Introduction to Machine Learning (67577) Lecture 8

Shai Shalev-Shwartz

School of CS and Engineering,
The Hebrew University of Jerusalem

Support Vector Machines and Kernel Methods

Outline

(1) Support Vector Machines

- Margin
- hard-SVM
- soft-SVM
- Solving SVM using SGD
(2) Kernels
- Embeddings into feature spaces
- The Kernel Trick
- Examples of kernels
- SGD with kernels
- Duality

Which separating hyperplane is better ?

- Intuitively, dashed black is better

Margin

- Given hyperplane defined by $L=\{\mathbf{v}:\langle\mathbf{w}, \mathbf{v}\rangle+b=0\}$, and given \mathbf{x}, the distance of \mathbf{x} to L is

$$
d(\mathbf{x}, L)=\min \{\|\mathbf{x}-\mathbf{v}\|: \mathbf{v} \in L\}
$$

- Claim: if $\|\mathbf{w}\|=1$ then $d(\mathbf{x}, L)=|\langle\mathbf{w}, \mathbf{x}\rangle+b|$

Margin and Support Vectors

- Recall: a separating hyperplane is defined by (\mathbf{w}, b) s.t. $\forall i, \quad y_{i}\left(\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle+b\right)>0$
- The margin of a separating hyperplane is the distance of the closest example to it: $\min _{i}\left|\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle+b\right|$

Margin and Support Vectors

- Recall: a separating hyperplane is defined by (\mathbf{w}, b) s.t. $\forall i, \quad y_{i}\left(\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle+b\right)>0$
- The margin of a separating hyperplane is the distance of the closest example to it: $\min _{i}\left|\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle+b\right|$
- The closest examples are called support vectors

Support Vector Machine (SVM)

- Hard-SVM: Seek for the separating hyperplane with largest margin

$$
\underset{(\mathbf{w}, b):\|\mathbf{w}\|=1}{\operatorname{argmax}} \min _{i \in[m]}\left|\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle+b\right| \quad \text { s.t. } \quad \forall i, y_{i}\left(\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle+b\right)>0 .
$$

Support Vector Machine (SVM)

- Hard-SVM: Seek for the separating hyperplane with largest margin

$$
\underset{(\mathbf{w}, b):\|\mathbf{w}\|=1}{\operatorname{argmax}} \min _{i \in[m]}^{\sin }\left|\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle+b\right| \quad \text { s.t. } \quad \forall i, y_{i}\left(\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle+b\right)>0 .
$$

- Equivalently:

$$
\underset{(\mathbf{w}, b):\|\mathbf{w}\|=1}{\operatorname{argmax}} \min _{i \in[m]} y_{i}\left(\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle+b\right) .
$$

Support Vector Machine (SVM)

- Hard-SVM: Seek for the separating hyperplane with largest margin

$$
\underset{(\mathbf{w}, b):\|\mathbf{w}\|=1}{\operatorname{argmax}} \min _{i \in[m]}^{\sin }\left|\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle+b\right| \quad \text { s.t. } \quad \forall i, y_{i}\left(\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle+b\right)>0 .
$$

- Equivalently:

$$
\underset{(\mathbf{w}, b):\|\mathbf{w}\|=1}{\operatorname{argmax}} \min _{i \in[m]} y_{i}\left(\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle+b\right) .
$$

- Equivalently:

$$
\left(\mathbf{w}_{0}, b_{0}\right)=\underset{(\mathbf{w}, b)}{\operatorname{argmin}}\|\mathbf{w}\|^{2} \text { s.t. } \forall i, y_{i}\left(\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle+b\right) \geq 1
$$

Support Vector Machine (SVM)

- Hard-SVM: Seek for the separating hyperplane with largest margin

$$
\underset{(\mathbf{w}, b):\|\mathbf{w}\|=1}{\operatorname{argmax}} \min _{i \in[m]}\left|\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle+b\right| \quad \text { s.t. } \quad \forall i, y_{i}\left(\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle+b\right)>0 .
$$

- Equivalently:

$$
\underset{(\mathbf{w}, b):\|\mathbf{w}\|=1}{\operatorname{argmax}} \min _{i \in[m]} y_{i}\left(\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle+b\right) .
$$

- Equivalently:

$$
\left(\mathbf{w}_{0}, b_{0}\right)=\underset{(\mathbf{w}, b)}{\operatorname{argmin}}\|\mathbf{w}\|^{2} \text { s.t. } \forall i, y_{i}\left(\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle+b\right) \geq 1
$$

- Observe: The margin of $\left(\frac{\mathbf{w}_{0}}{\left\|\mathbf{w}_{0}\right\|}, \frac{b_{0}}{\left\|\mathbf{w}_{0}\right\|}\right)$ is $1 /\left\|\mathbf{w}_{0}\right\|$ and is maximal margin

Margin-based Analysis

- Margin is Scale Sensitive:
- if (\mathbf{w}, b) separates $\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{m}, y_{m}\right)$ with margin γ, then it separates $\left(2 \mathbf{x}_{1}, y_{1}\right), \ldots,\left(2 \mathbf{x}_{m}, y_{m}\right)$ with a margin of 2γ
- The margin depends on the scale of the examples

Margin-based Analysis

- Margin is Scale Sensitive:
- if (\mathbf{w}, b) separates $\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{m}, y_{m}\right)$ with margin γ, then it separates $\left(2 \mathbf{x}_{1}, y_{1}\right), \ldots,\left(2 \mathbf{x}_{m}, y_{m}\right)$ with a margin of 2γ
- The margin depends on the scale of the examples
- Margin of distribution: We say that \mathcal{D} is separable with a (γ, ρ)-margin if exists $\left(\mathbf{w}^{\star}, b^{\star}\right)$ s.t. $\left\|\mathbf{w}^{\star}\right\|=1$ and

$$
\mathcal{D}\left(\left\{(\mathbf{x}, y):\|\mathbf{x}\| \leq \rho \wedge y\left(\left\langle\mathbf{w}^{\star}, \mathbf{x}\right\rangle+b^{\star}\right) \geq 1\right\}\right)=1
$$

Margin-based Analysis

- Margin is Scale Sensitive:
- if (\mathbf{w}, b) separates $\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{m}, y_{m}\right)$ with margin γ, then it separates $\left(2 \mathbf{x}_{1}, y_{1}\right), \ldots,\left(2 \mathbf{x}_{m}, y_{m}\right)$ with a margin of 2γ
- The margin depends on the scale of the examples
- Margin of distribution: We say that \mathcal{D} is separable with a (γ, ρ)-margin if exists $\left(\mathbf{w}^{\star}, b^{\star}\right)$ s.t. $\left\|\mathbf{w}^{\star}\right\|=1$ and

$$
\mathcal{D}\left(\left\{(\mathbf{x}, y):\|\mathbf{x}\| \leq \rho \wedge y\left(\left\langle\mathbf{w}^{\star}, \mathbf{x}\right\rangle+b^{\star}\right) \geq 1\right\}\right)=1
$$

- Theorem: If \mathcal{D} is separable with a (γ, ρ)-margin then the sample complexity of hard-SVM is

$$
m(\epsilon, \delta) \leq \frac{8}{\epsilon^{2}}\left(2(\rho / \gamma)^{2}+\log (2 / \delta)\right)
$$

Margin-based Analysis

- Margin is Scale Sensitive:
- if (\mathbf{w}, b) separates $\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{m}, y_{m}\right)$ with margin γ, then it separates $\left(2 \mathbf{x}_{1}, y_{1}\right), \ldots,\left(2 \mathbf{x}_{m}, y_{m}\right)$ with a margin of 2γ
- The margin depends on the scale of the examples
- Margin of distribution: We say that \mathcal{D} is separable with a (γ, ρ)-margin if exists $\left(\mathbf{w}^{\star}, b^{\star}\right)$ s.t. $\left\|\mathbf{w}^{\star}\right\|=1$ and

$$
\mathcal{D}\left(\left\{(\mathbf{x}, y):\|\mathbf{x}\| \leq \rho \wedge y\left(\left\langle\mathbf{w}^{\star}, \mathbf{x}\right\rangle+b^{\star}\right) \geq 1\right\}\right)=1
$$

- Theorem: If \mathcal{D} is separable with a (γ, ρ)-margin then the sample complexity of hard-SVM is

$$
m(\epsilon, \delta) \leq \frac{8}{\epsilon^{2}}\left(2(\rho / \gamma)^{2}+\log (2 / \delta)\right)
$$

- Unlike VC bounds, here the sample complexity depends on ρ / γ instead of d

Soft-SVM

- Hard-SVM assumes that the data is separable

Soft-SVM

- Hard-SVM assumes that the data is separable
- What if it's not? We can relax the constraint to yield soft-SVM

$$
\begin{aligned}
& \underset{\mathbf{w}, b, \xi}{\operatorname{argmin}}\left(\lambda\|\mathbf{w}\|^{2}+\frac{1}{m} \sum_{i=1}^{m} \xi_{i}\right) \\
& \quad \text { s.t. } \forall i, \quad y_{i}\left(\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle+b\right) \geq 1-\xi_{i} \text { and } \xi_{i} \geq 0
\end{aligned}
$$

Soft-SVM

- Hard-SVM assumes that the data is separable
- What if it's not? We can relax the constraint to yield soft-SVM

$$
\begin{aligned}
& \underset{\mathbf{w}, b, \boldsymbol{\xi}}{\operatorname{argmin}}\left(\lambda\|\mathbf{w}\|^{2}+\frac{1}{m} \sum_{i=1}^{m} \xi_{i}\right) \\
& \quad \text { s.t. } \forall i, \quad y_{i}\left(\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle+b\right) \geq 1-\xi_{i} \quad \text { and } \quad \xi_{i} \geq 0
\end{aligned}
$$

- Can be written as regularized loss minimization:

$$
\underset{\mathbf{w}, b}{\operatorname{argmin}}\left(\lambda\|\mathbf{w}\|^{2}+L_{S}^{\text {hinge }}((\mathbf{w}, b))\right)
$$

where we use the hinge loss

$$
\ell^{\text {hinge }}((\mathbf{w}, b),(\mathbf{x}, y))=\max \{0,1-y(\langle\mathbf{w}, \mathbf{x}\rangle+b)\}
$$

The Homogenous Case

- Recall: by adding one more feature to x with the constant value of 1 we can remove the bias term
- However, this will yield a slightly different algorithm, since now we'll effectively regularize the bias term, b, as well
- This has little effect on the sample complexity, and simplify the analysis and algorithmic, so from now on we omit b

Sample complexity of soft-SVM

- Observe: soft-SVM = RLM

Sample complexity of soft-SVM

- Observe: soft-SVM = RLM
- Observe: the hinge-loss, $\mathbf{w} \mapsto \max \{0,1-y\langle\mathbf{w}, \mathbf{x}\rangle\}$, is $\|\mathbf{x}\|$-Lipschitz

Sample complexity of soft-SVM

- Observe: soft-SVM = RLM
- Observe: the hinge-loss, $\mathbf{w} \mapsto \max \{0,1-y\langle\mathbf{w}, \mathbf{x}\rangle\}$, is $\|\mathbf{x}\|$-Lipschitz
- Assume that \mathcal{D} is s.t. $\|\mathbf{x}\| \leq \rho$ with probability 1

Sample complexity of soft-SVM

- Observe: soft-SVM = RLM
- Observe: the hinge-loss, $\mathbf{w} \mapsto \max \{0,1-y\langle\mathbf{w}, \mathbf{x}\rangle\}$, is $\|\mathbf{x}\|$-Lipschitz
- Assume that \mathcal{D} is s.t. $\|\mathbf{x}\| \leq \rho$ with probability 1
- Then, we obtain a convex-Lipschitz loss, and by the results from previous lecture, for every \mathbf{u},

$$
\underset{S \sim \mathcal{D}^{m}}{\mathbb{E}}\left[L_{\mathcal{D}}^{\text {hinge }}(A(S))\right] \leq L_{\mathcal{D}}^{\text {hinge }}(\mathbf{u})+\lambda\|\mathbf{u}\|^{2}+\frac{2 \rho^{2}}{\lambda m}
$$

Sample complexity of soft-SVM

- Observe: soft-SVM = RLM
- Observe: the hinge-loss, $\mathbf{w} \mapsto \max \{0,1-y\langle\mathbf{w}, \mathbf{x}\rangle\}$, is $\|\mathbf{x}\|$-Lipschitz
- Assume that \mathcal{D} is s.t. $\|\mathbf{x}\| \leq \rho$ with probability 1
- Then, we obtain a convex-Lipschitz loss, and by the results from previous lecture, for every \mathbf{u},

$$
\underset{S \sim \mathcal{D}^{m}}{\mathbb{E}}\left[L_{\mathcal{D}}^{\text {hinge }}(A(S))\right] \leq L_{\mathcal{D}}^{\text {hinge }}(\mathbf{u})+\lambda\|\mathbf{u}\|^{2}+\frac{2 \rho^{2}}{\lambda m}
$$

- Since the hinge-loss upper bounds the 0-1 loss, the right hand side is also an upper bound on $\mathbb{E}_{S \sim \mathcal{D}^{m}}\left[L_{\mathcal{D}}^{0-1}(A(S))\right]$

Sample complexity of soft-SVM

- Observe: soft-SVM = RLM
- Observe: the hinge-loss, $\mathbf{w} \mapsto \max \{0,1-y\langle\mathbf{w}, \mathbf{x}\rangle\}$, is $\|\mathbf{x}\|$-Lipschitz
- Assume that \mathcal{D} is s.t. $\|\mathbf{x}\| \leq \rho$ with probability 1
- Then, we obtain a convex-Lipschitz loss, and by the results from previous lecture, for every \mathbf{u},

$$
\underset{S \sim \mathcal{D}^{m}}{\mathbb{E}}\left[L_{\mathcal{D}}^{\text {hinge }}(A(S))\right] \leq L_{\mathcal{D}}^{\text {hinge }}(\mathbf{u})+\lambda\|\mathbf{u}\|^{2}+\frac{2 \rho^{2}}{\lambda m}
$$

- Since the hinge-loss upper bounds the 0-1 loss, the right hand side is also an upper bound on $\mathbb{E}_{S \sim \mathcal{D}^{m}}\left[L_{\mathcal{D}}^{0-1}(A(S))\right]$
- For every $B>0$, if we set $\lambda=\sqrt{\frac{2 \rho^{2}}{B^{2} m}}$ then:

$$
\underset{S \sim D^{m}}{\mathbb{E}}\left[L_{\mathcal{D}}^{0-1}(A(S))\right] \leq \min _{\mathbf{w}:\|\mathbf{w}\| \leq B} L_{\mathcal{D}}^{\mathrm{hinge}}(\mathbf{w})+\sqrt{\frac{8 \rho^{2} B^{2}}{m}}
$$

Margin/Norm vs. Dimensionality

- The VC dimension of learning halfspaces depends on the dimension, d

Margin/Norm vs. Dimensionality

- The VC dimension of learning halfspaces depends on the dimension, d
- Therefore, the sample complexity grows with d

Margin/Norm vs. Dimensionality

- The VC dimension of learning halfspaces depends on the dimension, d
- Therefore, the sample complexity grows with d
- In contrast, the sample complexity of SVM depends on $(\rho / \gamma)^{2}$, or equivalently, $\rho^{2} B^{2}$

Margin/Norm vs. Dimensionality

- The VC dimension of learning halfspaces depends on the dimension, d
- Therefore, the sample complexity grows with d
- In contrast, the sample complexity of SVM depends on $(\rho / \gamma)^{2}$, or equivalently, $\rho^{2} B^{2}$
- Sometimes $d \gg \rho^{2} B^{2}$ (as we saw in the previous lecture)

Margin/Norm vs. Dimensionality

- The VC dimension of learning halfspaces depends on the dimension, d
- Therefore, the sample complexity grows with d
- In contrast, the sample complexity of SVM depends on $(\rho / \gamma)^{2}$, or equivalently, $\rho^{2} B^{2}$
- Sometimes $d \gg \rho^{2} B^{2}$ (as we saw in the previous lecture)
- No contradiction to the fundamental theorem, since here we bound the error of the algorithm using $L_{\mathcal{D}}^{\text {hinge }}\left(\mathbf{w}^{\star}\right)$ while in the fundmental theorem we have $L_{\mathcal{D}}^{0-1}\left(\mathbf{w}^{\star}\right)$

Margin/Norm vs. Dimensionality

- The VC dimension of learning halfspaces depends on the dimension, d
- Therefore, the sample complexity grows with d
- In contrast, the sample complexity of SVM depends on $(\rho / \gamma)^{2}$, or equivalently, $\rho^{2} B^{2}$
- Sometimes $d \gg \rho^{2} B^{2}$ (as we saw in the previous lecture)
- No contradiction to the fundamental theorem, since here we bound the error of the algorithm using $L_{\mathcal{D}}^{\text {hinge }}\left(\mathbf{w}^{\star}\right)$ while in the fundmental theorem we have $L_{\mathcal{D}}^{0-1}\left(\mathbf{w}^{\star}\right)$
- This is an additional prior knowledge on the problem, namely, that $L_{\mathcal{D}}^{\text {hinge }}\left(\mathbf{w}^{\star}\right)$ is not much larger than $L_{\mathcal{D}}^{0-1}\left(\mathbf{w}^{\star}\right)$.

Solving SVM using SGD

SGD for solving Soft-SVM

goal: Solve $\operatorname{argmin}_{\mathbf{w}}\left(\frac{\lambda}{2}\|\mathbf{w}\|^{2}+\frac{1}{m} \sum_{i=1}^{m} \max \left\{0,1-y\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle\right\}\right)$ parameter: T
initialize: $\boldsymbol{\theta}^{(1)}=\mathbf{0}$
for $t=1, \ldots, T$
Let $\mathbf{w}^{(t)}=\frac{1}{\lambda t} \boldsymbol{\theta}^{(t)}$
Choose i uniformly at random from $[m]$
If ($y_{i}\left\langle\mathbf{w}^{(t)}, \mathbf{x}_{i}\right\rangle<1$)
Set $\boldsymbol{\theta}^{(t+1)}=\boldsymbol{\theta}^{(t)}+y_{i} \mathbf{x}_{i}$
Else
Set $\boldsymbol{\theta}^{(t+1)}=\boldsymbol{\theta}^{(t)}$
output: $\overline{\mathbf{w}}=\frac{1}{T} \sum_{t=1}^{T} \mathbf{w}^{(t)}$

Outline

(1) Support Vector Machines

- Margin
- hard-SVM
- soft-SVM
- Solving SVM using SGD
(2) Kernels
- Embeddings into feature spaces
- The Kernel Trick
- Examples of kernels
- SGD with kernels
- Duality

Embeddings into feature spaces

- The following sample in \mathbb{R}^{1} is not separable by halfspaces

Embeddings into feature spaces

- The following sample in \mathbb{R}^{1} is not separable by halfspaces

- But, if we map $x \rightarrow\left(x, x^{2}\right)$ it is separable by halfspaces

Embeddings into feature spaces

The general approach:

- Define $\psi: \mathcal{X} \rightarrow \mathcal{F}$, where \mathcal{F} is some feature space (formally, we require \mathcal{F} to be a subset of a Hilbert space)
- Train a halfspace over $\left(\psi\left(\mathbf{x}_{1}\right), y_{1}\right), \ldots,\left(\psi\left(\mathbf{x}_{m}\right), y_{m}\right)$

Embeddings into feature spaces

The general approach:

- Define $\psi: \mathcal{X} \rightarrow \mathcal{F}$, where \mathcal{F} is some feature space (formally, we require \mathcal{F} to be a subset of a Hilbert space)
- Train a halfspace over $\left(\psi\left(\mathbf{x}_{1}\right), y_{1}\right), \ldots,\left(\psi\left(\mathbf{x}_{m}\right), y_{m}\right)$

Questions:

- How to choose ψ ?
- If F is high dimensional we face
- statistical challenge - can be tackled using margin
- computational challenge - can be tackled using kernels

Choosing a mapping

- In general, requires prior knowledge
- In addition, there are some generic mappings that enrich the class of halfspaces, e.g. polynomial mappings

Polynomial mappings

- Recall, a degree k polynomial over a single variable is $p(x)=\sum_{j=0}^{k} w_{j} x^{j}$

Polynomial mappings

- Recall, a degree k polynomial over a single variable is $p(x)=\sum_{j=0}^{k} w_{j} x^{j}$
- Can be rewritten as $\langle\mathbf{w}, \psi(x)\rangle$ where $\psi(\mathbf{x})=\left(1, x, x^{2}, \ldots, x^{k}\right)$

Polynomial mappings

- Recall, a degree k polynomial over a single variable is

$$
p(x)=\sum_{j=0}^{k} w_{j} x^{j}
$$

- Can be rewritten as $\langle\mathbf{w}, \psi(x)\rangle$ where $\psi(\mathbf{x})=\left(1, x, x^{2}, \ldots, x^{k}\right)$
- More generally, a degree k multivariate polynomial from \mathbb{R}^{n} to \mathbb{R} can be written as

$$
p(\mathbf{x})=\sum_{J \in[n]^{r}: r \leq k} w_{J} \prod_{i=1}^{r} x_{J_{i}} .
$$

Polynomial mappings

- Recall, a degree k polynomial over a single variable is

$$
p(x)=\sum_{j=0}^{k} w_{j} x^{j}
$$

- Can be rewritten as $\langle\mathbf{w}, \psi(x)\rangle$ where $\psi(\mathbf{x})=\left(1, x, x^{2}, \ldots, x^{k}\right)$
- More generally, a degree k multivariate polynomial from \mathbb{R}^{n} to \mathbb{R} can be written as

$$
p(\mathbf{x})=\sum_{J \in[n]^{r}: r \leq k} w_{J} \prod_{i=1}^{r} x_{J_{i}}
$$

- As before, we can rewrite $p(\mathbf{x})=\langle\mathbf{w}, \psi(\mathbf{x})\rangle$ where now $\psi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{d}$ is such that for every $J \in[n]^{r}, r \leq k$, the coordinate of $\psi(\mathbf{x})$ associated with J is the monomial $\prod_{i=1}^{r} x_{J_{i}}$.

The Kernel Trick

- A kernel function for a mapping ψ is a function that implements inner product in the feature space, namely,

$$
K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left\langle\psi(\mathbf{x}), \psi\left(\mathbf{x}^{\prime}\right)\right\rangle
$$

- We will see that sometimes, it is easy to calculate $K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$ efficiently, without applying ψ at all
- But, is this enough ?

The Representer Theorem

Theorem

Consider any learning rule of the form

$$
\mathbf{w}^{\star}=\underset{\mathbf{w}}{\operatorname{argmin}}\left(f\left(\left\langle\mathbf{w}, \psi\left(\mathbf{x}_{1}\right)\right\rangle, \ldots,\left\langle\mathbf{w}, \psi\left(\mathbf{x}_{m}\right)\right\rangle\right)+\lambda\|\mathbf{w}\|^{2}\right),
$$

where $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is an arbitrary function. Then, $\exists \boldsymbol{\alpha} \in \mathbb{R}^{m}$ such that $\mathbf{w}^{\star}=\sum_{i=1}^{m} \alpha_{i} \psi\left(\mathbf{x}_{i}\right)$.

The Representer Theorem

Theorem

Consider any learning rule of the form

$$
\mathbf{w}^{\star}=\underset{\mathbf{w}}{\operatorname{argmin}}\left(f\left(\left\langle\mathbf{w}, \psi\left(\mathbf{x}_{1}\right)\right\rangle, \ldots,\left\langle\mathbf{w}, \psi\left(\mathbf{x}_{m}\right)\right\rangle\right)+\lambda\|\mathbf{w}\|^{2}\right)
$$

where $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is an arbitrary function. Then, $\exists \boldsymbol{\alpha} \in \mathbb{R}^{m}$ such that $\mathbf{w}^{\star}=\sum_{i=1}^{m} \alpha_{i} \psi\left(\mathbf{x}_{i}\right)$.

Proof.

We can rewrite \mathbf{w}^{\star} as $\mathbf{w}^{\star}=\sum_{i=1}^{m} \alpha_{i} \psi\left(\mathbf{x}_{i}\right)+\mathbf{u}$, where $\left\langle\mathbf{u}, \psi\left(\mathbf{x}_{i}\right)\right\rangle=0$ for all i. Set $\mathbf{w}=\mathbf{w}^{\star}-\mathbf{u}$. Observe, $\left\|\mathbf{w}^{\star}\right\|^{2}=\|\mathbf{w}\|^{2}+\|\mathbf{u}\|^{2}$, and for every i, $\left\langle\mathbf{w}, \psi\left(\mathbf{x}_{i}\right)\right\rangle=\left\langle\mathbf{w}^{\star}, \psi\left(\mathbf{x}_{i}\right)\right\rangle$. Hence, the objective at \mathbf{w} equals the objective at \mathbf{w}^{\star} minus $\lambda\|\mathbf{u}\|^{2}$. By optimality of $\mathbf{w}^{\star}, \mathbf{u}$ must be zero.

Implications of Representer Theorem

By representer theorem, optimal solution can be written as

$$
\mathbf{w}=\sum_{i} \alpha_{i} \psi\left(\mathbf{x}_{i}\right)
$$

Implications of Representer Theorem

By representer theorem, optimal solution can be written as

$$
\mathbf{w}=\sum_{i} \alpha_{i} \psi\left(\mathbf{x}_{i}\right)
$$

Denote by G the matrix s.t. $G_{i, j}=\left\langle\psi\left(\mathbf{x}_{i}\right), \psi\left(\mathbf{x}_{j}\right)\right\rangle$. We have that for all i

$$
\left\langle\mathbf{w}, \psi\left(\mathbf{x}_{i}\right)\right\rangle=\left\langle\sum_{j} \alpha_{j} \psi\left(\mathbf{x}_{j}\right), \psi\left(\mathbf{x}_{i}\right)\right\rangle=\sum_{j=1}^{m} \alpha_{j}\left\langle\psi\left(\mathbf{x}_{j}\right), \psi\left(\mathbf{x}_{i}\right)\right\rangle=(G \boldsymbol{\alpha})_{i}
$$

Implications of Representer Theorem

By representer theorem, optimal solution can be written as

$$
\mathbf{w}=\sum_{i} \alpha_{i} \psi\left(\mathbf{x}_{i}\right)
$$

Denote by G the matrix s.t. $G_{i, j}=\left\langle\psi\left(\mathbf{x}_{i}\right), \psi\left(\mathbf{x}_{j}\right)\right\rangle$. We have that for all i

$$
\left\langle\mathbf{w}, \psi\left(\mathbf{x}_{i}\right)\right\rangle=\left\langle\sum_{j} \alpha_{j} \psi\left(\mathbf{x}_{j}\right), \psi\left(\mathbf{x}_{i}\right)\right\rangle=\sum_{j=1}^{m} \alpha_{j}\left\langle\psi\left(\mathbf{x}_{j}\right), \psi\left(\mathbf{x}_{i}\right)\right\rangle=(G \boldsymbol{\alpha})_{i}
$$

and
$\|\mathbf{w}\|^{2}=\left\langle\sum_{j} \alpha_{j} \psi\left(\mathbf{x}_{j}\right), \sum_{j} \alpha_{j} \psi\left(\mathbf{x}_{j}\right)\right\rangle=\sum_{i, j=1}^{m} \alpha_{i} \alpha_{j}\left\langle\psi\left(\mathbf{x}_{i}\right), \psi\left(\mathbf{x}_{j}\right)\right\rangle=\boldsymbol{\alpha}^{\top} G \boldsymbol{\alpha}$.

Implications of Representer Theorem

By representer theorem, optimal solution can be written as

$$
\mathbf{w}=\sum_{i} \alpha_{i} \psi\left(\mathbf{x}_{i}\right)
$$

Denote by G the matrix s.t. $G_{i, j}=\left\langle\psi\left(\mathbf{x}_{i}\right), \psi\left(\mathbf{x}_{j}\right)\right\rangle$. We have that for all i

$$
\left\langle\mathbf{w}, \psi\left(\mathbf{x}_{i}\right)\right\rangle=\left\langle\sum_{j} \alpha_{j} \psi\left(\mathbf{x}_{j}\right), \psi\left(\mathbf{x}_{i}\right)\right\rangle=\sum_{j=1}^{m} \alpha_{j}\left\langle\psi\left(\mathbf{x}_{j}\right), \psi\left(\mathbf{x}_{i}\right)\right\rangle=(G \boldsymbol{\alpha})_{i}
$$

and

$$
\|\mathbf{w}\|^{2}=\left\langle\sum_{j} \alpha_{j} \psi\left(\mathbf{x}_{j}\right), \sum_{j} \alpha_{j} \psi\left(\mathbf{x}_{j}\right)\right\rangle=\sum_{i, j=1}^{m} \alpha_{i} \alpha_{j}\left\langle\psi\left(\mathbf{x}_{i}\right), \psi\left(\mathbf{x}_{j}\right)\right\rangle=\boldsymbol{\alpha}^{\top} G \boldsymbol{\alpha}
$$

So, we can optimize over $\boldsymbol{\alpha}$

$$
\underset{\boldsymbol{\alpha} \in \mathbb{R}^{m}}{\operatorname{argmin}}\left(f(G \boldsymbol{\alpha})+\lambda \boldsymbol{\alpha}^{\top} G \boldsymbol{\alpha}\right)
$$

The Kernel Trick

- Observe: the Gram matrix, G, only depends on inner products, and therefore can be calculated using K alone
- Suppose we found $\boldsymbol{\alpha}$, then, given a new instance,

$$
\langle\mathbf{w}, \psi(\mathbf{x})\rangle=\left\langle\sum_{j} \psi\left(\mathbf{x}_{j}\right), \psi(\mathbf{x})\right\rangle=\sum_{j}\left\langle\psi\left(\mathbf{x}_{j}\right), \psi(\mathbf{x})\right\rangle=\sum_{j} K\left(\mathbf{x}_{j}, \mathbf{x}\right)
$$

- That is, we can do training and prediction using K alone

Representer Theorem for SVM

Soft-SVM:

$$
\min _{\boldsymbol{\alpha} \in \mathbb{R}^{m}}\left(\lambda \boldsymbol{\alpha}^{T} G \boldsymbol{\alpha}+\frac{1}{m} \sum_{i=1}^{m} \max \left\{0,1-y_{i}(G \boldsymbol{\alpha})_{i}\right\}\right)
$$

Representer Theorem for SVM

Soft-SVM:

$$
\min _{\boldsymbol{\alpha} \in \mathbb{R}^{m}}\left(\lambda \boldsymbol{\alpha}^{T} G \boldsymbol{\alpha}+\frac{1}{m} \sum_{i=1}^{m} \max \left\{0,1-y_{i}(G \boldsymbol{\alpha})_{i}\right\}\right)
$$

Hard-SVM

$$
\min _{\boldsymbol{\alpha} \in \mathbb{R}^{m}} \boldsymbol{\alpha}^{T} G \boldsymbol{\alpha} \quad \text { s.t. } \quad \forall i, y_{i}(G \boldsymbol{\alpha})_{i} \geq 1
$$

Polynomial Kernels

- The k degree polynomial kernel is defined to be

$$
K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left(1+\left\langle\mathbf{x}, \mathbf{x}^{\prime}\right\rangle\right)^{k}
$$

Polynomial Kernels

- The k degree polynomial kernel is defined to be

$$
K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left(1+\left\langle\mathbf{x}, \mathbf{x}^{\prime}\right\rangle\right)^{k}
$$

- Exercise: show that if we define $\psi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{(n+1)^{k}}$ s.t. for $J \in\{0,1, \ldots, n\}^{k}$ there is an element of $\psi(\mathbf{x})$ that equals to $\prod_{i=1}^{k} x_{J_{i}}$, then

$$
K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left\langle\psi(\mathbf{x}), \psi\left(\mathbf{x}^{\prime}\right)\right\rangle .
$$

Polynomial Kernels

- The k degree polynomial kernel is defined to be

$$
K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left(1+\left\langle\mathbf{x}, \mathbf{x}^{\prime}\right\rangle\right)^{k} .
$$

- Exercise: show that if we define $\psi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{(n+1)^{k}}$ s.t. for $J \in\{0,1, \ldots, n\}^{k}$ there is an element of $\psi(\mathbf{x})$ that equals to $\prod_{i=1}^{k} x_{J_{i}}$, then

$$
K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left\langle\psi(\mathbf{x}), \psi\left(\mathbf{x}^{\prime}\right)\right\rangle .
$$

- Since ψ contains all the monomials up to degree k, a halfspace over the range of ψ corresponds to a polynomial predictor of degree k over the original space.

Polynomial Kernels

- The k degree polynomial kernel is defined to be

$$
K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left(1+\left\langle\mathbf{x}, \mathbf{x}^{\prime}\right\rangle\right)^{k} .
$$

- Exercise: show that if we define $\psi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{(n+1)^{k}}$ s.t. for $J \in\{0,1, \ldots, n\}^{k}$ there is an element of $\psi(\mathbf{x})$ that equals to $\prod_{i=1}^{k} x_{J_{i}}$, then

$$
K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left\langle\psi(\mathbf{x}), \psi\left(\mathbf{x}^{\prime}\right)\right\rangle .
$$

- Since ψ contains all the monomials up to degree k, a halfspace over the range of ψ corresponds to a polynomial predictor of degree k over the original space.
- Observe that calculating $K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$ takes $O(n)$ time while the dimension of $\psi(\mathbf{x})$ is n^{k}

Gaussian kernel (RBF)

Let the original instance space be \mathbb{R} and consider the mapping ψ where for each non-negative integer $n \geq 0$ there exists an element $\psi(x)_{n}$ which equals to $\frac{1}{\sqrt{n!}} e^{-\frac{x^{2}}{2}} x^{n}$. Then,

$$
\begin{aligned}
\left\langle\psi(x), \psi\left(x^{\prime}\right)\right\rangle & =\sum_{n=0}^{\infty}\left(\frac{1}{\sqrt{n!}} e^{-\frac{x^{2}}{2}} x^{n}\right)\left(\frac{1}{\sqrt{n!}} e^{-\frac{\left(x^{\prime}\right)^{2}}{2}}\left(x^{\prime}\right)^{n}\right) \\
& =e^{-\frac{x^{2}+\left(x^{\prime}\right)^{2}}{2}} \sum_{n=0}^{\infty}\left(\frac{\left(x x^{\prime}\right)^{n}}{n!}\right)=e^{-\frac{\left(x-x^{\prime}\right)^{2}}{2}} .
\end{aligned}
$$

Gaussian kernel (RBF)

Let the original instance space be \mathbb{R} and consider the mapping ψ where for each non-negative integer $n \geq 0$ there exists an element $\psi(x)_{n}$ which equals to $\frac{1}{\sqrt{n!}} e^{-\frac{x^{2}}{2}} x^{n}$. Then,

$$
\begin{aligned}
\left\langle\psi(x), \psi\left(x^{\prime}\right)\right\rangle & =\sum_{n=0}^{\infty}\left(\frac{1}{\sqrt{n!}} e^{-\frac{x^{2}}{2}} x^{n}\right)\left(\frac{1}{\sqrt{n!}} e^{-\frac{\left(x^{\prime}\right)^{2}}{2}}\left(x^{\prime}\right)^{n}\right) \\
& =e^{-\frac{x^{2}+\left(x^{\prime}\right)^{2}}{2}} \sum_{n=0}^{\infty}\left(\frac{\left(x x^{\prime}\right)^{n}}{n!}\right)=e^{-\frac{\left(x-x^{\prime}\right)^{2}}{2}} .
\end{aligned}
$$

More generally, the Gaussian kernel is defined to be

$$
K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=e^{-\frac{\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|^{2}}{2 \sigma}}
$$

Gaussian kernel (RBF)

Let the original instance space be \mathbb{R} and consider the mapping ψ where for each non-negative integer $n \geq 0$ there exists an element $\psi(x)_{n}$ which equals to $\frac{1}{\sqrt{n!}} e^{-\frac{x^{2}}{2}} x^{n}$. Then,

$$
\begin{aligned}
\left\langle\psi(x), \psi\left(x^{\prime}\right)\right\rangle & =\sum_{n=0}^{\infty}\left(\frac{1}{\sqrt{n!}} e^{-\frac{x^{2}}{2}} x^{n}\right)\left(\frac{1}{\sqrt{n!}} e^{-\frac{\left(x^{\prime}\right)^{2}}{2}}\left(x^{\prime}\right)^{n}\right) \\
& =e^{-\frac{x^{2}+\left(x^{\prime}\right)^{2}}{2}} \sum_{n=0}^{\infty}\left(\frac{\left(x x^{\prime}\right)^{n}}{n!}\right)=e^{-\frac{\left(x-x^{\prime}\right)^{2}}{2}} .
\end{aligned}
$$

More generally, the Gaussian kernel is defined to be

$$
K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=e^{-\frac{\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|^{2}}{2 \sigma}}
$$

Can learn any polynomial ...

Characterizing Kernel Functions

Lemma (Mercer's conditions)

A symmetric function $K: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ implements an inner product in some Hilbert space if and only if it is positive semidefinite; namely, for all $\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}$, the Gram matrix, $G_{i, j}=K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$, is a positive semidefinite matrix.

Implementing soft-SVM with kernels

- We can use a generic convex optimization algorithm on the $\boldsymbol{\alpha}$ problem
- Alternatively, we can implement the SGD algorithm on the original w problem, but observe that all the operations of SGD can be implemented using the kernel alone

SGD with kernels for soft-SVM

SGD for Solving Soft-SVM with Kernels

parameter: T
Initialize: $\boldsymbol{\beta}^{(1)}=\mathbf{0} \in \mathbb{R}^{m}$
for $t=1, \ldots, T$
Let $\boldsymbol{\alpha}^{(t)}=\frac{1}{\lambda t} \boldsymbol{\beta}^{(t)}$
Choose i uniformly at random from $[m]$
For all $j \neq i$ set $\beta_{j}^{(t+1)}=\beta_{j}^{(t)}$
If ($y_{i} \sum_{j=1}^{m} \alpha_{j}^{(t)} K\left(\mathbf{x}_{j}, \mathbf{x}_{i}\right)<1$)
Set $\beta_{i}^{(t+1)}=\beta_{i}^{(t)}+y_{i}$
Else

$$
\text { Set } \beta_{i}^{(t+1)}=\beta_{i}^{(t)}
$$

Output: $\overline{\mathbf{w}}=\sum_{j=1}^{m} \bar{\alpha}_{j} \psi\left(\mathbf{x}_{j}\right)$ where $\overline{\boldsymbol{\alpha}}=\frac{1}{T} \sum_{t=1}^{T} \boldsymbol{\alpha}^{(t)}$

Duality

- Historically, many of the properties of SVM have been obtained by considering a dual problem
- It is not a must, but can be helpful
- We show how to derive a dual problem to Hard-SVM:

$$
\min _{\mathbf{w}}\|\mathbf{w}\|^{2} \quad \text { s.t. } \forall i, y_{i}\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle \geq 1
$$

Duality

- Hard-SVM can be rewritten as:

$$
\min _{\mathbf{w}} \max _{\boldsymbol{\alpha} \in \mathbb{R}^{m}: \boldsymbol{\alpha} \geq \mathbf{0}}\left(\frac{1}{2}\|\mathbf{w}\|^{2}+\sum_{i=1}^{m} \alpha_{i}\left(1-y_{i}\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle\right)\right)
$$

Duality

- Hard-SVM can be rewritten as:

$$
\min _{\mathbf{w}} \max _{\boldsymbol{\alpha} \in \mathbb{R}^{m}: \boldsymbol{\alpha} \geq \mathbf{0}}\left(\frac{1}{2}\|\mathbf{w}\|^{2}+\sum_{i=1}^{m} \alpha_{i}\left(1-y_{i}\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle\right)\right)
$$

- Lets flip the order of min and max. This can only decrease the objective value, so we obtain the weak duality inequality:

$$
\begin{aligned}
& \min _{\mathbf{w}} \max _{\boldsymbol{\alpha} \in \mathbb{R}^{m}: \boldsymbol{\alpha} \geq \mathbf{0}}\left(\frac{1}{2}\|\mathbf{w}\|^{2}+\sum_{i=1}^{m} \alpha_{i}\left(1-y_{i}\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle\right)\right) \geq \\
& \max _{\boldsymbol{\alpha} \in \mathbb{R}^{m}: \boldsymbol{\alpha} \geq \mathbf{0}} \min _{\mathbf{w}}\left(\frac{1}{2}\|\mathbf{w}\|^{2}+\sum_{i=1}^{m} \alpha_{i}\left(1-y_{i}\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle\right)\right)
\end{aligned}
$$

Duality

- Hard-SVM can be rewritten as:

$$
\min _{\mathbf{w}} \max _{\boldsymbol{\alpha} \in \mathbb{R}^{m}: \boldsymbol{\alpha} \geq \mathbf{0}}\left(\frac{1}{2}\|\mathbf{w}\|^{2}+\sum_{i=1}^{m} \alpha_{i}\left(1-y_{i}\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle\right)\right)
$$

- Lets flip the order of min and max. This can only decrease the objective value, so we obtain the weak duality inequality:

$$
\begin{aligned}
& \min _{\mathbf{w}} \max _{\boldsymbol{\alpha} \in \mathbb{R}^{m}: \boldsymbol{\alpha} \geq \mathbf{0}}\left(\frac{1}{2}\|\mathbf{w}\|^{2}+\sum_{i=1}^{m} \alpha_{i}\left(1-y_{i}\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle\right)\right) \geq \\
& \max _{\boldsymbol{\alpha} \in \mathbb{R}^{m}: \boldsymbol{\alpha} \geq \mathbf{0}} \min _{\mathbf{w}}\left(\frac{1}{2}\|\mathbf{w}\|^{2}+\sum_{i=1}^{m} \alpha_{i}\left(1-y_{i}\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle\right)\right)
\end{aligned}
$$

- In our case, there's also strong duality (i.e., the above holds with equality)

Duality

- The dual problem:

$$
\max _{\boldsymbol{\alpha} \in \mathbb{R}^{m}: \boldsymbol{\alpha} \geq \mathbf{0}} \min _{\mathbf{w}}\left(\frac{1}{2}\|\mathbf{w}\|^{2}+\sum_{i=1}^{m} \alpha_{i}\left(1-y_{i}\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle\right)\right)
$$

Duality

- The dual problem:

$$
\max _{\boldsymbol{\alpha} \in \mathbb{R}^{m}: \boldsymbol{\alpha} \geq \mathbf{0}} \min _{\mathbf{w}}\left(\frac{1}{2}\|\mathbf{w}\|^{2}+\sum_{i=1}^{m} \alpha_{i}\left(1-y_{i}\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle\right)\right)
$$

- We can solve analytically the inner optimization and obtain the solution

$$
\mathbf{w}=\sum_{i=1}^{m} \alpha_{i} y_{i} \mathbf{x}_{i}
$$

Duality

- The dual problem:

$$
\max _{\boldsymbol{\alpha} \in \mathbb{R}^{m}: \boldsymbol{\alpha} \geq \mathbf{0}} \min _{\mathbf{w}}\left(\frac{1}{2}\|\mathbf{w}\|^{2}+\sum_{i=1}^{m} \alpha_{i}\left(1-y_{i}\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle\right)\right)
$$

- We can solve analytically the inner optimization and obtain the solution

$$
\mathbf{w}=\sum_{i=1}^{m} \alpha_{i} y_{i} \mathbf{x}_{i}
$$

- Plugging it back, yields

$$
\max _{\boldsymbol{\alpha} \in \mathbb{R}^{m}: \boldsymbol{\alpha} \geq \mathbf{0}}\left(\frac{1}{2}\left\|\sum_{i=1}^{m} \alpha_{i} y_{i} \mathbf{x}_{i}\right\|^{2}+\sum_{i=1}^{m} \alpha_{i}\left(1-y_{i}\left\langle\sum_{j} \alpha_{j} y_{j} \mathbf{x}_{j}, \mathbf{x}_{i}\right\rangle\right)\right)
$$

Summary

- Margin as additional prior knowledge
- Hard and Soft SVM
- Kernels

