# Introduction to Machine Learning (67577) Reinforcement Learning 

Shai Shalev-Shwartz

School of CS and Engineering, The Hebrew University of Jerusalem

## Reinforcement Learning

## Outline

(1) Reinforcement Learning
(2) Multi-Armed Bandit

- $\epsilon$-greedy exploration
- EXP3
- UCB
(3) Markov Decision Process (MDP)
- Value Iteration
- $Q$-Learning
- Deep-Q-Learning
- Temporal Abstraction


## Reinforcement Learning

Goal: Learn a policy, mapping from state space, $S$, to action space, $A$

Learning Process:
For $t=1,2, \ldots$.

- Agent observes state $s_{t} \in S$
- Agent decides on action $a_{t} \in A$ based on the current policy
- Environment provides reward $r_{t} \in \mathbb{R}$
- Environment moves the agent to next state $s_{t+1} \in S$


## Reinforcement Learning

Goal: Learn a policy, mapping from state space, $S$, to action space, $A$

Learning Process:
For $t=1,2, \ldots$.

- Agent observes state $s_{t} \in S$
- Agent decides on action $a_{t} \in A$ based on the current policy
- Environment provides reward $r_{t} \in \mathbb{R}$
- Environment moves the agent to next state $s_{t+1} \in S$

Many applications, e.g.: Robotics, Playing games, Finance, Inventory management, ...

## Examples

## Merge into traffic:

- Goal: Adjust the speed of the car according to traffic
- State is positions and velocities of the car and the preceding car
- Action is acceleration/braking command
- Reward is composed of avoiding accidents, smooth driving, and making progress


## Examples

## Merge into traffic:

- Goal: Adjust the speed of the car according to traffic
- State is positions and velocities of the car and the preceding car
- Action is acceleration/braking command
- Reward is composed of avoiding accidents, smooth driving, and making progress

Playing Atari Game:

- https://www.youtube.com/watch?v=V1eYniJORnk


## Average Reward and Discounted Reward

Average Reward: Given time horizon $T$, the average reward of following a policy $\pi$ is

$$
R_{T}(\pi)=\mathbb{E} \frac{1}{T} \sum_{t=1}^{T} r_{t}
$$

## Average Reward and Discounted Reward

Average Reward: Given time horizon $T$, the average reward of following a policy $\pi$ is

$$
R_{T}(\pi)=\mathbb{E} \frac{1}{T} \sum_{t=1}^{T} r_{t}
$$

Discounted Reward: Given $\gamma \in(0,1)$, the discounted reward of following a policy $\pi$ is

$$
R_{\gamma}(\pi)=\mathbb{E} \sum_{t=1}^{\infty} \gamma^{t} r_{t}
$$

## Reinforcement Learning vs. Supervised Learning

SL is a special case of RL in which $s_{t}$ is the "instance", $a_{t}$ is the predicted label, $-r_{t}$ is the loss measuring the discrepancy between $a_{t}$ and the "true" label, $y_{t}$, and $s_{t+1}$ is chosen independent of $s_{t}$ and $a_{t}$.

## Reinforcement Learning vs. Supervised Learning

SL is a special case of RL in which $s_{t}$ is the "instance", $a_{t}$ is the predicted label, $-r_{t}$ is the loss measuring the discrepancy between $a_{t}$ and the "true" label, $y_{t}$, and $s_{t+1}$ is chosen independent of $s_{t}$ and $a_{t}$.

## Differences:

- In SL, actions do not effect the environment, therefore we can collect training examples in advance, and only then search for a policy
- In SL, the effect of actions is local, while in RL, actions have long-term effect
- In SL we are given the correct answer, while in RL we only observe a reward


## Outline

## (1) Reinforcement Learning

(2) Multi-Armed Bandit

- $\epsilon$-greedy exploration
- EXP3
- UCB
(3) Markov Decision Process (MDP)
- Value Iteration
- Q-Learning
- Deep-Q-Learning
- Temporal Abstraction


## The Multi-Armed Bandit Problem (Robbins 1952)



- States: The state is constant (has no effect)


## The Multi-Armed Bandit Problem (Robbins 1952)



- States: The state is constant (has no effect)
- Actions: $n$ slot machines ("arms").


## The Multi-Armed Bandit Problem (Robbins 1952)



- States: The state is constant (has no effect)
- Actions: $n$ slot machines ("arms").
- Reward: There exists a deterministic function $\rho$ from $A=[n]$ to all distributions over $[0,1]$ s.t. for every $t, r_{t} \sim \rho\left(a_{t}\right)$


## The Multi-Armed Bandit Problem (Robbins 1952)



- States: The state is constant (has no effect)
- Actions: $n$ slot machines ("arms").
- Reward: There exists a deterministic function $\rho$ from $A=[n]$ to all distributions over $[0,1]$ s.t. for every $t, r_{t} \sim \rho\left(a_{t}\right)$
- Denote: $\mu_{i}=\mathbb{E}\left[r_{t} \mid a_{t}=i\right], i^{*}=\operatorname{argmax}_{i} \mu_{i}, \mu^{*}=\mu_{i^{*}}, \Delta_{i}=\mu^{*}-\mu_{i}$


## The Multi-Armed Bandit Problem (Robbins 1952)



- States: The state is constant (has no effect)
- Actions: $n$ slot machines ("arms").
- Reward: There exists a deterministic function $\rho$ from $A=[n]$ to all distributions over $[0,1]$ s.t. for every $t, r_{t} \sim \rho\left(a_{t}\right)$
- Denote: $\mu_{i}=\mathbb{E}\left[r_{t} \mid a_{t}=i\right], i^{*}=\operatorname{argmax}_{i} \mu_{i}, \mu^{*}=\mu_{i^{*}}, \Delta_{i}=\mu^{*}-\mu_{i}$
- Regret:

$$
\mu^{*}-\mathbb{E} R_{T}(\pi)
$$

## The Exploration-Exploitation Tradeoff

How to pick the next action?

- Exploitation: Choose the most promising action based on your current understanding


## The Exploration-Exploitation Tradeoff

How to pick the next action?

- Exploitation: Choose the most promising action based on your current understanding
- Exploration: Maybe there is a better arm ?


## Naive approach: first explore then exploit

- Procedure:


## Naive approach: first explore then exploit

- Procedure:
- Pure exploration for the first $m$ iterations (pick actions at random)


## Naive approach: first explore then exploit

- Procedure:
- Pure exploration for the first $m$ iterations (pick actions at random)
- Let $\hat{i}=\operatorname{argmax}_{i} \hat{\mu}_{i}$, where $\hat{\mu}_{i}=\operatorname{avg}\left(r_{t}: a_{t}=i\right)$


## Naive approach: first explore then exploit

- Procedure:
- Pure exploration for the first $m$ iterations (pick actions at random)
- Let $\hat{i}=\operatorname{argmax}_{i} \hat{\mu}_{i}$, where $\hat{\mu}_{i}=\operatorname{avg}\left(r_{t}: a_{t}=i\right)$
- Pure exploitation for the rest of the $T-m$ iterations (always pick $\hat{i}$ )


## Naive approach: first explore then exploit

- Procedure:
- Pure exploration for the first $m$ iterations (pick actions at random)
- Let $\hat{i}=\operatorname{argmax}_{i} \hat{\mu}_{i}$, where $\hat{\mu}_{i}=\operatorname{avg}\left(r_{t}: a_{t}=i\right)$
- Pure exploitation for the rest of the $T-m$ iterations (always pick $\hat{i}$ )
- Analysis:


## Naive approach: first explore then exploit

- Procedure:
- Pure exploration for the first $m$ iterations (pick actions at random)
- Let $\hat{i}=\operatorname{argmax}_{i} \hat{\mu}_{i}$, where $\hat{\mu}_{i}=\operatorname{avg}\left(r_{t}: a_{t}=i\right)$
- Pure exploitation for the rest of the $T-m$ iterations (always pick $\hat{i}$ )
- Analysis:
- Claim: If $m$ is order of $n \log (n) / \epsilon^{2}$ then for all $i,\left|\mu_{i}-\hat{\mu}_{i}\right| \leq \epsilon$


## Naive approach: first explore then exploit

- Procedure:
- Pure exploration for the first $m$ iterations (pick actions at random)
- Let $\hat{i}=\operatorname{argmax}_{i} \hat{\mu}_{i}$, where $\hat{\mu}_{i}=\operatorname{avg}\left(r_{t}: a_{t}=i\right)$
- Pure exploitation for the rest of the $T-m$ iterations (always pick $\hat{i}$ )
- Analysis:
- Claim: If $m$ is order of $n \log (n) / \epsilon^{2}$ then for all $i,\left|\mu_{i}-\hat{\mu}_{i}\right| \leq \epsilon$
- Proof: Hoeffding + union bound


## Naive approach: first explore then exploit

- Procedure:
- Pure exploration for the first $m$ iterations (pick actions at random)
- Let $\hat{i}=\operatorname{argmax}_{i} \hat{\mu}_{i}$, where $\hat{\mu}_{i}=\operatorname{avg}\left(r_{t}: a_{t}=i\right)$
- Pure exploitation for the rest of the $T-m$ iterations (always pick $\hat{i}$ )
- Analysis:
- Claim: If $m$ is order of $n \log (n) / \epsilon^{2}$ then for all $i,\left|\mu_{i}-\hat{\mu}_{i}\right| \leq \epsilon$
- Proof: Hoeffding + union bound
- Regret:

$$
\begin{aligned}
& \mu^{*}-\frac{m \bar{\mu}+(T-m) \mu_{\hat{i}}}{T}=\left(\mu^{*}-\mu_{\hat{i}}\right)+\frac{m}{T}\left(\mu_{\hat{i}}-\bar{\mu}\right) \\
& \leq\left(\mu^{*}-\hat{\mu}_{i^{*}}+\hat{\mu}_{i^{*}}-\hat{\mu}_{\hat{i}}+\hat{\mu}_{\hat{i}}-\mu_{\hat{i}}\right)+\frac{m}{T} \leq 2 \epsilon+\frac{n \log (n)}{T \epsilon^{2}}
\end{aligned}
$$

## Naive approach: first explore then exploit

- Procedure:
- Pure exploration for the first $m$ iterations (pick actions at random)
- Let $\hat{i}=\operatorname{argmax}_{i} \hat{\mu}_{i}$, where $\hat{\mu}_{i}=\operatorname{avg}\left(r_{t}: a_{t}=i\right)$
- Pure exploitation for the rest of the $T-m$ iterations (always pick $\hat{i}$ )
- Analysis:
- Claim: If $m$ is order of $n \log (n) / \epsilon^{2}$ then for all $i,\left|\mu_{i}-\hat{\mu}_{i}\right| \leq \epsilon$
- Proof: Hoeffding + union bound
- Regret:

$$
\begin{aligned}
& \mu^{*}-\frac{m \bar{\mu}+(T-m) \mu_{\hat{i}}}{T}=\left(\mu^{*}-\mu_{\hat{i}}\right)+\frac{m}{T}\left(\mu_{\hat{i}}-\bar{\mu}\right) \\
& \leq\left(\mu^{*}-\hat{\mu}_{i^{*}}+\hat{\mu}_{i^{*}}-\hat{\mu}_{\hat{i}}+\hat{\mu}_{\hat{i}}-\mu_{\hat{i}}\right)+\frac{m}{T} \leq 2 \epsilon+\frac{n \log (n)}{T \epsilon^{2}}
\end{aligned}
$$

- For the best $\epsilon$, the regret is order of $\left(\frac{n \log (n)}{T}\right)^{1 / 3}$


## SGD with $\epsilon$-greedy exploration

- Want to minimize $L(w)=-w^{\top} \mu$ over $\left\{w \in[0,1]^{n}: \sum_{i} w_{i}=1\right\}$


## SGD with $\epsilon$-greedy exploration

- Want to minimize $L(w)=-w^{\top} \mu$ over $\left\{w \in[0,1]^{n}: \sum_{i} w_{i}=1\right\}$
- A convex objective with convex constraint - can we use Stochastic Gradient Descent?


## SGD with $\epsilon$-greedy exploration

- Want to minimize $L(w)=-w^{\top} \mu$ over $\left\{w \in[0,1]^{n}: \sum_{i} w_{i}=1\right\}$
- A convex objective with convex constraint - can we use Stochastic Gradient Descent?
- For every probability vector $p$, if we choose $i_{t} \sim p$ and set $\hat{\nabla} L\left(w^{(t)}\right)=-r_{t} \frac{1}{p_{i_{t}}} e_{i_{t}}$, then

$$
\mathbb{E}\left[\hat{\nabla} L\left(w^{(t)}\right)\right]=\sum_{i=1}^{n} p_{i} \cdot\left(-\mathbb{E}\left[r_{t}\right] \frac{1}{p_{i}} e_{i}\right)=-\mu=\nabla L\left(w^{(t)}\right)
$$

## SGD with $\epsilon$-greedy exploration

- Want to minimize $L(w)=-w^{\top} \mu$ over $\left\{w \in[0,1]^{n}: \sum_{i} w_{i}=1\right\}$
- A convex objective with convex constraint - can we use Stochastic Gradient Descent?
- For every probability vector $p$, if we choose $i_{t} \sim p$ and set $\hat{\nabla} L\left(w^{(t)}\right)=-r_{t} \frac{1}{p_{i_{t}}} e_{i_{t}}$, then

$$
\mathbb{E}\left[\hat{\nabla} L\left(w^{(t)}\right)\right]=\sum_{i=1}^{n} p_{i} \cdot\left(-\mathbb{E}\left[r_{t}\right] \frac{1}{p_{i}} e_{i}\right)=-\mu=\nabla L\left(w^{(t)}\right)
$$

- Problem: we need that $\mathbb{E}\left[\left\|\hat{\nabla} L\left(w^{(t)}\right)\right\|^{2}\right]$ will be bounded


## SGD with $\epsilon$-greedy exploration

- Want to minimize $L(w)=-w^{\top} \mu$ over $\left\{w \in[0,1]^{n}: \sum_{i} w_{i}=1\right\}$
- A convex objective with convex constraint - can we use Stochastic Gradient Descent?
- For every probability vector $p$, if we choose $i_{t} \sim p$ and set $\hat{\nabla} L\left(w^{(t)}\right)=-r_{t} \frac{1}{p_{i_{t}}} e_{i_{t}}$, then

$$
\mathbb{E}\left[\hat{\nabla} L\left(w^{(t)}\right)\right]=\sum_{i=1}^{n} p_{i} \cdot\left(-\mathbb{E}\left[r_{t}\right] \frac{1}{p_{i}} e_{i}\right)=-\mu=\nabla L\left(w^{(t)}\right)
$$

- Problem: we need that $\mathbb{E}\left[\left\|\hat{\nabla} L\left(w^{(t)}\right)\right\|^{2}\right]$ will be bounded
- $\epsilon$-greedy exploration: set $p=(1-\epsilon) w^{(t)}+\epsilon \mathbf{1} / n$ That is, we explore w.p. $\epsilon$ and exploit w.p. $(1-\epsilon)$


## SGD with $\epsilon$-greedy exploration

- Want to minimize $L(w)=-w^{\top} \mu$ over $\left\{w \in[0,1]^{n}: \sum_{i} w_{i}=1\right\}$
- A convex objective with convex constraint - can we use Stochastic Gradient Descent?
- For every probability vector $p$, if we choose $i_{t} \sim p$ and set $\hat{\nabla} L\left(w^{(t)}\right)=-r_{t} \frac{1}{p_{i_{t}}} e_{i_{t}}$, then

$$
\mathbb{E}\left[\hat{\nabla} L\left(w^{(t)}\right)\right]=\sum_{i=1}^{n} p_{i} \cdot\left(-\mathbb{E}\left[r_{t}\right] \frac{1}{p_{i}} e_{i}\right)=-\mu=\nabla L\left(w^{(t)}\right)
$$

- Problem: we need that $\mathbb{E}\left[\left\|\hat{\nabla} L\left(w^{(t)}\right)\right\|^{2}\right]$ will be bounded
- $\epsilon$-greedy exploration: set $p=(1-\epsilon) w^{(t)}+\epsilon \mathbf{1} / n$ That is, we explore w.p. $\epsilon$ and exploit w.p. $(1-\epsilon)$
- Regret analysis: it can be show that the regret is order of $\left(\frac{n}{T}\right)^{1 / 3}$


## EXP3 (Auer, Cesa-Bianchi, Freund, Schapire)

- Same as SGD, but we pick $p=w^{(t)}$ and update using Stochastic Gradient in the Exponent


## EXP3 (Auer, Cesa-Bianchi, Freund, Schapire)

- Same as SGD, but we pick $p=w^{(t)}$ and update using Stochastic Gradient in the Exponent
- Initialize: $w^{(1)}=(1 / n, \ldots, 1 / n)$


## EXP3 (Auer, Cesa-Bianchi, Freund, Schapire)

- Same as SGD, but we pick $p=w^{(t)}$ and update using Stochastic Gradient in the Exponent
- Initialize: $w^{(1)}=(1 / n, \ldots, 1 / n)$
- Update: $w_{i}^{(t+1)}=\frac{1}{Z_{t}} w_{i}^{(t)} \exp \left(-\eta \hat{\nabla} L\left(w^{(t)}\right)[i]\right)$


## EXP3 (Auer, Cesa-Bianchi, Freund, Schapire)

- Same as SGD, but we pick $p=w^{(t)}$ and update using Stochastic Gradient in the Exponent
- Initialize: $w^{(1)}=(1 / n, \ldots, 1 / n)$
- Update: $w_{i}^{(t+1)}=\frac{1}{Z_{t}} w_{i}^{(t)} \exp \left(-\eta \hat{\nabla} L\left(w^{(t)}\right)[i]\right)$
- The update makes sure that we have some exploration (we never completely zero components of $w$ )


## EXP3 (Auer, Cesa-Bianchi, Freund, Schapire)

- Same as SGD, but we pick $p=w^{(t)}$ and update using Stochastic Gradient in the Exponent
- Initialize: $w^{(1)}=(1 / n, \ldots, 1 / n)$
- Update: $w_{i}^{(t+1)}=\frac{1}{Z_{t}} w_{i}^{(t)} \exp \left(-\eta \hat{\nabla} L\left(w^{(t)}\right)[i]\right)$
- The update makes sure that we have some exploration (we never completely zero components of $w$ )
- Regret analysis: it can be show to be order of $\left(\frac{n \log (n)}{T}\right)^{1 / 2}$


## EXP3 (Auer, Cesa-Bianchi, Freund, Schapire)

- Same as SGD, but we pick $p=w^{(t)}$ and update using Stochastic Gradient in the Exponent
- Initialize: $w^{(1)}=(1 / n, \ldots, 1 / n)$
- Update: $w_{i}^{(t+1)}=\frac{1}{Z_{t}} w_{i}^{(t)} \exp \left(-\eta \hat{\nabla} L\left(w^{(t)}\right)[i]\right)$
- The update makes sure that we have some exploration (we never completely zero components of $w$ )
- Regret analysis: it can be show to be order of $\left(\frac{n \log (n)}{T}\right)^{1 / 2}$
- EXP3 stands for "Exploration-Exploitation using Exponentiated Gradient"


## EXP3 (Auer, Cesa-Bianchi, Freund, Schapire)

- Same as SGD, but we pick $p=w^{(t)}$ and update using Stochastic Gradient in the Exponent
- Initialize: $w^{(1)}=(1 / n, \ldots, 1 / n)$
- Update: $w_{i}^{(t+1)}=\frac{1}{Z_{t}} w_{i}^{(t)} \exp \left(-\eta \hat{\nabla} L\left(w^{(t)}\right)[i]\right)$
- The update makes sure that we have some exploration (we never completely zero components of $w$ )
- Regret analysis: it can be show to be order of $\left(\frac{n \log (n)}{T}\right)^{1 / 2}$
- EXP3 stands for "Exploration-Exploitation using Exponentiated Gradient"
- Remark: EXP3 works also in the adversarial setting


## Upper Confidence Bound (UCB)

- Optimism in the face of uncertainty (Lai and Robbins' 1985)


## Upper Confidence Bound (UCB)

- Optimism in the face of uncertainty (Lai and Robbins' 1985)
- Using Hoeffding's inequality, if we pulled arm $i$ for $N_{i}(t)$ times then:

$$
\mu_{i} \leq \hat{\mu}_{i}+\sqrt{\frac{2 \log (T)}{N_{i}(t)}}:=\mathrm{UCB}_{i}(t)
$$

## Upper Confidence Bound (UCB)

- Optimism in the face of uncertainty (Lai and Robbins' 1985)
- Using Hoeffding's inequality, if we pulled arm $i$ for $N_{i}(t)$ times then:

$$
\mu_{i} \leq \hat{\mu}_{i}+\sqrt{\frac{2 \log (T)}{N_{i}(t)}}:=\mathrm{UCB}_{i}(t)
$$

- The UCB rule is to pull the arm that maximizes $\mathrm{UCB}_{i}(t)$


## Upper Confidence Bound (UCB)

- Optimism in the face of uncertainty (Lai and Robbins' 1985)
- Using Hoeffding's inequality, if we pulled arm $i$ for $N_{i}(t)$ times then:

$$
\mu_{i} \leq \hat{\mu}_{i}+\sqrt{\frac{2 \log (T)}{N_{i}(t)}}:=\mathrm{UCB}_{i}(t)
$$

- The UCB rule is to pull the arm that maximizes $\mathrm{UCB}_{i}(t)$
- Regret can be shown to be bounded by $\frac{\log (T)}{T} \sum_{i: \Delta_{i}>0} \frac{1}{\Delta_{i}}$


## Outline

## (1) Reinforcement Learning

(2) Multi-Armed Bandit

- $\epsilon$-greedy exploration
- EXP3
- UCB
(3) Markov Decision Process (MDP)
- Value Iteration
- $Q$-Learning
- Deep-Q-Learning
- Temporal Abstraction


## Markov Decision Process (MDP)

## The Markovian Assumption:

- For every $t, s_{t+1} \sim \tau\left(s_{t}, a_{t}\right)$ where $\tau$ is a deterministic function over $S \times A$
- For every $t, r_{t}$ is a random variable over $[0,1]$ whose distribution depends deterministically only on $\left(s_{t}, a_{t}\right)$ and we denote its expected value by $\rho\left(s_{t}, a_{t}\right)$,
- It follows that $\left(s_{t+1}, r_{t}\right)$ is conditionally independent of $\left(s_{t-1}, a_{t-1}\right),\left(s_{t-2}, a_{t-2}\right), \ldots,\left(s_{1}, a_{1}\right)$ given $\left(s_{t}, a_{t}\right)$


## MDP — algorithms

- Value Iteration: Find the optimal policy when $\tau$ and $\rho$ are known
- $Q$-Learning: Find the optimal policy when $\tau$ and $\rho$ are not known


## The Value Function and the $Q$-Function

- The optimal value function is $V^{*}: S \rightarrow \mathbb{R}$ s.t. $V^{*}(s)=\mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^{t} r_{t} \mid s_{1}=s\right]$


## The Value Function and the $Q$-Function

- The optimal value function is $V^{*}: S \rightarrow \mathbb{R}$ s.t.

$$
V^{*}(s)=\mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^{t} r_{t} \mid s_{1}=s\right]
$$

- Observe (this is known as Bellman's Equation:)

$$
V^{*}(s)=\max _{a \in A}\left[\rho(s, a)+\gamma \underset{s^{\prime} \sim \tau(s, a)}{\mathbb{E}} V^{*}\left(s^{\prime}\right)\right]
$$

## The Value Function and the $Q$-Function

- The optimal value function is $V^{*}: S \rightarrow \mathbb{R}$ s.t.

$$
V^{*}(s)=\mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^{t} r_{t} \mid s_{1}=s\right]
$$

- Observe (this is known as Bellman's Equation:)

$$
V^{*}(s)=\max _{a \in A}\left[\rho(s, a)+\gamma \underset{s^{\prime} \sim \tau(s, a)}{\mathbb{E}} V^{*}\left(s^{\prime}\right)\right]
$$

- The objective function in the above maximization problem is called the optimal action-value function, and is denoted by

$$
Q^{*}(s, a)=\rho(s, a)+\gamma \underset{s^{\prime} \sim \tau(s, a)}{\mathbb{E}} V^{*}\left(s^{\prime}\right)
$$

## The Value Function and the $Q$-Function

- The optimal value function is $V^{*}: S \rightarrow \mathbb{R}$ s.t.

$$
V^{*}(s)=\mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^{t} r_{t} \mid s_{1}=s\right]
$$

- Observe (this is known as Bellman's Equation:)

$$
V^{*}(s)=\max _{a \in A}\left[\rho(s, a)+\gamma \underset{s^{\prime} \sim \tau(s, a)}{\mathbb{E}} V^{*}\left(s^{\prime}\right)\right]
$$

- The objective function in the above maximization problem is called the optimal action-value function, and is denoted by

$$
Q^{*}(s, a)=\rho(s, a)+\gamma \underset{s^{\prime} \sim \tau(s, a)}{\mathbb{E}} V^{*}\left(s^{\prime}\right)
$$

- corollary: The optimal policy is the greedy policy w.r.t. $Q^{*}$, namely, $\pi^{*}(s)=\operatorname{argmax}_{a} Q^{*}(s, a)$


## The Value Function and the $Q$-Function

- The optimal value function is $V^{*}: S \rightarrow \mathbb{R}$ s.t.

$$
V^{*}(s)=\mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^{t} r_{t} \mid s_{1}=s\right]
$$

- Observe (this is known as Bellman's Equation:)

$$
V^{*}(s)=\max _{a \in A}\left[\rho(s, a)+\gamma \underset{s^{\prime} \sim \tau(s, a)}{\mathbb{E}} V^{*}\left(s^{\prime}\right)\right]
$$

- The objective function in the above maximization problem is called the optimal action-value function, and is denoted by

$$
Q^{*}(s, a)=\rho(s, a)+\gamma \underset{s^{\prime} \sim \tau(s, a)}{\mathbb{E}} V^{*}\left(s^{\prime}\right)
$$

- corollary: The optimal policy is the greedy policy w.r.t. $Q^{*}$, namely, $\pi^{*}(s)=\operatorname{argmax}_{a} Q^{*}(s, a)$
- In particular, the optimal $a_{t}$ is a deterministic function of $s_{t}$


## Value Iteration

- Iterative algorithm for finding $V^{*}$ : Start with some arbitrary $V_{0}$ and update

$$
V_{t+1}(s)=\max _{a \in A}\left[\rho(s, a)+\gamma \underset{s^{\prime} \sim \tau(s, a)}{\mathbb{E}} V_{t}\left(s^{\prime}\right)\right]
$$

## Value Iteration

- Iterative algorithm for finding $V^{*}$ : Start with some arbitrary $V_{0}$ and update

$$
V_{t+1}(s)=\max _{a \in A}\left[\rho(s, a)+\gamma \underset{s^{\prime} \sim \tau(s, a)}{\mathbb{E}} V_{t}\left(s^{\prime}\right)\right]
$$

- Theorem: $\left\|V_{t}-V^{*}\right\|_{\infty} \leq \gamma^{t}\left\|V_{0}-V^{*}\right\|_{\infty}$


## Value Iteration

- Iterative algorithm for finding $V^{*}$ :

Start with some arbitrary $V_{0}$ and update

$$
V_{t+1}(s)=\max _{a \in A}\left[\rho(s, a)+\gamma \underset{s^{\prime} \sim \tau(s, a)}{\mathbb{E}} V_{t}\left(s^{\prime}\right)\right]
$$

- Theorem: $\left\|V_{t}-V^{*}\right\|_{\infty} \leq \gamma^{t}\left\|V_{0}-V^{*}\right\|_{\infty}$
- Proof idea:


## Value Iteration

- Iterative algorithm for finding $V^{*}$ :

Start with some arbitrary $V_{0}$ and update

$$
V_{t+1}(s)=\max _{a \in A}\left[\rho(s, a)+\gamma \underset{s^{\prime} \sim \tau(s, a)}{\mathbb{E}} V_{t}\left(s^{\prime}\right)\right]
$$

- Theorem: $\left\|V_{t}-V^{*}\right\|_{\infty} \leq \gamma^{t}\left\|V_{0}-V^{*}\right\|_{\infty}$
- Proof idea:
- Define $T^{*}: \mathbb{R}^{|S|} \rightarrow \mathbb{R}^{|S|}$ to be the operator s.t. $V_{t+1}=T^{*}\left(V_{t}\right)$


## Value Iteration

- Iterative algorithm for finding $V^{*}$ :

Start with some arbitrary $V_{0}$ and update

$$
V_{t+1}(s)=\max _{a \in A}\left[\rho(s, a)+\gamma \underset{s^{\prime} \sim \tau(s, a)}{\mathbb{E}} V_{t}\left(s^{\prime}\right)\right]
$$

- Theorem: $\left\|V_{t}-V^{*}\right\|_{\infty} \leq \gamma^{t}\left\|V_{0}-V^{*}\right\|_{\infty}$
- Proof idea:
- Define $T^{*}: \mathbb{R}^{|S|} \rightarrow \mathbb{R}^{|S|}$ to be the operator s.t. $V_{t+1}=T^{*}\left(V_{t}\right)$
- Show that $T^{*}$ is a contraction mapping: for any two vector in $\mathbb{R}^{|S|}$ we have $\left\|T^{*}(u)-T^{*}(v)\right\|_{\infty} \leq \gamma\|u-v\|_{\infty}$


## Value Iteration

- Iterative algorithm for finding $V^{*}$ :

Start with some arbitrary $V_{0}$ and update

$$
V_{t+1}(s)=\max _{a \in A}\left[\rho(s, a)+\gamma \underset{s^{\prime} \sim \tau(s, a)}{\mathbb{E}} V_{t}\left(s^{\prime}\right)\right]
$$

- Theorem: $\left\|V_{t}-V^{*}\right\|_{\infty} \leq \gamma^{t}\left\|V_{0}-V^{*}\right\|_{\infty}$
- Proof idea:
- Define $T^{*}: \mathbb{R}^{|S|} \rightarrow \mathbb{R}^{|S|}$ to be the operator s.t. $V_{t+1}=T^{*}\left(V_{t}\right)$
- Show that $T^{*}$ is a contraction mapping: for any two vector in $\mathbb{R}^{|S|}$ we have $\left\|T^{*}(u)-T^{*}(v)\right\|_{\infty} \leq \gamma\|u-v\|_{\infty}$
- The proof follows from Banach's fixed point theorem


## Naive Learner

- Step 1: Estimate $\tau$ and $\rho$ by applying purely random policy
- Step 2: Apply Value Iteration to learn the optimal policy


## $Q$-Learning

- Bellman's equation for the $Q$ function:

$$
Q^{*}(s, a)=\rho(s, a)+\gamma \underset{s^{\prime} \sim \tau(s, a)}{\mathbb{E}} \max _{a^{\prime}} Q^{*}\left(s^{\prime}, a^{\prime}\right)
$$

## $Q$-Learning

- Bellman's equation for the $Q$ function:

$$
Q^{*}(s, a)=\rho(s, a)+\gamma \underset{s^{\prime} \sim \tau(s, a)}{\mathbb{E}} \max _{a^{\prime}} Q^{*}\left(s^{\prime}, a^{\prime}\right)
$$

- Given $\left(s_{t}, a_{t}, s_{t+1}, r_{t}\right)$, define

$$
\delta_{s_{t}, a_{t}}(Q)=Q\left(s_{t}, a_{t}\right)-\left(r_{t}+\gamma \max _{a^{\prime}} Q\left(s_{t+1}, a^{\prime}\right)\right)
$$

## $Q$-Learning

- Bellman's equation for the $Q$ function:

$$
Q^{*}(s, a)=\rho(s, a)+\gamma \underset{s^{\prime} \sim \tau(s, a)}{\mathbb{E}} \max _{a^{\prime}} Q^{*}\left(s^{\prime}, a^{\prime}\right)
$$

- Given $\left(s_{t}, a_{t}, s_{t+1}, r_{t}\right)$, define

$$
\delta_{s_{t}, a_{t}}(Q)=Q\left(s_{t}, a_{t}\right)-\left(r_{t}+\gamma \max _{a^{\prime}} Q\left(s_{t+1}, a^{\prime}\right)\right)
$$

- Initialize $Q_{1}$ and update

$$
Q_{t+1}(s, a)=Q_{t}(s, a)-\eta_{t} \delta_{s_{t}, a_{t}}\left(Q_{t}\right) 1\left[s=s_{t}, a=a_{t}\right]
$$

## $Q$-Learning

- Bellman's equation for the $Q$ function:

$$
Q^{*}(s, a)=\rho(s, a)+\gamma \underset{s^{\prime} \sim \tau(s, a)}{\mathbb{E}} \max _{a^{\prime}} Q^{*}\left(s^{\prime}, a^{\prime}\right)
$$

- Given $\left(s_{t}, a_{t}, s_{t+1}, r_{t}\right)$, define

$$
\delta_{s_{t}, a_{t}}(Q)=Q\left(s_{t}, a_{t}\right)-\left(r_{t}+\gamma \max _{a^{\prime}} Q\left(s_{t+1}, a^{\prime}\right)\right)
$$

- Initialize $Q_{1}$ and update

$$
Q_{t+1}(s, a)=Q_{t}(s, a)-\eta_{t} \delta_{s_{t}, a_{t}}\left(Q_{t}\right) 1\left[s=s_{t}, a=a_{t}\right]
$$

- The above update aims at converging to Bellman's equation


## Exploration for $Q$-Learning

- $Q$-Learning can be applied for any choice of $a_{t}$ (it is an "off policy" learner)


## Exploration for $Q$-Learning

- $Q$-Learning can be applied for any choice of $a_{t}$ (it is an "off policy" learner)
- Speed of convergence can be improved if we balance the exploration-exploitation tradeoff (by one of the methods described previously)


## The Curse of Dimensionality

- The $Q$ function is a table of size $|S| \times|A|$
- This size grows exponentially with the dimensions of $S$ and $A$
- The convergence of the "tabular" $Q$-learning (namely, maintaing $Q$ is a table of size $|S| \times|A|$ ) becomes very slow
- We describe two approaches to overcome this problem:
- Function Approximation
- Temporal Abstractions


## Function Approximation for $Q$-Learning

- Maintain a parametric hypothesis class of $Q$ functions


## Function Approximation for $Q$-Learning

- Maintain a parametric hypothesis class of $Q$ functions
- Rewrite $\delta$ as a function of the parameter $\theta$ :

$$
\delta_{s_{t}, a_{t}}(\theta)=Q_{\theta}\left(s_{t}, a_{t}\right)-\left(r_{t}+\gamma \max _{a^{\prime}} Q_{\theta_{t}}\left(s_{t+1}, a^{\prime}\right)\right)
$$

## Function Approximation for $Q$-Learning

- Maintain a parametric hypothesis class of $Q$ functions
- Rewrite $\delta$ as a function of the parameter $\theta$ :

$$
\delta_{s_{t}, a_{t}}(\theta)=Q_{\theta}\left(s_{t}, a_{t}\right)-\left(r_{t}+\gamma \max _{a^{\prime}} Q_{\theta_{t}}\left(s_{t+1}, a^{\prime}\right)\right)
$$

- Since we want to minimize $\frac{1}{2} \delta_{s_{t}, a_{t}}(\theta)^{2}$ we take a gradient step:

$$
\theta_{t+1}=\theta_{t}-\eta_{t} \delta_{s_{t}, a_{t}}\left(\theta_{t}\right) \nabla Q_{\theta}\left(s_{t}, a_{t}\right)
$$

## Deep-Q-Learning

- Used by DeepMind to learn to play Atari games


## Deep-Q-Learning

- Used by DeepMind to learn to play Atari games
- Let $Q_{\theta}: S \rightarrow \mathbb{R}^{|A|}$ be a deep network, where we take $S \subset \mathbb{R}^{d}$ and assume that $|A|$ is not too larger


## Deep-Q-Learning

- Used by DeepMind to learn to play Atari games
- Let $Q_{\theta}: S \rightarrow \mathbb{R}^{|A|}$ be a deep network, where we take $S \subset \mathbb{R}^{d}$ and assume that $|A|$ is not too larger
- Exploration: $\epsilon$-greedy


## Deep-Q-Learning

- Used by DeepMind to learn to play Atari games
- Let $Q_{\theta}: S \rightarrow \mathbb{R}^{|A|}$ be a deep network, where we take $S \subset \mathbb{R}^{d}$ and assume that $|A|$ is not too larger
- Exploration: $\epsilon$-greedy
- Memory replay: After executing $a_{t}$ and observing $r_{t}, s_{t+1}$ we store the example $\left(s_{t}, a_{t}, r_{t}, s_{t+1}\right)$ in a database. Instead of updating just based on the last example, update based on a mini-batch of random examples from the database


## Deep-Q-Learning

- Used by DeepMind to learn to play Atari games
- Let $Q_{\theta}: S \rightarrow \mathbb{R}^{|A|}$ be a deep network, where we take $S \subset \mathbb{R}^{d}$ and assume that $|A|$ is not too larger
- Exploration: $\epsilon$-greedy
- Memory replay: After executing $a_{t}$ and observing $r_{t}, s_{t+1}$ we store the example $\left(s_{t}, a_{t}, r_{t}, s_{t+1}\right)$ in a database. Instead of updating just based on the last example, update based on a mini-batch of random examples from the database
- Freezing $Q$ : Every $C$ step, freeze the value of $Q_{\theta}$ and denote it by $\hat{Q}$. Then, redefine $\delta$ to be

$$
\delta_{s_{t}, a_{t}}(\theta)=Q_{\theta}\left(s_{t}, a_{t}\right)-\left(r_{t}+\gamma \max _{a^{\prime}} \hat{Q}\left(s_{t+1}, a^{\prime}\right)\right)
$$

This has some stabilization effect on the algorithm

## Intuition: Structuring a State Space

- Consider some state space $S \subset \mathbb{R}^{d}$
- Suppose we partition it to $S=S_{1} \cup S_{2} \cup \ldots \cup S_{k}$
- Assuming homogenous actions within each $S_{i}$, we can apply $Q$ learning while using $[k]$ as a new state space
- One can think of Deep-Q-Learning as automatically finding the partition (the first layers of the network)


## Temporal Abstraction

- Decisions are often structured into sub-tasks with a broad range of time scale. E.g.:
- Task: Call a taxi
- Step 1: finding my phone
- Step 2: finding the number
- Step 3: dialing the first digit
- Step 20: commanding my finger muscle to move into the right place ...


## Temporal Abstraction

- Decisions are often structured into sub-tasks with a broad range of time scale. E.g.:
- Task: Call a taxi
- Step 1: finding my phone
- Step 2: finding the number
- Step 3: dialing the first digit
- Step 20: commanding my finger muscle to move into the right place ...
- Options: (Sutton, Precup, Singh)
- An option is a pair $(\pi, \beta)$ where
- $\pi: S \rightarrow A$ is the policy to apply while within the "option"
- $\beta: S \rightarrow[0,1]$ is a stochastic termination function


## Temporal Abstraction

- Decisions are often structured into sub-tasks with a broad range of time scale. E.g.:
- Task: Call a taxi
- Step 1: finding my phone
- Step 2: finding the number
- Step 3: dialing the first digit
- Step 20: commanding my finger muscle to move into the right place ...
- Options: (Sutton, Precup, Singh)
- An option is a pair $(\pi, \beta)$ where
- $\pi: S \rightarrow A$ is the policy to apply while within the "option"
- $\beta: S \rightarrow[0,1]$ is a stochastic termination function
- Instead of directly choosing actions, the agent picks an option $o_{t} \in O$, and this option is applied until it terminates
- That is, we should learn a policy over options, $\mu: S \rightarrow O$


## Temporal Abstraction

- Decisions are often structured into sub-tasks with a broad range of time scale. E.g.:
- Task: Call a taxi
- Step 1: finding my phone
- Step 2: finding the number
- Step 3: dialing the first digit
- Step 20: commanding my finger muscle to move into the right place ...
- Options: (Sutton, Precup, Singh)
- An option is a pair $(\pi, \beta)$ where
- $\pi: S \rightarrow A$ is the policy to apply while within the "option"
- $\beta: S \rightarrow[0,1]$ is a stochastic termination function
- Instead of directly choosing actions, the agent picks an option $o_{t} \in O$, and this option is applied until it terminates
- That is, we should learn a policy over options, $\mu: S \rightarrow O$
- We can learn $\mu$ similarly to how we learn a vanilla policy, and the advantage is that mt may be easier to pick $O$ than picking $A$


## Limitations of MDPs

- The Markovian assumption is mathematically convenient but rarely holds in practice
- POMDP = Partially Observed MDP: There is a hidden Markovian state, but we only observe a view that depends on it
- Another approach is "direct policy search", that do not necessarily rely on the Markovian assumption.


## Summary

- Reinforcement Learning is a powerful and useful learning setting, but is much harder than Supervised Learning
- The Exploration-Exploitation Tradeoff
- MDP: Connecting the future rewards to current actions using a Markovian assumption


## Appendix

## Stationary Distribution of an MDP

- A MDP and a deterministic policy function $\pi$ induces a Markov chain over $S$, because $\mathbb{P}\left[s_{t+1} \mid s_{t}, a_{t}, \ldots, s_{1}, a_{1}\right]=\mathbb{P}\left[s_{t+1} \mid s_{t}\right]$
- The stationary distribution over $S$ is the probability vector $q$ such that $q_{s}=\lim _{T \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T} 1\left[s_{t}=s\right]$
- We have that $q_{s}=\sum_{s^{\prime}} q_{s^{\prime}} \mathbb{P}\left[s \mid s^{\prime}\right]$
- We have $R_{T}(\pi) \rightarrow \sum_{s} q_{s} \rho_{s}$ where $\rho_{s}=(s, \pi(s))$
- Using $P$ to denote the matrix s.t. $P_{s, s^{\prime}}=\mathbb{P}\left[s \mid s^{\prime}\right]$, we obtain that the average reward is the solution of the following Linear Program (LP):

$$
\min _{q}\langle q,-\rho\rangle \text { s.t. } q \geq 0,\langle q, 1\rangle=1,(P-I) q=0
$$

## The Dual Problem and the Value Function

- Primal

$$
\min _{q \in \mathbb{R}^{|S|}}\langle q,-\rho\rangle \text { s.t. } q \geq 0,\langle q, 1\rangle=1,(P-I) q=0
$$

- Dual: define $A=\left[\left(P^{\top}-I\right), \mathbf{1}\right]$

$$
\max _{v \in \mathbb{R}^{|S|+1}}\langle v,[0, \ldots, 0,1]\rangle \text { s.t. } A v \leq-\rho
$$

- Equivalently:

$$
\max _{v \in \mathbb{R}^{|S|}, \beta \in \mathbb{R}} \beta \text { s.t. } \beta \leq-\rho+\left(I-P^{\top}\right) v=v-\left[\rho+P^{\top} v\right]
$$

- Equivalently (since at the optimum, $\beta=\min _{s}\left[v_{s}-\left(\rho_{s}+\left(P^{\top} v\right)_{s}\right)\right]$ )

$$
\max _{v \in \mathbb{R}^{|S|}} \min _{s}\left[v_{s}-\left(\rho_{s}+\left(P^{\top} v\right)_{s}\right)\right]
$$

## Solution

- Assumption: rewards are $\geq 0$
- Claim: If there's a solution to $\left(I-P^{\top}\right) v=\rho$, then it is an optimal solution for which $\beta=0$
- Proof: For any $v$, choose $s$ s.t. $v_{s}$ is minimal, then $\left(P^{\top} v\right)_{s} \geq v_{s}$, because the rows of $P^{\top}$ are probabilities vector. Since $\rho_{s} \geq 0$, we have that for this $s, v_{s}-\left(\rho_{s}+\left(P^{\top} v\right)_{s}\right) \leq 0$, so $\beta \leq 0$, which concludes our proof.

