$
- Start with $\mathbf{w}_{1}=\mathbf{0}, A_{1}=I$
- For $t=1,2, \ldots$
- Call oracle with \mathbf{w}_{t}
- If $\mathbf{w}_{t} \in C$, break and return \mathbf{w}_{t}
- Otherwise, let \mathbf{v}_{t} be the vector defining a separating hyperplane - Update:

$$
\begin{aligned}
\mathbf{w}_{t+1} & =\mathbf{w}_{t}+\frac{1}{d+1} \frac{A_{t} \mathbf{v}_{t}}{\sqrt{\mathbf{v}_{t}^{\top} A_{t} \mathbf{v}_{t}}} \\
A_{t+1} & =\frac{d^{2}}{d^{2}-1}\left(A_{t}-\frac{2}{d+1} \frac{A_{t} \mathbf{v}_{t} \mathbf{v}_{t}^{\top} A_{t}}{\mathbf{v}_{t}^{\top} A_{t} \mathbf{v}_{t}}\right)
\end{aligned}
$$

The Ellipsoid Algorithm

- We implicitly maintain an ellipsoid: $\mathcal{E}_{t}=\mathcal{E}\left(A_{t}^{1 / 2}, \mathbf{w}_{t}\right)$
- Start with $\mathbf{w}_{1}=\mathbf{0}, A_{1}=I$
- For $t=1,2, \ldots$
- Call oracle with \mathbf{w}_{t}
- If $\mathbf{w}_{t} \in C$, break and return \mathbf{w}_{t}
- Otherwise, let \mathbf{v}_{t} be the vector defining a separating hyperplane - Update:

$$
\begin{aligned}
\mathbf{w}_{t+1} & =\mathbf{w}_{t}+\frac{1}{d+1} \frac{A_{t} \mathbf{v}_{t}}{\sqrt{\mathbf{v}_{t}^{\top} A_{t} \mathbf{v}_{t}}} \\
A_{t+1} & =\frac{d^{2}}{d^{2}-1}\left(A_{t}-\frac{2}{d+1} \frac{A_{t} \mathbf{v}_{t} \mathbf{v}_{t}^{\top} A_{t}}{\mathbf{v}_{t}^{\top} A_{t} \mathbf{v}_{t}}\right)
\end{aligned}
$$

Theorem

The Ellipsoid converges after at most $2 d(2 d+2) \log (R / r)$ iterations.

Implementing the separation oracle using sub-gradients

- Suppose $C=\cap_{i=1}^{n}\left\{\mathbf{w}: f_{i}(\mathbf{w}) \leq 0\right\}$ where each f_{i} is a convex function.
- Given w, we can check if $f_{i}(\mathbf{w}) \leq 0$ for every i
- If $f_{i}(\mathbf{w})>0$ for some i, consider $\mathbf{v} \in \partial f_{i}(\mathbf{w})$, then, for every $\mathbf{w}^{\prime} \in C$

$$
0 \geq f_{i}\left(\mathbf{w}^{\prime}\right) \geq f_{i}(\mathbf{w})+\left\langle\mathbf{w}^{\prime}-\mathbf{w}, \mathbf{v}\right\rangle>\left\langle\mathbf{w}^{\prime}-\mathbf{w}, \mathbf{v}\right\rangle
$$

- So, the oracle can return - \mathbf{v}

The Ellipsoid Algorithm for unconstrained minimization

- Consider $\min _{\mathbf{w}} f(\mathbf{w})$ and let \mathbf{w}^{*} be a minimizer

The Ellipsoid Algorithm for unconstrained minimization

- Consider $\min _{\mathbf{w}} f(\mathbf{w})$ and let \mathbf{w}^{*} be a minimizer
- Let $C=\left\{\mathbf{w}: f(\mathbf{w})-f\left(\mathbf{w}^{*}\right)-\epsilon \leq 0\right\}$

The Ellipsoid Algorithm for unconstrained minimization

- Consider $\min _{\mathbf{w}} f(\mathbf{w})$ and let \mathbf{w}^{*} be a minimizer
- Let $C=\left\{\mathbf{w}: f(\mathbf{w})-f\left(\mathbf{w}^{*}\right)-\epsilon \leq 0\right\}$
- We can apply the Ellipsoid algorithm while letting $\mathbf{v}_{t} \in \partial f\left(\mathbf{w}_{t}\right)$

The Ellipsoid Algorithm for unconstrained minimization

- Consider $\min _{\mathbf{w}} f(\mathbf{w})$ and let \mathbf{w}^{*} be a minimizer
- Let $C=\left\{\mathbf{w}: f(\mathbf{w})-f\left(\mathbf{w}^{*}\right)-\epsilon \leq 0\right\}$
- We can apply the Ellipsoid algorithm while letting $\mathbf{v}_{t} \in \partial f\left(\mathbf{w}_{t}\right)$
- Analysis:

The Ellipsoid Algorithm for unconstrained minimization

- Consider $\min _{\mathbf{w}} f(\mathbf{w})$ and let \mathbf{w}^{*} be a minimizer
- Let $C=\left\{\mathbf{w}: f(\mathbf{w})-f\left(\mathbf{w}^{*}\right)-\epsilon \leq 0\right\}$
- We can apply the Ellipsoid algorithm while letting $\mathbf{v}_{t} \in \partial f\left(\mathbf{w}_{t}\right)$
- Analysis:
- Let r be s.t. $B\left(\mathbf{w}^{*}, r\right) \subseteq C$

The Ellipsoid Algorithm for unconstrained minimization

- Consider $\min _{\mathbf{w}} f(\mathbf{w})$ and let \mathbf{w}^{*} be a minimizer
- Let $C=\left\{\mathbf{w}: f(\mathbf{w})-f\left(\mathbf{w}^{*}\right)-\epsilon \leq 0\right\}$
- We can apply the Ellipsoid algorithm while letting $\mathbf{v}_{t} \in \partial f\left(\mathbf{w}_{t}\right)$
- Analysis:
- Let r be s.t. $B\left(\mathbf{w}^{*}, r\right) \subseteq C$
- For example, if f is ρ-Lipschitz we can take $r=\epsilon / \rho$

The Ellipsoid Algorithm for unconstrained minimization

- Consider $\min _{\mathbf{w}} f(\mathbf{w})$ and let \mathbf{w}^{*} be a minimizer
- Let $C=\left\{\mathbf{w}: f(\mathbf{w})-f\left(\mathbf{w}^{*}\right)-\epsilon \leq 0\right\}$
- We can apply the Ellipsoid algorithm while letting $\mathbf{v}_{t} \in \partial f\left(\mathbf{w}_{t}\right)$
- Analysis:
- Let r be s.t. $B\left(\mathbf{w}^{*}, r\right) \subseteq C$
- For example, if f is ρ-Lipschitz we can take $r=\epsilon / \rho$
- Let $R=\left\|\mathbf{w}^{*}\right\|+r$

The Ellipsoid Algorithm for unconstrained minimization

- Consider $\min _{\mathbf{w}} f(\mathbf{w})$ and let \mathbf{w}^{*} be a minimizer
- Let $C=\left\{\mathbf{w}: f(\mathbf{w})-f\left(\mathbf{w}^{*}\right)-\epsilon \leq 0\right\}$
- We can apply the Ellipsoid algorithm while letting $\mathbf{v}_{t} \in \partial f\left(\mathbf{w}_{t}\right)$
- Analysis:
- Let r be s.t. $B\left(\mathbf{w}^{*}, r\right) \subseteq C$
- For example, if f is ρ-Lipschitz we can take $r=\epsilon / \rho$
- Let $R=\left\|\mathbf{w}^{*}\right\|+r$
- Then, after $2 d(2 d+2) \log (R / r)$ iterations, \mathbf{w}_{t} must be in C

The Ellipsoid Algorithm for unconstrained minimization

- Consider $\min _{\mathbf{w}} f(\mathbf{w})$ and let \mathbf{w}^{*} be a minimizer
- Let $C=\left\{\mathbf{w}: f(\mathbf{w})-f\left(\mathbf{w}^{*}\right)-\epsilon \leq 0\right\}$
- We can apply the Ellipsoid algorithm while letting $\mathbf{v}_{t} \in \partial f\left(\mathbf{w}_{t}\right)$
- Analysis:
- Let r be s.t. $B\left(\mathbf{w}^{*}, r\right) \subseteq C$
- For example, if f is ρ-Lipschitz we can take $r=\epsilon / \rho$
- Let $R=\left\|\mathbf{w}^{*}\right\|+r$
- Then, after $2 d(2 d+2) \log (R / r)$ iterations, \mathbf{w}_{t} must be in C
- For f being ρ-Lipschitz, we obtain the iteration bound

$$
2 d(2 d+2) \log \left(\frac{\rho\left\|\mathbf{w}^{*}\right\|}{\epsilon}+1\right)
$$

Outline

(1) Convexity
(2) Convex Optimization

- Ellipsoid
- Gradient Descent
(3) Convex Learning Problems

4 Surrogate Loss Functions
(5) Learning Using Stochastic Gradient Descent

Gradient Descent

- Start with initial $\mathbf{w}^{(1)}$ (usually, the zero vector)

Gradient Descent

- Start with initial $\mathbf{w}^{(1)}$ (usually, the zero vector)
- At iteration t, update

$$
\mathbf{w}^{(t+1)}=\mathbf{w}^{(t)}-\eta \nabla f\left(\mathbf{w}^{(t)}\right),
$$

where $\eta>0$ is a parameter

Gradient Descent

- Start with initial $\mathbf{w}^{(1)}$ (usually, the zero vector)
- At iteration t, update

$$
\mathbf{w}^{(t+1)}=\mathbf{w}^{(t)}-\eta \nabla f\left(\mathbf{w}^{(t)}\right)
$$

where $\eta>0$ is a parameter

- Intuition:

Gradient Descent

- Start with initial $\mathbf{w}^{(1)}$ (usually, the zero vector)
- At iteration t, update

$$
\mathbf{w}^{(t+1)}=\mathbf{w}^{(t)}-\eta \nabla f\left(\mathbf{w}^{(t)}\right)
$$

where $\eta>0$ is a parameter

- Intuition:
- By Taylor's approximation, if \mathbf{w} close to $\mathbf{w}^{(t)}$ then

$$
f(\mathbf{w}) \approx f\left(\mathbf{w}^{(t)}\right)+\left\langle\mathbf{w}-\mathbf{w}^{(t)}, \nabla f\left(\mathbf{w}^{(t)}\right)\right\rangle
$$

Gradient Descent

- Start with initial $\mathbf{w}^{(1)}$ (usually, the zero vector)
- At iteration t, update

$$
\mathbf{w}^{(t+1)}=\mathbf{w}^{(t)}-\eta \nabla f\left(\mathbf{w}^{(t)}\right),
$$

where $\eta>0$ is a parameter

- Intuition:
- By Taylor's approximation, if \mathbf{w} close to $\mathbf{w}^{(t)}$ then

$$
f(\mathbf{w}) \approx f\left(\mathbf{w}^{(t)}\right)+\left\langle\mathbf{w}-\mathbf{w}^{(t)}, \nabla f\left(\mathbf{w}^{(t)}\right)\right\rangle
$$

- Hence, we want to minimize the approximation while staying close to $\mathbf{w}^{(t)}$:

$$
\mathbf{w}^{(t+1)}=\underset{\mathbf{w}}{\operatorname{argmin}} \frac{1}{2}\left\|\mathbf{w}-\mathbf{w}^{(t)}\right\|^{2}+\eta\left(f\left(\mathbf{w}^{(t)}\right)+\left\langle\mathbf{w}-\mathbf{w}^{(t)}, \nabla f\left(\mathbf{w}^{(t)}\right)\right\rangle\right) .
$$

Gradient Descent

- Initialize $\mathbf{w}^{(1)}=\mathbf{0}$
- Update

$$
\mathbf{w}^{(t+1)}=\mathbf{w}^{(t)}-\eta \nabla f\left(\mathbf{w}^{(t)}\right)
$$

- Output $\overline{\mathbf{w}}=\frac{1}{T} \sum_{t=1}^{T} \mathbf{w}^{(t)}$

Sub-Gradient Descent

Replace gradients with sub-gradients:

$$
\mathbf{w}^{(t+1)}=\mathbf{w}^{(t)}-\eta \mathbf{v}_{t}
$$

where $\mathbf{v}_{t} \in \partial f\left(\mathbf{w}^{(t)}\right)$

Analyzing sub-gradient descent

Lemma

$$
\begin{aligned}
& \sum_{t=1}^{T}\left(f\left(\mathbf{w}^{(t)}\right)-f\left(\mathbf{w}^{\star}\right)\right) \leq \sum_{t=1}^{T}\left\langle\mathbf{w}^{(t)}-\mathbf{w}^{\star}, \mathbf{v}_{t}\right\rangle \\
& \quad=\frac{\left\|\mathbf{w}^{(1)}-\mathbf{w}^{\star}\right\|^{2}-\left\|\mathbf{w}^{(T+1)}-\mathbf{w}^{\star}\right\|^{2}}{2 \eta}+\frac{\eta}{2} \sum_{t=1}^{T}\left\|\mathbf{v}_{t}\right\|^{2}
\end{aligned}
$$

Proof:

- The inequality is by the definition of sub-gradients
- The equality follows from the definition of the update using algebraic manipulations

Analyzing sub-gradient descent for Lipschitz functions

- Since f is convex and ρ-Lipschitz, $\left\|\mathbf{v}_{t}\right\| \leq \rho$ for every t

Analyzing sub-gradient descent for Lipschitz functions

- Since f is convex and ρ-Lipschitz, $\left\|\mathbf{v}_{t}\right\| \leq \rho$ for every t
- Therefore,

$$
\frac{1}{T} \sum_{t=1}^{T}\left(f\left(\mathbf{w}_{t}\right)-f\left(\mathbf{w}^{\star}\right)\right) \leq \frac{\left\|\mathbf{w}^{\star}\right\|^{2}}{2 \eta T}+\frac{\eta \rho^{2}}{2}
$$

Analyzing sub-gradient descent for Lipschitz functions

- Since f is convex and ρ-Lipschitz, $\left\|\mathbf{v}_{t}\right\| \leq \rho$ for every t
- Therefore,

$$
\frac{1}{T} \sum_{t=1}^{T}\left(f\left(\mathbf{w}_{t}\right)-f\left(\mathbf{w}^{\star}\right)\right) \leq \frac{\left\|\mathbf{w}^{\star}\right\|^{2}}{2 \eta T}+\frac{\eta \rho^{2}}{2}
$$

- For every \mathbf{w}^{\star}, if $T \geq \frac{\left\|\mathbf{w}^{*}\right\|^{2} \rho^{2}}{\epsilon^{2}}$, and $\eta=\sqrt{\frac{\left\|\mathbf{w}^{*}\right\|^{2}}{\rho^{2} T}}$, then the right-hand side is at most ϵ

Analyzing sub-gradient descent for Lipschitz functions

- Since f is convex and ρ-Lipschitz, $\left\|\mathbf{v}_{t}\right\| \leq \rho$ for every t
- Therefore,

$$
\frac{1}{T} \sum_{t=1}^{T}\left(f\left(\mathbf{w}_{t}\right)-f\left(\mathbf{w}^{\star}\right)\right) \leq \frac{\left\|\mathbf{w}^{\star}\right\|^{2}}{2 \eta T}+\frac{\eta \rho^{2}}{2}
$$

- For every \mathbf{w}^{\star}, if $T \geq \frac{\left\|\mathbf{w}^{*}\right\|^{2} \rho^{2}}{\epsilon^{2}}$, and $\eta=\sqrt{\frac{\left\|\mathbf{w}^{*}\right\|^{2}}{\rho^{2} T}}$, then the right-hand side is at most ϵ
- By convexity, $f(\overline{\mathbf{w}}) \leq \frac{1}{T} \sum_{t=1}^{T} f\left(\mathbf{w}_{t}\right)$, hence $f(\overline{\mathbf{w}})-f\left(\mathbf{w}^{\star}\right) \leq \epsilon$

Analyzing sub-gradient descent for Lipschitz functions

- Since f is convex and ρ-Lipschitz, $\left\|\mathbf{v}_{t}\right\| \leq \rho$ for every t
- Therefore,

$$
\frac{1}{T} \sum_{t=1}^{T}\left(f\left(\mathbf{w}_{t}\right)-f\left(\mathbf{w}^{\star}\right)\right) \leq \frac{\left\|\mathbf{w}^{\star}\right\|^{2}}{2 \eta T}+\frac{\eta \rho^{2}}{2}
$$

- For every \mathbf{w}^{\star}, if $T \geq \frac{\left\|\mathbf{w}^{*}\right\|^{2} \rho^{2}}{\epsilon^{2}}$, and $\eta=\sqrt{\frac{\left\|\mathbf{w}^{*}\right\|^{2}}{\rho^{2} T}}$, then the right-hand side is at most ϵ
- By convexity, $f(\overline{\mathbf{w}}) \leq \frac{1}{T} \sum_{t=1}^{T} f\left(\mathbf{w}_{t}\right)$, hence $f(\overline{\mathbf{w}})-f\left(\mathbf{w}^{\star}\right) \leq \epsilon$
- Corollary: Sub-gradient descent needs $\frac{\left\|\mathbf{w}^{*}\right\|^{2} \rho^{2}}{\epsilon^{2}}$ iterations to converge

Example: Finding a Separating Hyperplane

Let $\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{m}, y_{m}\right)$ we would like to find a separating \mathbf{w} :

$$
\forall i, \quad y_{i}\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle>0
$$

Notation:

- Denote by \mathbf{w}^{*} a separating hyperplane of unit norm and let $\gamma=\min _{i} y_{i}\left\langle\mathbf{w}^{*}, \mathbf{x}_{i}\right\rangle$
- W.l.o.g. assume $\left\|\mathbf{x}_{i}\right\|=1$ for every i.

Separating Hyperplane using the Ellipsoid

- We can take the initial ball to be the unit ball
- The separation oracle looks for i s.t. $y_{i}\left\langle\mathbf{w}^{(t)}, \mathbf{x}_{i}\right\rangle \leq 0$
- If there's no such i, we're done. Otherwise, the oracle returns $y_{i} \mathbf{x}_{i}$
- The algorithm stops after at most $2 d(2 d+2) \log (1 / \gamma)$ iterations

Separating Hyperplane using Sub-gradient Descent

Consider the problem:

$$
\min _{\mathbf{w}} f(\mathbf{w}) \quad \text { where } \quad f(\mathbf{w})=\max _{i}-y_{i}\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle
$$

Separating Hyperplane using Sub-gradient Descent

Consider the problem:

$$
\min _{\mathbf{w}} f(\mathbf{w}) \quad \text { where } \quad f(\mathbf{w})=\max _{i}-y_{i}\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle
$$

Observe:

- f is convex

Separating Hyperplane using Sub-gradient Descent

Consider the problem:

$$
\min _{\mathbf{w}} f(\mathbf{w}) \quad \text { where } \quad f(\mathbf{w})=\max _{i}-y_{i}\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle
$$

Observe:

- f is convex
- A sub-gradient of f at \mathbf{w} is $-y_{i} \mathbf{x}_{i}$ for some $i \in \operatorname{argmax}-y_{i}\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle$

Separating Hyperplane using Sub-gradient Descent

Consider the problem:

$$
\min _{\mathbf{w}} f(\mathbf{w}) \quad \text { where } \quad f(\mathbf{w})=\max _{i}-y_{i}\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle
$$

Observe:

- f is convex
- A sub-gradient of f at \mathbf{w} is $-y_{i} \mathbf{x}_{i}$ for some $i \in \operatorname{argmax}-y_{i}\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle$
- f is 1-Lipschitz

Separating Hyperplane using Sub-gradient Descent

Consider the problem:

$$
\min _{\mathbf{w}} f(\mathbf{w}) \quad \text { where } \quad f(\mathbf{w})=\max _{i}-y_{i}\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle
$$

Observe:

- f is convex
- A sub-gradient of f at \mathbf{w} is $-y_{i} \mathbf{x}_{i}$ for some $i \in \operatorname{argmax}-y_{i}\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle$
- f is 1 -Lipschitz
- $f\left(\mathbf{w}^{*}\right)=-\gamma$

Separating Hyperplane using Sub-gradient Descent

Consider the problem:

$$
\min _{\mathbf{w}} f(\mathbf{w}) \quad \text { where } \quad f(\mathbf{w})=\max _{i}-y_{i}\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle
$$

Observe:

- f is convex
- A sub-gradient of f at \mathbf{w} is $-y_{i} \mathbf{x}_{i}$ for some $i \in \operatorname{argmax}-y_{i}\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle$
- f is 1 -Lipschitz
- $f\left(\mathbf{w}^{*}\right)=-\gamma$
- Therefore, after $t>\frac{1}{\gamma^{2}}$ iterations, we have $f\left(\mathbf{w}^{(t)}\right)<f\left(\mathbf{w}^{*}\right)+\gamma=0$

Separating Hyperplane using Sub-gradient Descent

Consider the problem:

$$
\min _{\mathbf{w}} f(\mathbf{w}) \quad \text { where } \quad f(\mathbf{w})=\max _{i}-y_{i}\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle
$$

Observe:

- f is convex
- A sub-gradient of f at \mathbf{w} is $-y_{i} \mathbf{x}_{i}$ for some $i \in \operatorname{argmax}-y_{i}\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle$
- f is 1 -Lipschitz
- $f\left(\mathbf{w}^{*}\right)=-\gamma$
- Therefore, after $t>\frac{1}{\gamma^{2}}$ iterations, we have $f\left(\mathbf{w}^{(t)}\right)<f\left(\mathbf{w}^{*}\right)+\gamma=0$
- So, $\mathbf{w}^{(t)}$ is a separating hyperplane

Separating Hyperplane using Sub-gradient Descent

Consider the problem:

$$
\min _{\mathbf{w}} f(\mathbf{w}) \quad \text { where } \quad f(\mathbf{w})=\max _{i}-y_{i}\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle
$$

Observe:

- f is convex
- A sub-gradient of f at \mathbf{w} is $-y_{i} \mathbf{x}_{i}$ for some $i \in \operatorname{argmax}-y_{i}\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle$
- f is 1 -Lipschitz
- $f\left(\mathbf{w}^{*}\right)=-\gamma$
- Therefore, after $t>\frac{1}{\gamma^{2}}$ iterations, we have $f\left(\mathbf{w}^{(t)}\right)<f\left(\mathbf{w}^{*}\right)+\gamma=0$
- So, $\mathbf{w}^{(t)}$ is a separating hyperplane
- The resulting algorithm is closely related to the Batch Perceptron

The Batch Perceptron

- Initialize, $\mathbf{w}^{(1)}=\mathbf{0}$
- While exists i s.t. $y_{i}\left\langle\mathbf{w}^{(t)}, \mathbf{x}_{i}\right\rangle \leq 0$ update

$$
\mathbf{w}^{(t+1)}=\mathbf{w}^{(t)}+y_{i} \mathbf{x}_{i}
$$

The Batch Perceptron

- Initialize, $\mathbf{w}^{(1)}=\mathbf{0}$
- While exists i s.t. $y_{i}\left\langle\mathbf{w}^{(t)}, \mathbf{x}_{i}\right\rangle \leq 0$ update

$$
\mathbf{w}^{(t+1)}=\mathbf{w}^{(t)}+y_{i} \mathbf{x}_{i}
$$

Exercise: why did we eliminate η ?

Ellipsoid vs. Sub-gradient

For f convex and ρ-Lipschitz:

	iterations	cost of iteration		
Ellipsoid	$d^{2} \log \left(\frac{\rho\left\\|\mathbf{w}^{*}\right\\|}{\epsilon}\right)$	$d^{2}+$ "gradient oracle"		
Sub-gradient descent	$\frac{\left\\|\mathbf{w}^{*}\right\\|^{2} \rho^{2}}{\epsilon^{2}}$	$d+$ "gradient oracle"		

Ellipsoid vs. Sub-gradient

For f convex and ρ-Lipschitz:

	iterations	cost of iteration		
Ellipsoid	$d^{2} \log \left(\frac{\rho\left\\|\mathbf{w}^{*}\right\\|}{\epsilon}\right)$	$d^{2}+$ "gradient oracle"		
Sub-gradient descent	$\frac{\left\\|\mathbf{w}^{*}\right\\|^{2} \rho^{2}}{\epsilon^{2}}$	$d+"$ gradient oracle"		

For separating hyperplane:

	iterations	cost of iteration
Ellipsoid	$d^{2} \log \left(\frac{1}{\gamma}\right)$	$d^{2}+d m$
Sub-gradient descent	$\frac{1}{\gamma^{2}}$	$d m$

Outline

(1) Convexity

(2) Convex Optimization

- Ellipsoid
- Gradient Descent
(3) Convex Learning Problems

4 Surrogate Loss Functions
(5) Learning Using Stochastic Gradient Descent

Convex Learning Problems

Definition (Convex Learning Problem)

A learning problem, (\mathcal{H}, Z, ℓ), is called convex if the hypothesis class \mathcal{H} is a convex set and for all $z \in Z$, the loss function, $\ell(\cdot, z)$, is a convex function (where, for any $z, \ell(\cdot, z)$ denotes the function $f: \mathcal{H} \rightarrow \mathbb{R}$ defined by $f(\mathbf{w})=\ell(\mathbf{w}, z))$.

Convex Learning Problems

Definition (Convex Learning Problem)

A learning problem, (\mathcal{H}, Z, ℓ), is called convex if the hypothesis class \mathcal{H} is a convex set and for all $z \in Z$, the loss function, $\ell(\cdot, z)$, is a convex function (where, for any $z, \ell(\cdot, z)$ denotes the function $f: \mathcal{H} \rightarrow \mathbb{R}$ defined by $f(\mathbf{w})=\ell(\mathbf{w}, z))$.

- The $E R M_{\mathcal{H}}$ problem w.r.t. a convex learning problem is a convex optimization problem: $\min _{\mathbf{w} \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^{m} \ell\left(\mathbf{w}, z_{i}\right)$

Convex Learning Problems

Definition (Convex Learning Problem)

A learning problem, (\mathcal{H}, Z, ℓ), is called convex if the hypothesis class \mathcal{H} is a convex set and for all $z \in Z$, the loss function, $\ell(\cdot, z)$, is a convex function (where, for any $z, \ell(\cdot, z)$ denotes the function $f: \mathcal{H} \rightarrow \mathbb{R}$ defined by $f(\mathbf{w})=\ell(\mathbf{w}, z))$.

- The $E R M_{\mathcal{H}}$ problem w.r.t. a convex learning problem is a convex optimization problem: $\min _{\mathbf{w} \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^{m} \ell\left(\mathbf{w}, z_{i}\right)$
- Example - least squares: $\mathcal{H}=\mathbb{R}^{d}, Z=\mathbb{R}^{d} \times \mathbb{R}$, $\ell(\mathbf{w},(\mathbf{x}, y))=(\langle\mathbf{w}, \mathbf{x}\rangle-y)^{2}$

Learnability of convex learning problems

- Claim: Not all convex learning problems over \mathbb{R}^{d} are learnable
- The intuitive reason is numerical stability
- But, with two additional mild conditions, we obtain learnability
- \mathcal{H} is bounded
- The loss function (or its gradient) is Lipschitz

Convex-Lipschitz-bounded learning problem

Definition (Convex-Lipschitz-Bounded Learning Problem)

A learning problem, (\mathcal{H}, Z, ℓ), is called Convex-Lipschitz-Bounded, with parameters ρ, B if the following holds:

- The hypothesis class \mathcal{H} is a convex set and for all $\mathbf{w} \in \mathcal{H}$ we have $\|\mathbf{w}\| \leq B$.
- For all $z \in Z$, the loss function, $\ell(\cdot, z)$, is a convex and ρ-Lipschitz function.

Convex-Lipschitz-bounded learning problem

Definition (Convex-Lipschitz-Bounded Learning Problem)

A learning problem, (\mathcal{H}, Z, ℓ), is called Convex-Lipschitz-Bounded, with parameters ρ, B if the following holds:

- The hypothesis class \mathcal{H} is a convex set and for all $\mathbf{w} \in \mathcal{H}$ we have $\|\mathbf{w}\| \leq B$.
- For all $z \in Z$, the loss function, $\ell(\cdot, z)$, is a convex and ρ-Lipschitz function.

Example:

- $\mathcal{H}=\left\{\mathbf{w} \in \mathbb{R}^{d}:\|\mathbf{w}\| \leq B\right\}$
- $\mathcal{X}=\left\{\mathbf{x} \in \mathbb{R}^{d}:\|\mathbf{x}\| \leq \rho\right\}, \mathcal{Y}=\mathbb{R}$,
- $\ell(\mathbf{w},(\mathbf{x}, y))=|\langle\mathbf{w}, \mathbf{x}\rangle-y|$

Convex-Smooth-bounded learning problem

A function f is β-smooth if it is differentiable and its gradient is β-Lipschitz.

Definition (Convex-Smooth-Bounded Learning Problem)

A learning problem, (\mathcal{H}, Z, ℓ), is called Convex-Smooth-Bounded, with parameters β, B if the following holds:

- The hypothesis class \mathcal{H} is a convex set and for all $\mathbf{w} \in \mathcal{H}$ we have $\|\mathbf{w}\| \leq B$.
- For all $z \in Z$, the loss function, $\ell(\cdot, z)$, is a convex, non-negative, and β-smooth function.

Convex-Smooth-bounded learning problem

A function f is β-smooth if it is differentiable and its gradient is β-Lipschitz.

Definition (Convex-Smooth-Bounded Learning Problem)

A learning problem, (\mathcal{H}, Z, ℓ), is called Convex-Smooth-Bounded, with parameters β, B if the following holds:

- The hypothesis class \mathcal{H} is a convex set and for all $\mathbf{w} \in \mathcal{H}$ we have $\|\mathbf{w}\| \leq B$.
- For all $z \in Z$, the loss function, $\ell(\cdot, z)$, is a convex, non-negative, and β-smooth function.

Example:

- $\mathcal{H}=\left\{\mathbf{w} \in \mathbb{R}^{d}:\|\mathbf{w}\| \leq B\right\}$
- $\mathcal{X}=\left\{\mathbf{x} \in \mathbb{R}^{d}:\|\mathbf{x}\| \leq \beta / 2\right\}, \mathcal{Y}=\mathbb{R}$,
- $\ell(\mathbf{w},(\mathbf{x}, y))=(\langle\mathbf{w}, \mathbf{x}\rangle-y)^{2}$

Learnability

We will later show that all Convex-Lipschitz-Bounded and Convex-Smooth-Bounded learning problems are learnable, with sample complexity that depends only on ϵ, δ, B, and ρ or β.

Outline

(1) Convexity
(2) Convex Optimization

- Ellipsoid
- Gradient Descent
(3) Convex Learning Problems

4 Surrogate Loss Functions

(5) Learning Using Stochastic Gradient Descent

Surrogate Loss Functions

- In many natural cases, the loss function is not convex
- For example, the $0-1$ loss for halfspaces

$$
\ell^{0-1}(\mathbf{w},(\mathbf{x}, y))=\mathbb{1}_{[y \neq \operatorname{sign}(\langle\mathbf{w}, \mathbf{x}\rangle)]}=\mathbb{1}_{[y\langle\mathbf{w}, \mathbf{x}\rangle \leq 0]}
$$

- Non-convex loss function usually yields intractable learning problems
- Popular approach: circumvent hardness by upper bounding the non-convex loss function using a convex surrogate loss function

Hinge-loss

$$
\ell^{\text {hinge }}(\mathbf{w},(\mathbf{x}, y)) \stackrel{\text { def }}{=} \max \{0,1-y\langle\mathbf{w}, \mathbf{x}\rangle\}
$$

Error Decomposition Revisited

- Suppose we have a learner for the hinge-loss that guarantees:

$$
L_{\mathcal{D}}^{\text {hinge }}(A(S)) \leq \min _{\mathbf{w} \in \mathcal{H}} L_{\mathcal{D}}^{\text {hinge }}(\mathbf{w})+\epsilon
$$

Error Decomposition Revisited

- Suppose we have a learner for the hinge-loss that guarantees:

$$
L_{\mathcal{D}}^{\text {hinge }}(A(S)) \leq \min _{\mathbf{w} \in \mathcal{H}} L_{\mathcal{D}}^{\text {hinge }}(\mathbf{w})+\epsilon
$$

- Using the surrogate property,

$$
L_{\mathcal{D}}^{0-1}(A(S)) \leq \min _{\mathbf{w} \in \mathcal{H}} L_{\mathcal{D}}^{\text {hinge }}(\mathbf{w})+\epsilon
$$

Error Decomposition Revisited

- Suppose we have a learner for the hinge-loss that guarantees:

$$
L_{\mathcal{D}}^{\text {hinge }}(A(S)) \leq \min _{\mathbf{w} \in \mathcal{H}} L_{\mathcal{D}}^{\text {hinge }}(\mathbf{w})+\epsilon
$$

- Using the surrogate property,

$$
L_{\mathcal{D}}^{0-1}(A(S)) \leq \min _{\mathbf{w} \in \mathcal{H}} L_{\mathcal{D}}^{\text {hinge }}(\mathbf{w})+\epsilon
$$

- We can further rewrite the upper bound as:

$$
\begin{aligned}
L_{\mathcal{D}}^{0-1}(A(S)) & \leq \min _{\mathbf{w} \in \mathcal{H}} L_{\mathcal{D}}^{0-1}(\mathbf{w})+\left(\min _{\mathbf{w} \in \mathcal{H}} L_{\mathcal{D}}^{\text {hinge }}(\mathbf{w})-\min _{\mathbf{w} \in \mathcal{H}} L_{\mathcal{D}}^{0-1}(\mathbf{w})\right)+\epsilon \\
& =\epsilon_{\text {approximation }}+\epsilon_{\text {optimization }}+\epsilon_{\text {estimation }}
\end{aligned}
$$

Error Decomposition Revisited

- Suppose we have a learner for the hinge-loss that guarantees:

$$
L_{\mathcal{D}}^{\text {hinge }}(A(S)) \leq \min _{\mathbf{w} \in \mathcal{H}} L_{\mathcal{D}}^{\text {hinge }}(\mathbf{w})+\epsilon
$$

- Using the surrogate property,

$$
L_{\mathcal{D}}^{0-1}(A(S)) \leq \min _{\mathbf{w} \in \mathcal{H}} L_{\mathcal{D}}^{\text {hinge }}(\mathbf{w})+\epsilon
$$

- We can further rewrite the upper bound as:

$$
\begin{aligned}
L_{\mathcal{D}}^{0-1}(A(S)) & \leq \min _{\mathbf{w} \in \mathcal{H}} L_{\mathcal{D}}^{0-1}(\mathbf{w})+\left(\min _{\mathbf{w} \in \mathcal{H}} L_{\mathcal{D}}^{\text {hinge }}(\mathbf{w})-\min _{\mathbf{w} \in \mathcal{H}} L_{\mathcal{D}}^{0-1}(\mathbf{w})\right)+\epsilon \\
& =\epsilon_{\text {approximation }}+\epsilon_{\text {optimization }}+\epsilon_{\text {estimation }}
\end{aligned}
$$

- The optimization error is a result of our inability to minimize the training loss with respect to the original loss.

Outline

(1) Convexity

(2) Convex Optimization

- Ellipsoid
- Gradient Descent
(3) Convex Learning Problems

4 Surrogate Loss Functions
(5) Learning Using Stochastic Gradient Descent

Learning Using Stochastic Gradient Descent

- Consider a convex-Lipschitz-bounded learning problem.

Learning Using Stochastic Gradient Descent

- Consider a convex-Lipschitz-bounded learning problem.
- Recall: our goal is to (probably approximately) solve:

$$
\min _{\mathbf{w} \in \mathcal{H}} L_{\mathcal{D}}(\mathbf{w}) \quad \text { where } \quad L_{\mathcal{D}}(\mathbf{w})=\underset{z \sim \mathcal{D}}{\mathbb{E}}[\ell(\mathbf{w}, z)]
$$

Learning Using Stochastic Gradient Descent

- Consider a convex-Lipschitz-bounded learning problem.
- Recall: our goal is to (probably approximately) solve:

$$
\min _{\mathbf{w} \in \mathcal{H}} L_{\mathcal{D}}(\mathbf{w}) \quad \text { where } \quad L_{\mathcal{D}}(\mathbf{w})=\underset{z \sim \mathcal{D}}{\mathbb{E}}[\ell(\mathbf{w}, z)]
$$

- So far, learning was based on the empirical risk, $L_{S}(\mathbf{w})$

Learning Using Stochastic Gradient Descent

- Consider a convex-Lipschitz-bounded learning problem.
- Recall: our goal is to (probably approximately) solve:

$$
\min _{\mathbf{w} \in \mathcal{H}} L_{\mathcal{D}}(\mathbf{w}) \quad \text { where } \quad L_{\mathcal{D}}(\mathbf{w})=\underset{z \sim \mathcal{D}}{\mathbb{E}}[\ell(\mathbf{w}, z)]
$$

- So far, learning was based on the empirical risk, $L_{S}(\mathbf{w})$
- We now consider directly minimizing $L_{\mathcal{D}}(\mathbf{w})$

Stochastic Gradient Descent

$$
\min _{\mathbf{w} \in \mathcal{H}} L_{\mathcal{D}}(\mathbf{w}) \quad \text { where } \quad L_{\mathcal{D}}(\mathbf{w})=\underset{z \sim \mathcal{D}}{\mathbb{E}}[\ell(\mathbf{w}, z)]
$$

- Recall the gradient descent method in which we initialize $\mathbf{w}^{(1)}=\mathbf{0}$ and update $\mathbf{w}^{(t+1)}=\mathbf{w}^{(t)}-\eta \nabla L_{\mathcal{D}}(\mathbf{w})$

Stochastic Gradient Descent

$$
\min _{\mathbf{w} \in \mathcal{H}} L_{\mathcal{D}}(\mathbf{w}) \quad \text { where } \quad L_{\mathcal{D}}(\mathbf{w})=\underset{z \sim \mathcal{D}}{\mathbb{E}}[\ell(\mathbf{w}, z)]
$$

- Recall the gradient descent method in which we initialize $\mathbf{w}^{(1)}=\mathbf{0}$ and update $\mathbf{w}^{(t+1)}=\mathbf{w}^{(t)}-\eta \nabla L_{\mathcal{D}}(\mathbf{w})$
- Observe: $\nabla L_{\mathcal{D}}(\mathbf{w})=\mathbb{E}_{z \sim \mathcal{D}}[\nabla \ell(\mathbf{w}, z)]$

Stochastic Gradient Descent

$$
\min _{\mathbf{w} \in \mathcal{H}} L_{\mathcal{D}}(\mathbf{w}) \quad \text { where } \quad L_{\mathcal{D}}(\mathbf{w})=\underset{z \sim \mathcal{D}}{\mathbb{E}}[\ell(\mathbf{w}, z)]
$$

- Recall the gradient descent method in which we initialize $\mathbf{w}^{(1)}=\mathbf{0}$ and update $\mathbf{w}^{(t+1)}=\mathbf{w}^{(t)}-\eta \nabla L_{\mathcal{D}}(\mathbf{w})$
- Observe: $\nabla L_{\mathcal{D}}(\mathbf{w})=\mathbb{E}_{z \sim \mathcal{D}}[\nabla \ell(\mathbf{w}, z)]$
- We can't calculate $\nabla L_{\mathcal{D}}(\mathbf{w})$ because we don't know \mathcal{D}

Stochastic Gradient Descent

$$
\min _{\mathbf{w} \in \mathcal{H}} L_{\mathcal{D}}(\mathbf{w}) \quad \text { where } \quad L_{\mathcal{D}}(\mathbf{w})=\underset{z \sim \mathcal{D}}{\mathbb{E}}[\ell(\mathbf{w}, z)]
$$

- Recall the gradient descent method in which we initialize $\mathbf{w}^{(1)}=\mathbf{0}$ and update $\mathbf{w}^{(t+1)}=\mathbf{w}^{(t)}-\eta \nabla L_{\mathcal{D}}(\mathbf{w})$
- Observe: $\nabla L_{\mathcal{D}}(\mathbf{w})=\mathbb{E}_{z \sim \mathcal{D}}[\nabla \ell(\mathbf{w}, z)]$
- We can't calculate $\nabla L_{\mathcal{D}}(\mathbf{w})$ because we don't know \mathcal{D}
- But we can estimate it by $\nabla \ell(\mathbf{w}, z)$ for $z \sim \mathcal{D}$

Stochastic Gradient Descent

$$
\min _{\mathbf{w} \in \mathcal{H}} L_{\mathcal{D}}(\mathbf{w}) \quad \text { where } \quad L_{\mathcal{D}}(\mathbf{w})=\underset{z \sim \mathcal{D}}{\mathbb{E}}[\ell(\mathbf{w}, z)]
$$

- Recall the gradient descent method in which we initialize $\mathbf{w}^{(1)}=\mathbf{0}$ and update $\mathbf{w}^{(t+1)}=\mathbf{w}^{(t)}-\eta \nabla L_{\mathcal{D}}(\mathbf{w})$
- Observe: $\nabla L_{\mathcal{D}}(\mathbf{w})=\mathbb{E}_{z \sim \mathcal{D}}[\nabla \ell(\mathbf{w}, z)]$
- We can't calculate $\nabla L_{\mathcal{D}}(\mathbf{w})$ because we don't know \mathcal{D}
- But we can estimate it by $\nabla \ell(\mathbf{w}, z)$ for $z \sim \mathcal{D}$
- If we take a step in the direction $\mathbf{v}=\nabla \ell(\mathbf{w}, z)$ then in expectation we're moving in the right direction

Stochastic Gradient Descent

$$
\min _{\mathbf{w} \in \mathcal{H}} L_{\mathcal{D}}(\mathbf{w}) \quad \text { where } \quad L_{\mathcal{D}}(\mathbf{w})=\underset{z \sim \mathcal{D}}{\mathbb{E}}[\ell(\mathbf{w}, z)]
$$

- Recall the gradient descent method in which we initialize $\mathbf{w}^{(1)}=\mathbf{0}$ and update $\mathbf{w}^{(t+1)}=\mathbf{w}^{(t)}-\eta \nabla L_{\mathcal{D}}(\mathbf{w})$
- Observe: $\nabla L_{\mathcal{D}}(\mathbf{w})=\mathbb{E}_{z \sim \mathcal{D}}[\nabla \ell(\mathbf{w}, z)]$
- We can't calculate $\nabla L_{\mathcal{D}}(\mathbf{w})$ because we don't know \mathcal{D}
- But we can estimate it by $\nabla \ell(\mathbf{w}, z)$ for $z \sim \mathcal{D}$
- If we take a step in the direction $\mathbf{v}=\nabla \ell(\mathbf{w}, z)$ then in expectation we're moving in the right direction
- In other words, \mathbf{v} is an unbiased estimate of the gradient

Stochastic Gradient Descent

$$
\min _{\mathbf{w} \in \mathcal{H}} L_{\mathcal{D}}(\mathbf{w}) \quad \text { where } \quad L_{\mathcal{D}}(\mathbf{w})=\underset{z \sim \mathcal{D}}{\mathbb{E}}[\ell(\mathbf{w}, z)]
$$

- Recall the gradient descent method in which we initialize $\mathbf{w}^{(1)}=\mathbf{0}$ and update $\mathbf{w}^{(t+1)}=\mathbf{w}^{(t)}-\eta \nabla L_{\mathcal{D}}(\mathbf{w})$
- Observe: $\nabla L_{\mathcal{D}}(\mathbf{w})=\mathbb{E}_{z \sim \mathcal{D}}[\nabla \ell(\mathbf{w}, z)]$
- We can't calculate $\nabla L_{\mathcal{D}}(\mathbf{w})$ because we don't know \mathcal{D}
- But we can estimate it by $\nabla \ell(\mathbf{w}, z)$ for $z \sim \mathcal{D}$
- If we take a step in the direction $\mathbf{v}=\nabla \ell(\mathbf{w}, z)$ then in expectation we're moving in the right direction
- In other words, \mathbf{v} is an unbiased estimate of the gradient
- We'll show that this is good enough

Stochastic Gradient Descent

- initialize: $\mathbf{w}^{(1)}=\mathbf{0}$
- for $t=1,2, \ldots, T$
- choose $z_{t} \sim \mathcal{D}$
- let $\mathbf{v}_{t} \in \partial \ell\left(\mathbf{w}^{(t)}, z_{t}\right)$ update $\mathbf{w}^{(t+1)}=\mathbf{w}^{(t)}-\eta \mathbf{v}_{t}$
- output $\overline{\mathbf{w}}=\frac{1}{T} \sum_{t=1}^{T} \mathbf{w}^{(t)}$

Stochastic Gradient Descent

- initialize: $\mathbf{w}^{(1)}=\mathbf{0}$
- for $t=1,2, \ldots, T$
- choose $z_{t} \sim \mathcal{D}$
- let $\mathbf{v}_{t} \in \partial \ell\left(\mathbf{w}^{(t)}, z_{t}\right)$ update $\mathbf{w}^{(t+1)}=\mathbf{w}^{(t)}-\eta \mathbf{v}_{t}$
- output $\overline{\mathbf{w}}=\frac{1}{T} \sum_{t=1}^{T} \mathbf{w}^{(t)}$

Analyzing SGD for convex-Lipschitz-bounded

By algebraic manipulations, for any sequence of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{T}$, and any \mathbf{w}^{\star},

$$
\sum_{t=1}^{T}\left\langle\mathbf{w}^{(t)}-\mathbf{w}^{\star}, \mathbf{v}_{t}\right\rangle=\frac{\left\|\mathbf{w}^{(1)}-\mathbf{w}^{\star}\right\|^{2}-\left\|\mathbf{w}^{(T+1)}-\mathbf{w}^{\star}\right\|^{2}}{2 \eta}+\frac{\eta}{2} \sum_{t=1}^{T}\left\|\mathbf{v}_{t}\right\|^{2}
$$

Analyzing SGD for convex-Lipschitz-bounded

By algebraic manipulations, for any sequence of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{T}$, and any \mathbf{w}^{\star},

$$
\sum_{t=1}^{T}\left\langle\mathbf{w}^{(t)}-\mathbf{w}^{\star}, \mathbf{v}_{t}\right\rangle=\frac{\left\|\mathbf{w}^{(1)}-\mathbf{w}^{\star}\right\|^{2}-\left\|\mathbf{w}^{(T+1)}-\mathbf{w}^{\star}\right\|^{2}}{2 \eta}+\frac{\eta}{2} \sum_{t=1}^{T}\left\|\mathbf{v}_{t}\right\|^{2}
$$

Assume that $\left\|\mathbf{v}_{t}\right\| \leq \rho$ for all t and that $\left\|\mathbf{w}^{\star}\right\| \leq B$ we obtain

$$
\sum_{t=1}^{T}\left\langle\mathbf{w}^{(t)}-\mathbf{w}^{\star}, \mathbf{v}_{t}\right\rangle \leq \frac{B^{2}}{2 \eta}+\frac{\eta \rho^{2} T}{2}
$$

Analyzing SGD for convex-Lipschitz-bounded

By algebraic manipulations, for any sequence of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{T}$, and any \mathbf{w}^{\star},

$$
\sum_{t=1}^{T}\left\langle\mathbf{w}^{(t)}-\mathbf{w}^{\star}, \mathbf{v}_{t}\right\rangle=\frac{\left\|\mathbf{w}^{(1)}-\mathbf{w}^{\star}\right\|^{2}-\left\|\mathbf{w}^{(T+1)}-\mathbf{w}^{\star}\right\|^{2}}{2 \eta}+\frac{\eta}{2} \sum_{t=1}^{T}\left\|\mathbf{v}_{t}\right\|^{2}
$$

Assume that $\left\|\mathbf{v}_{t}\right\| \leq \rho$ for all t and that $\left\|\mathbf{w}^{\star}\right\| \leq B$ we obtain

$$
\sum_{t=1}^{T}\left\langle\mathbf{w}^{(t)}-\mathbf{w}^{\star}, \mathbf{v}_{t}\right\rangle \leq \frac{B^{2}}{2 \eta}+\frac{\eta \rho^{2} T}{2}
$$

In particular, for $\eta=\sqrt{\frac{B^{2}}{\rho^{2} T}}$ we get

$$
\sum_{t=1}^{T}\left\langle\mathbf{w}^{(t)}-\mathbf{w}^{\star}, \mathbf{v}_{t}\right\rangle \leq B \rho \sqrt{T}
$$

Analyzing SGD for convex-Lipschitz-bounded

Taking expectation of both sides w.r.t. the randomness of choosing z_{1}, \ldots, z_{T} we obtain:

$$
\underset{z_{1}, \ldots, z_{T}}{\mathbb{E}}\left[\sum_{t=1}^{T}\left\langle\mathbf{w}^{(t)}-\mathbf{w}^{\star}, \mathbf{v}_{t}\right\rangle\right] \leq B \rho \sqrt{T} .
$$

Analyzing SGD for convex-Lipschitz-bounded

Taking expectation of both sides w.r.t. the randomness of choosing z_{1}, \ldots, z_{T} we obtain:

$$
\underset{z_{1}, \ldots, z_{T}}{\mathbb{E}}\left[\sum_{t=1}^{T}\left\langle\mathbf{w}^{(t)}-\mathbf{w}^{\star}, \mathbf{v}_{t}\right\rangle\right] \leq B \rho \sqrt{T}
$$

The law of total expectation: for every two random variables α, β, and a function $g, \mathbb{E}_{\alpha}[g(\alpha)]=\mathbb{E}_{\beta} \mathbb{E}_{\alpha}[g(\alpha) \mid \beta]$.

Analyzing SGD for convex-Lipschitz-bounded

Taking expectation of both sides w.r.t. the randomness of choosing z_{1}, \ldots, z_{T} we obtain:

$$
\underset{z_{1}, \ldots, z_{T}}{\mathbb{E}}\left[\sum_{t=1}^{T}\left\langle\mathbf{w}^{(t)}-\mathbf{w}^{\star}, \mathbf{v}_{t}\right\rangle\right] \leq B \rho \sqrt{T} .
$$

The law of total expectation: for every two random variables α, β, and a function $g, \mathbb{E}_{\alpha}[g(\alpha)]=\mathbb{E}_{\beta} \mathbb{E}_{\alpha}[g(\alpha) \mid \beta]$. Therefore

$$
\underset{z_{1}, \ldots, z_{T}}{\mathbb{E}}\left[\left\langle\mathbf{w}^{(t)}-\mathbf{w}^{\star}, \mathbf{v}_{t}\right\rangle\right]=\underset{z_{1}, \ldots, z_{t-1}}{\mathbb{E}} \underset{z_{1}, \ldots, z_{T}}{\mathbb{E}}\left[\left\langle\mathbf{w}^{(t)}-\mathbf{w}^{\star}, \mathbf{v}_{t}\right\rangle \mid z_{1}, \ldots, z_{t-1}\right]
$$

Analyzing SGD for convex-Lipschitz-bounded

Taking expectation of both sides w.r.t. the randomness of choosing z_{1}, \ldots, z_{T} we obtain:

$$
\underset{z_{1}, \ldots, z_{T}}{\mathbb{E}}\left[\sum_{t=1}^{T}\left\langle\mathbf{w}^{(t)}-\mathbf{w}^{\star}, \mathbf{v}_{t}\right\rangle\right] \leq B \rho \sqrt{T} .
$$

The law of total expectation: for every two random variables α, β, and a function $g, \mathbb{E}_{\alpha}[g(\alpha)]=\mathbb{E}_{\beta} \mathbb{E}_{\alpha}[g(\alpha) \mid \beta]$. Therefore

$$
\underset{z_{1}, \ldots, z_{T}}{\mathbb{E}}\left[\left\langle\mathbf{w}^{(t)}-\mathbf{w}^{\star}, \mathbf{v}_{t}\right\rangle\right]=\underset{z_{1}, \ldots, z_{t-1}}{\mathbb{E}} \underset{z_{1}, \ldots, z_{T}}{\mathbb{E}}\left[\left\langle\mathbf{w}^{(t)}-\mathbf{w}^{\star}, \mathbf{v}_{t}\right\rangle \mid z_{1}, \ldots, z_{t-1}\right] .
$$

Once we know β the value of $\mathbf{w}^{(t)}$ is not random, hence,

$$
\begin{aligned}
\underset{z_{1}, \ldots, z_{T}}{\mathbb{E}}\left[\left\langle\mathbf{w}^{(t)}-\mathbf{w}^{\star}, \mathbf{v}_{t}\right\rangle \mid z_{1}, \ldots, z_{t-1}\right] & =\left\langle\mathbf{w}^{(t)}-\mathbf{w}^{\star}, \underset{z_{t}}{\mathbb{E}}\left[\nabla \ell\left(\mathbf{w}^{(t)}, z_{t}\right)\right]\right\rangle \\
& =\left\langle\mathbf{w}^{(t)}-\mathbf{w}^{\star}, \nabla L_{\mathcal{D}}\left(\mathbf{w}^{(t)}\right)\right\rangle
\end{aligned}
$$

Analyzing SGD for convex-Lipschitz-bounded

We got:

$$
\underset{z_{1}, \ldots, z_{T}}{\mathbb{E}}\left[\sum_{t=1}^{T}\left\langle\mathbf{w}^{(t)}-\mathbf{w}^{\star}, \nabla L_{\mathcal{D}}\left(\mathbf{w}^{(t)}\right)\right\rangle\right] \leq B \rho \sqrt{T}
$$

Analyzing SGD for convex-Lipschitz-bounded

We got:

$$
\underset{z_{1}, \ldots, z_{T}}{\mathbb{E}}\left[\sum_{t=1}^{T}\left\langle\mathbf{w}^{(t)}-\mathbf{w}^{\star}, \nabla L_{\mathcal{D}}\left(\mathbf{w}^{(t)}\right)\right\rangle\right] \leq B \rho \sqrt{T}
$$

By convexity, this means

$$
\underset{z_{1}, \ldots, z_{T}}{\mathbb{E}}\left[\sum_{t=1}^{T}\left(L_{\mathcal{D}}\left(\mathbf{w}^{(t)}\right)-L_{\mathcal{D}}\left(\mathbf{w}^{\star}\right)\right)\right] \leq B \rho \sqrt{T}
$$

Analyzing SGD for convex-Lipschitz-bounded

We got:

$$
\underset{z_{1}, \ldots, z_{T}}{\mathbb{E}}\left[\sum_{t=1}^{T}\left\langle\mathbf{w}^{(t)}-\mathbf{w}^{\star}, \nabla L_{\mathcal{D}}\left(\mathbf{w}^{(t)}\right)\right\rangle\right] \leq B \rho \sqrt{T}
$$

By convexity, this means

$$
\underset{z_{1}, \ldots, z_{T}}{\mathbb{E}}\left[\sum_{t=1}^{T}\left(L_{\mathcal{D}}\left(\mathbf{w}^{(t)}\right)-L_{\mathcal{D}}\left(\mathbf{w}^{\star}\right)\right)\right] \leq B \rho \sqrt{T}
$$

Dividing by T and using convexity again,

$$
\underset{z_{1}, \ldots, z_{T}}{\mathbb{E}}\left[L_{\mathcal{D}}\left(\frac{1}{T} \sum_{t=1}^{T} \mathbf{w}^{(t)}\right)\right] \leq L_{\mathcal{D}}\left(\mathbf{w}^{\star}\right)+\frac{B \rho}{\sqrt{T}}
$$

Learning convex-Lipschitz-bounded problems using SGD

Corollary

Consider a convex-Lipschitz-bounded learning problem with parameters ρ, B. Then, for every $\epsilon>0$, if we run the $S G D$ method for minimizing $L_{\mathcal{D}}(\mathbf{w})$ with a number of iterations (i.e., number of examples)

$$
T \geq \frac{B^{2} \rho^{2}}{\epsilon^{2}}
$$

and with $\eta=\sqrt{\frac{B^{2}}{\rho^{2} T}}$, then the output of SGD satisfies:

$$
\mathbb{E}\left[L_{\mathcal{D}}(\overline{\mathbf{w}})\right] \leq \min _{\mathbf{w} \in \mathcal{H}} L_{\mathcal{D}}(\mathbf{w})+\epsilon .
$$

Summary

- Convex optimization
- Convex learning problems
- Learning using SGD

