
Introduction to Machine Learning (67577)
Reinforcement Learning

Shai Shalev-Shwartz

School of CS and Engineering,
The Hebrew University of Jerusalem

Reinforcement Learning

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 1 / 32

Outline

1 Reinforcement Learning

2 Multi-Armed Bandit
ε-greedy exploration
EXP3
UCB

3 Markov Decision Process (MDP)
Value Iteration
Q-Learning
Deep-Q-Learning
Temporal Abstraction

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 2 / 32

Reinforcement Learning

Goal: Learn a policy, mapping from state space, S, to action space, A

Learning Process:
For t = 1, 2, . . .

Agent observes state st ∈ S
Agent decides on action at ∈ A based on the current policy

Environment provides reward rt ∈ R
Environment moves the agent to next state st+1 ∈ S

Many applications, e.g.: Robotics, Playing games, Finance, Inventory
management, ...

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 3 / 32

Reinforcement Learning

Goal: Learn a policy, mapping from state space, S, to action space, A

Learning Process:
For t = 1, 2, . . .

Agent observes state st ∈ S
Agent decides on action at ∈ A based on the current policy

Environment provides reward rt ∈ R
Environment moves the agent to next state st+1 ∈ S

Many applications, e.g.: Robotics, Playing games, Finance, Inventory
management, ...

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 3 / 32

Examples

Merge into traffic:

Goal: Adjust the speed of the car according to traffic

State is positions and velocities of the car and the preceding car

Action is acceleration/braking command

Reward is composed of avoiding accidents, smooth driving, and
making progress

Playing Atari Game:

https://www.youtube.com/watch?v=V1eYniJ0Rnk

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 4 / 32

https://www.youtube.com/watch?v=V1eYniJ0Rnk

Examples

Merge into traffic:

Goal: Adjust the speed of the car according to traffic

State is positions and velocities of the car and the preceding car

Action is acceleration/braking command

Reward is composed of avoiding accidents, smooth driving, and
making progress

Playing Atari Game:

https://www.youtube.com/watch?v=V1eYniJ0Rnk

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 4 / 32

https://www.youtube.com/watch?v=V1eYniJ0Rnk

Average Reward and Discounted Reward

Average Reward: Given time horizon T , the average reward of following a
policy π is

RT (π) = E
1

T

T∑
t=1

rt

Discounted Reward: Given γ ∈ (0, 1), the discounted reward of following a
policy π is

Rγ(π) = E
∞∑
t=1

γt rt

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 5 / 32

Average Reward and Discounted Reward

Average Reward: Given time horizon T , the average reward of following a
policy π is

RT (π) = E
1

T

T∑
t=1

rt

Discounted Reward: Given γ ∈ (0, 1), the discounted reward of following a
policy π is

Rγ(π) = E
∞∑
t=1

γt rt

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 5 / 32

Reinforcement Learning vs. Supervised Learning

SL is a special case of RL in which st is the “instance”, at is the predicted
label, −rt is the loss measuring the discrepancy between at and the “true”
label, yt, and st+1 is chosen independent of st and at.

Differences:

In SL, actions do not effect the environment, therefore we can collect
training examples in advance, and only then search for a policy

In SL, the effect of actions is local, while in RL, actions have
long-term effect

In SL we are given the correct answer, while in RL we only observe a
reward

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 6 / 32

Reinforcement Learning vs. Supervised Learning

SL is a special case of RL in which st is the “instance”, at is the predicted
label, −rt is the loss measuring the discrepancy between at and the “true”
label, yt, and st+1 is chosen independent of st and at.

Differences:

In SL, actions do not effect the environment, therefore we can collect
training examples in advance, and only then search for a policy

In SL, the effect of actions is local, while in RL, actions have
long-term effect

In SL we are given the correct answer, while in RL we only observe a
reward

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 6 / 32

Outline

1 Reinforcement Learning

2 Multi-Armed Bandit
ε-greedy exploration
EXP3
UCB

3 Markov Decision Process (MDP)
Value Iteration
Q-Learning
Deep-Q-Learning
Temporal Abstraction

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 7 / 32

The Multi-Armed Bandit Problem (Robbins 1952)

States: The state is constant (has no effect)

Actions: n slot machines (“arms”).

Reward: There exists a deterministic function ρ from A = [n] to all
distributions over [0, 1] s.t. for every t, rt ∼ ρ(at)

Denote: µi = E[rt|at = i], i∗ = argmaxi µi, µ
∗ = µi∗ , ∆i = µ∗ − µi

Regret:
µ∗ − ERT (π)

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 8 / 32

The Multi-Armed Bandit Problem (Robbins 1952)

States: The state is constant (has no effect)

Actions: n slot machines (“arms”).

Reward: There exists a deterministic function ρ from A = [n] to all
distributions over [0, 1] s.t. for every t, rt ∼ ρ(at)

Denote: µi = E[rt|at = i], i∗ = argmaxi µi, µ
∗ = µi∗ , ∆i = µ∗ − µi

Regret:
µ∗ − ERT (π)

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 8 / 32

The Multi-Armed Bandit Problem (Robbins 1952)

States: The state is constant (has no effect)

Actions: n slot machines (“arms”).

Reward: There exists a deterministic function ρ from A = [n] to all
distributions over [0, 1] s.t. for every t, rt ∼ ρ(at)

Denote: µi = E[rt|at = i], i∗ = argmaxi µi, µ
∗ = µi∗ , ∆i = µ∗ − µi

Regret:
µ∗ − ERT (π)

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 8 / 32

The Multi-Armed Bandit Problem (Robbins 1952)

States: The state is constant (has no effect)

Actions: n slot machines (“arms”).

Reward: There exists a deterministic function ρ from A = [n] to all
distributions over [0, 1] s.t. for every t, rt ∼ ρ(at)

Denote: µi = E[rt|at = i], i∗ = argmaxi µi, µ
∗ = µi∗ , ∆i = µ∗ − µi

Regret:
µ∗ − ERT (π)

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 8 / 32

The Multi-Armed Bandit Problem (Robbins 1952)

States: The state is constant (has no effect)

Actions: n slot machines (“arms”).

Reward: There exists a deterministic function ρ from A = [n] to all
distributions over [0, 1] s.t. for every t, rt ∼ ρ(at)

Denote: µi = E[rt|at = i], i∗ = argmaxi µi, µ
∗ = µi∗ , ∆i = µ∗ − µi

Regret:
µ∗ − ERT (π)

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 8 / 32

The Exploration-Exploitation Tradeoff

How to pick the next action?

Exploitation: Choose the most promising action based on your
current understanding

Exploration: Maybe there is a better arm ?

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 9 / 32

The Exploration-Exploitation Tradeoff

How to pick the next action?

Exploitation: Choose the most promising action based on your
current understanding

Exploration: Maybe there is a better arm ?

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 9 / 32

Naive approach: first explore then exploit

Procedure:

Pure exploration for the first m iterations (pick actions at random)
Let î = argmaxi µ̂i, where µ̂i = avg(rt : at = i)
Pure exploitation for the rest of the T −m iterations (always pick î)

Analysis:

Claim: If m is order of n log(n)/ε2 then for all i, |µi − µ̂i| ≤ ε
Proof: Hoeffding + union bound
Regret:

µ∗ −
mµ̄+ (T −m)µî

T
= (µ∗ − µî) + m

T (µî − µ̄)

≤ (µ∗ − µ̂i∗ + µ̂i∗ − µ̂î + µ̂î − µî) + m
T ≤ 2ε+

n log(n)

T ε2

For the best ε, the regret is order of
(

n log(n)
T

)1/3

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 10 / 32

Naive approach: first explore then exploit

Procedure:

Pure exploration for the first m iterations (pick actions at random)

Let î = argmaxi µ̂i, where µ̂i = avg(rt : at = i)
Pure exploitation for the rest of the T −m iterations (always pick î)

Analysis:

Claim: If m is order of n log(n)/ε2 then for all i, |µi − µ̂i| ≤ ε
Proof: Hoeffding + union bound
Regret:

µ∗ −
mµ̄+ (T −m)µî

T
= (µ∗ − µî) + m

T (µî − µ̄)

≤ (µ∗ − µ̂i∗ + µ̂i∗ − µ̂î + µ̂î − µî) + m
T ≤ 2ε+

n log(n)

T ε2

For the best ε, the regret is order of
(

n log(n)
T

)1/3

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 10 / 32

Naive approach: first explore then exploit

Procedure:

Pure exploration for the first m iterations (pick actions at random)
Let î = argmaxi µ̂i, where µ̂i = avg(rt : at = i)

Pure exploitation for the rest of the T −m iterations (always pick î)

Analysis:

Claim: If m is order of n log(n)/ε2 then for all i, |µi − µ̂i| ≤ ε
Proof: Hoeffding + union bound
Regret:

µ∗ −
mµ̄+ (T −m)µî

T
= (µ∗ − µî) + m

T (µî − µ̄)

≤ (µ∗ − µ̂i∗ + µ̂i∗ − µ̂î + µ̂î − µî) + m
T ≤ 2ε+

n log(n)

T ε2

For the best ε, the regret is order of
(

n log(n)
T

)1/3

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 10 / 32

Naive approach: first explore then exploit

Procedure:

Pure exploration for the first m iterations (pick actions at random)
Let î = argmaxi µ̂i, where µ̂i = avg(rt : at = i)
Pure exploitation for the rest of the T −m iterations (always pick î)

Analysis:

Claim: If m is order of n log(n)/ε2 then for all i, |µi − µ̂i| ≤ ε
Proof: Hoeffding + union bound
Regret:

µ∗ −
mµ̄+ (T −m)µî

T
= (µ∗ − µî) + m

T (µî − µ̄)

≤ (µ∗ − µ̂i∗ + µ̂i∗ − µ̂î + µ̂î − µî) + m
T ≤ 2ε+

n log(n)

T ε2

For the best ε, the regret is order of
(

n log(n)
T

)1/3

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 10 / 32

Naive approach: first explore then exploit

Procedure:

Pure exploration for the first m iterations (pick actions at random)
Let î = argmaxi µ̂i, where µ̂i = avg(rt : at = i)
Pure exploitation for the rest of the T −m iterations (always pick î)

Analysis:

Claim: If m is order of n log(n)/ε2 then for all i, |µi − µ̂i| ≤ ε
Proof: Hoeffding + union bound
Regret:

µ∗ −
mµ̄+ (T −m)µî

T
= (µ∗ − µî) + m

T (µî − µ̄)

≤ (µ∗ − µ̂i∗ + µ̂i∗ − µ̂î + µ̂î − µî) + m
T ≤ 2ε+

n log(n)

T ε2

For the best ε, the regret is order of
(

n log(n)
T

)1/3

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 10 / 32

Naive approach: first explore then exploit

Procedure:

Pure exploration for the first m iterations (pick actions at random)
Let î = argmaxi µ̂i, where µ̂i = avg(rt : at = i)
Pure exploitation for the rest of the T −m iterations (always pick î)

Analysis:

Claim: If m is order of n log(n)/ε2 then for all i, |µi − µ̂i| ≤ ε

Proof: Hoeffding + union bound
Regret:

µ∗ −
mµ̄+ (T −m)µî

T
= (µ∗ − µî) + m

T (µî − µ̄)

≤ (µ∗ − µ̂i∗ + µ̂i∗ − µ̂î + µ̂î − µî) + m
T ≤ 2ε+

n log(n)

T ε2

For the best ε, the regret is order of
(

n log(n)
T

)1/3

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 10 / 32

Naive approach: first explore then exploit

Procedure:

Pure exploration for the first m iterations (pick actions at random)
Let î = argmaxi µ̂i, where µ̂i = avg(rt : at = i)
Pure exploitation for the rest of the T −m iterations (always pick î)

Analysis:

Claim: If m is order of n log(n)/ε2 then for all i, |µi − µ̂i| ≤ ε
Proof: Hoeffding + union bound

Regret:

µ∗ −
mµ̄+ (T −m)µî

T
= (µ∗ − µî) + m

T (µî − µ̄)

≤ (µ∗ − µ̂i∗ + µ̂i∗ − µ̂î + µ̂î − µî) + m
T ≤ 2ε+

n log(n)

T ε2

For the best ε, the regret is order of
(

n log(n)
T

)1/3

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 10 / 32

Naive approach: first explore then exploit

Procedure:

Pure exploration for the first m iterations (pick actions at random)
Let î = argmaxi µ̂i, where µ̂i = avg(rt : at = i)
Pure exploitation for the rest of the T −m iterations (always pick î)

Analysis:

Claim: If m is order of n log(n)/ε2 then for all i, |µi − µ̂i| ≤ ε
Proof: Hoeffding + union bound
Regret:

µ∗ −
mµ̄+ (T −m)µî

T
= (µ∗ − µî) + m

T (µî − µ̄)

≤ (µ∗ − µ̂i∗ + µ̂i∗ − µ̂î + µ̂î − µî) + m
T ≤ 2ε+

n log(n)

T ε2

For the best ε, the regret is order of
(

n log(n)
T

)1/3

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 10 / 32

Naive approach: first explore then exploit

Procedure:

Pure exploration for the first m iterations (pick actions at random)
Let î = argmaxi µ̂i, where µ̂i = avg(rt : at = i)
Pure exploitation for the rest of the T −m iterations (always pick î)

Analysis:

Claim: If m is order of n log(n)/ε2 then for all i, |µi − µ̂i| ≤ ε
Proof: Hoeffding + union bound
Regret:

µ∗ −
mµ̄+ (T −m)µî

T
= (µ∗ − µî) + m

T (µî − µ̄)

≤ (µ∗ − µ̂i∗ + µ̂i∗ − µ̂î + µ̂î − µî) + m
T ≤ 2ε+

n log(n)

T ε2

For the best ε, the regret is order of
(

n log(n)
T

)1/3

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 10 / 32

SGD with ε-greedy exploration

Want to minimize L(w) = −w>µ over {w ∈ [0, 1]n :
∑

iwi = 1}

A convex objective with convex constraint — can we use Stochastic
Gradient Descent ?

For every probability vector p, if we choose it ∼ p and set
∇̂L(w(t)) = −rt 1

pit
eit , then

E[∇̂L(w(t))] =
n∑
i=1

pi ·
(
−E[rt]

1

pi
ei

)
= −µ = ∇L(w(t))

Problem: we need that E[‖∇̂L(w(t))‖2] will be bounded

ε-greedy exploration: set p = (1− ε)w(t) + ε1/n
That is, we explore w.p. ε and exploit w.p. (1− ε)

Regret analysis: it can be show that the regret is order of
(
n
T

)1/3

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 11 / 32

SGD with ε-greedy exploration

Want to minimize L(w) = −w>µ over {w ∈ [0, 1]n :
∑

iwi = 1}
A convex objective with convex constraint — can we use Stochastic
Gradient Descent ?

For every probability vector p, if we choose it ∼ p and set
∇̂L(w(t)) = −rt 1

pit
eit , then

E[∇̂L(w(t))] =
n∑
i=1

pi ·
(
−E[rt]

1

pi
ei

)
= −µ = ∇L(w(t))

Problem: we need that E[‖∇̂L(w(t))‖2] will be bounded

ε-greedy exploration: set p = (1− ε)w(t) + ε1/n
That is, we explore w.p. ε and exploit w.p. (1− ε)

Regret analysis: it can be show that the regret is order of
(
n
T

)1/3

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 11 / 32

SGD with ε-greedy exploration

Want to minimize L(w) = −w>µ over {w ∈ [0, 1]n :
∑

iwi = 1}
A convex objective with convex constraint — can we use Stochastic
Gradient Descent ?

For every probability vector p, if we choose it ∼ p and set
∇̂L(w(t)) = −rt 1

pit
eit , then

E[∇̂L(w(t))] =

n∑
i=1

pi ·
(
−E[rt]

1

pi
ei

)
= −µ = ∇L(w(t))

Problem: we need that E[‖∇̂L(w(t))‖2] will be bounded

ε-greedy exploration: set p = (1− ε)w(t) + ε1/n
That is, we explore w.p. ε and exploit w.p. (1− ε)

Regret analysis: it can be show that the regret is order of
(
n
T

)1/3

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 11 / 32

SGD with ε-greedy exploration

Want to minimize L(w) = −w>µ over {w ∈ [0, 1]n :
∑

iwi = 1}
A convex objective with convex constraint — can we use Stochastic
Gradient Descent ?

For every probability vector p, if we choose it ∼ p and set
∇̂L(w(t)) = −rt 1

pit
eit , then

E[∇̂L(w(t))] =

n∑
i=1

pi ·
(
−E[rt]

1

pi
ei

)
= −µ = ∇L(w(t))

Problem: we need that E[‖∇̂L(w(t))‖2] will be bounded

ε-greedy exploration: set p = (1− ε)w(t) + ε1/n
That is, we explore w.p. ε and exploit w.p. (1− ε)

Regret analysis: it can be show that the regret is order of
(
n
T

)1/3

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 11 / 32

SGD with ε-greedy exploration

Want to minimize L(w) = −w>µ over {w ∈ [0, 1]n :
∑

iwi = 1}
A convex objective with convex constraint — can we use Stochastic
Gradient Descent ?

For every probability vector p, if we choose it ∼ p and set
∇̂L(w(t)) = −rt 1

pit
eit , then

E[∇̂L(w(t))] =

n∑
i=1

pi ·
(
−E[rt]

1

pi
ei

)
= −µ = ∇L(w(t))

Problem: we need that E[‖∇̂L(w(t))‖2] will be bounded

ε-greedy exploration: set p = (1− ε)w(t) + ε1/n
That is, we explore w.p. ε and exploit w.p. (1− ε)

Regret analysis: it can be show that the regret is order of
(
n
T

)1/3

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 11 / 32

SGD with ε-greedy exploration

Want to minimize L(w) = −w>µ over {w ∈ [0, 1]n :
∑

iwi = 1}
A convex objective with convex constraint — can we use Stochastic
Gradient Descent ?

For every probability vector p, if we choose it ∼ p and set
∇̂L(w(t)) = −rt 1

pit
eit , then

E[∇̂L(w(t))] =

n∑
i=1

pi ·
(
−E[rt]

1

pi
ei

)
= −µ = ∇L(w(t))

Problem: we need that E[‖∇̂L(w(t))‖2] will be bounded

ε-greedy exploration: set p = (1− ε)w(t) + ε1/n
That is, we explore w.p. ε and exploit w.p. (1− ε)

Regret analysis: it can be show that the regret is order of
(
n
T

)1/3
Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 11 / 32

EXP3 (Auer, Cesa-Bianchi, Freund, Schapire)

Same as SGD, but we pick p = w(t) and update using Stochastic
Gradient in the Exponent

Initialize: w(1) = (1/n, . . . , 1/n)

Update: w
(t+1)
i = 1

Zt
w

(t)
i exp(−η∇̂L(w(t))[i])

The update makes sure that we have some exploration (we never
completely zero components of w)

Regret analysis: it can be show to be order of
(
n log(n)

T

)1/2

EXP3 stands for “Exploration-Exploitation using Exponentiated
Gradient”

Remark: EXP3 works also in the adversarial setting

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 12 / 32

EXP3 (Auer, Cesa-Bianchi, Freund, Schapire)

Same as SGD, but we pick p = w(t) and update using Stochastic
Gradient in the Exponent

Initialize: w(1) = (1/n, . . . , 1/n)

Update: w
(t+1)
i = 1

Zt
w

(t)
i exp(−η∇̂L(w(t))[i])

The update makes sure that we have some exploration (we never
completely zero components of w)

Regret analysis: it can be show to be order of
(
n log(n)

T

)1/2

EXP3 stands for “Exploration-Exploitation using Exponentiated
Gradient”

Remark: EXP3 works also in the adversarial setting

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 12 / 32

EXP3 (Auer, Cesa-Bianchi, Freund, Schapire)

Same as SGD, but we pick p = w(t) and update using Stochastic
Gradient in the Exponent

Initialize: w(1) = (1/n, . . . , 1/n)

Update: w
(t+1)
i = 1

Zt
w

(t)
i exp(−η∇̂L(w(t))[i])

The update makes sure that we have some exploration (we never
completely zero components of w)

Regret analysis: it can be show to be order of
(
n log(n)

T

)1/2

EXP3 stands for “Exploration-Exploitation using Exponentiated
Gradient”

Remark: EXP3 works also in the adversarial setting

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 12 / 32

EXP3 (Auer, Cesa-Bianchi, Freund, Schapire)

Same as SGD, but we pick p = w(t) and update using Stochastic
Gradient in the Exponent

Initialize: w(1) = (1/n, . . . , 1/n)

Update: w
(t+1)
i = 1

Zt
w

(t)
i exp(−η∇̂L(w(t))[i])

The update makes sure that we have some exploration (we never
completely zero components of w)

Regret analysis: it can be show to be order of
(
n log(n)

T

)1/2

EXP3 stands for “Exploration-Exploitation using Exponentiated
Gradient”

Remark: EXP3 works also in the adversarial setting

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 12 / 32

EXP3 (Auer, Cesa-Bianchi, Freund, Schapire)

Same as SGD, but we pick p = w(t) and update using Stochastic
Gradient in the Exponent

Initialize: w(1) = (1/n, . . . , 1/n)

Update: w
(t+1)
i = 1

Zt
w

(t)
i exp(−η∇̂L(w(t))[i])

The update makes sure that we have some exploration (we never
completely zero components of w)

Regret analysis: it can be show to be order of
(
n log(n)

T

)1/2

EXP3 stands for “Exploration-Exploitation using Exponentiated
Gradient”

Remark: EXP3 works also in the adversarial setting

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 12 / 32

EXP3 (Auer, Cesa-Bianchi, Freund, Schapire)

Same as SGD, but we pick p = w(t) and update using Stochastic
Gradient in the Exponent

Initialize: w(1) = (1/n, . . . , 1/n)

Update: w
(t+1)
i = 1

Zt
w

(t)
i exp(−η∇̂L(w(t))[i])

The update makes sure that we have some exploration (we never
completely zero components of w)

Regret analysis: it can be show to be order of
(
n log(n)

T

)1/2

EXP3 stands for “Exploration-Exploitation using Exponentiated
Gradient”

Remark: EXP3 works also in the adversarial setting

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 12 / 32

EXP3 (Auer, Cesa-Bianchi, Freund, Schapire)

Same as SGD, but we pick p = w(t) and update using Stochastic
Gradient in the Exponent

Initialize: w(1) = (1/n, . . . , 1/n)

Update: w
(t+1)
i = 1

Zt
w

(t)
i exp(−η∇̂L(w(t))[i])

The update makes sure that we have some exploration (we never
completely zero components of w)

Regret analysis: it can be show to be order of
(
n log(n)

T

)1/2

EXP3 stands for “Exploration-Exploitation using Exponentiated
Gradient”

Remark: EXP3 works also in the adversarial setting

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 12 / 32

Upper Confidence Bound (UCB)

Optimism in the face of uncertainty (Lai and Robbins’ 1985)

Using Hoeffding’s inequality, if we pulled arm i for Ni(t) times then:

µi ≤ µ̂i +

√
2 log(T)

Ni(t)
:= UCBi(t)

The UCB rule is to pull the arm that maximizes UCBi(t)

Regret can be shown to be bounded by log(T)
T

∑
i:∆i>0

1
∆i

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 13 / 32

Upper Confidence Bound (UCB)

Optimism in the face of uncertainty (Lai and Robbins’ 1985)

Using Hoeffding’s inequality, if we pulled arm i for Ni(t) times then:

µi ≤ µ̂i +

√
2 log(T)

Ni(t)
:= UCBi(t)

The UCB rule is to pull the arm that maximizes UCBi(t)

Regret can be shown to be bounded by log(T)
T

∑
i:∆i>0

1
∆i

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 13 / 32

Upper Confidence Bound (UCB)

Optimism in the face of uncertainty (Lai and Robbins’ 1985)

Using Hoeffding’s inequality, if we pulled arm i for Ni(t) times then:

µi ≤ µ̂i +

√
2 log(T)

Ni(t)
:= UCBi(t)

The UCB rule is to pull the arm that maximizes UCBi(t)

Regret can be shown to be bounded by log(T)
T

∑
i:∆i>0

1
∆i

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 13 / 32

Upper Confidence Bound (UCB)

Optimism in the face of uncertainty (Lai and Robbins’ 1985)

Using Hoeffding’s inequality, if we pulled arm i for Ni(t) times then:

µi ≤ µ̂i +

√
2 log(T)

Ni(t)
:= UCBi(t)

The UCB rule is to pull the arm that maximizes UCBi(t)

Regret can be shown to be bounded by log(T)
T

∑
i:∆i>0

1
∆i

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 13 / 32

Outline

1 Reinforcement Learning

2 Multi-Armed Bandit
ε-greedy exploration
EXP3
UCB

3 Markov Decision Process (MDP)
Value Iteration
Q-Learning
Deep-Q-Learning
Temporal Abstraction

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 14 / 32

Markov Decision Process (MDP)

The Markovian Assumption:

For every t, st+1 ∼ τ(st, at) where τ is a deterministic function over
S ×A
For every t, rt is a random variable over [0, 1] whose distribution
depends deterministically only on (st, at) and we denote its expected
value by ρ(st, at),

It follows that (st+1, rt) is conditionally independent of
(st−1, at−1), (st−2, at−2), . . . , (s1, a1) given (st, at)

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 15 / 32

MDP — algorithms

Value Iteration: Find the optimal policy when τ and ρ are known

Q-Learning: Find the optimal policy when τ and ρ are not known

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 16 / 32

The Value Function and the Q-Function

The optimal value function is V ∗ : S → R s.t.
V ∗(s) = E

[∑∞
t=1 γ

trt | s1 = s
]

Observe (this is known as Bellman’s Equation:)

V ∗(s) = max
a∈A

[
ρ(s, a) + γ E

s′∼τ(s,a)
V ∗(s′)

]
The objective function in the above maximization problem is called
the optimal action-value function, and is denoted by

Q∗(s, a) = ρ(s, a) + γ E
s′∼τ(s,a)

V ∗(s′) .

corollary: The optimal policy is the greedy policy w.r.t. Q∗, namely,
π∗(s) = argmaxaQ

∗(s, a)

In particular, the optimal at is a deterministic function of st

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 17 / 32

The Value Function and the Q-Function

The optimal value function is V ∗ : S → R s.t.
V ∗(s) = E

[∑∞
t=1 γ

trt | s1 = s
]

Observe (this is known as Bellman’s Equation:)

V ∗(s) = max
a∈A

[
ρ(s, a) + γ E

s′∼τ(s,a)
V ∗(s′)

]

The objective function in the above maximization problem is called
the optimal action-value function, and is denoted by

Q∗(s, a) = ρ(s, a) + γ E
s′∼τ(s,a)

V ∗(s′) .

corollary: The optimal policy is the greedy policy w.r.t. Q∗, namely,
π∗(s) = argmaxaQ

∗(s, a)

In particular, the optimal at is a deterministic function of st

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 17 / 32

The Value Function and the Q-Function

The optimal value function is V ∗ : S → R s.t.
V ∗(s) = E

[∑∞
t=1 γ

trt | s1 = s
]

Observe (this is known as Bellman’s Equation:)

V ∗(s) = max
a∈A

[
ρ(s, a) + γ E

s′∼τ(s,a)
V ∗(s′)

]
The objective function in the above maximization problem is called
the optimal action-value function, and is denoted by

Q∗(s, a) = ρ(s, a) + γ E
s′∼τ(s,a)

V ∗(s′) .

corollary: The optimal policy is the greedy policy w.r.t. Q∗, namely,
π∗(s) = argmaxaQ

∗(s, a)

In particular, the optimal at is a deterministic function of st

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 17 / 32

The Value Function and the Q-Function

The optimal value function is V ∗ : S → R s.t.
V ∗(s) = E

[∑∞
t=1 γ

trt | s1 = s
]

Observe (this is known as Bellman’s Equation:)

V ∗(s) = max
a∈A

[
ρ(s, a) + γ E

s′∼τ(s,a)
V ∗(s′)

]
The objective function in the above maximization problem is called
the optimal action-value function, and is denoted by

Q∗(s, a) = ρ(s, a) + γ E
s′∼τ(s,a)

V ∗(s′) .

corollary: The optimal policy is the greedy policy w.r.t. Q∗, namely,
π∗(s) = argmaxaQ

∗(s, a)

In particular, the optimal at is a deterministic function of st

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 17 / 32

The Value Function and the Q-Function

The optimal value function is V ∗ : S → R s.t.
V ∗(s) = E

[∑∞
t=1 γ

trt | s1 = s
]

Observe (this is known as Bellman’s Equation:)

V ∗(s) = max
a∈A

[
ρ(s, a) + γ E

s′∼τ(s,a)
V ∗(s′)

]
The objective function in the above maximization problem is called
the optimal action-value function, and is denoted by

Q∗(s, a) = ρ(s, a) + γ E
s′∼τ(s,a)

V ∗(s′) .

corollary: The optimal policy is the greedy policy w.r.t. Q∗, namely,
π∗(s) = argmaxaQ

∗(s, a)

In particular, the optimal at is a deterministic function of st

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 17 / 32

Value Iteration

Iterative algorithm for finding V ∗:
Start with some arbitrary V0 and update

Vt+1(s) = max
a∈A

[
ρ(s, a) + γ E

s′∼τ(s,a)
Vt(s

′)

]

Theorem: ‖Vt − V ∗‖∞ ≤ γt ‖V0 − V ∗‖∞
Proof idea:

Define T ∗ : R|S| → R|S| to be the operator s.t. Vt+1 = T ∗(Vt)
Show that T ∗ is a contraction mapping: for any two vector in R|S| we
have ‖T ∗(u)− T ∗(v)‖∞ ≤ γ‖u− v‖∞
The proof follows from Banach’s fixed point theorem

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 18 / 32

Value Iteration

Iterative algorithm for finding V ∗:
Start with some arbitrary V0 and update

Vt+1(s) = max
a∈A

[
ρ(s, a) + γ E

s′∼τ(s,a)
Vt(s

′)

]
Theorem: ‖Vt − V ∗‖∞ ≤ γt ‖V0 − V ∗‖∞

Proof idea:

Define T ∗ : R|S| → R|S| to be the operator s.t. Vt+1 = T ∗(Vt)
Show that T ∗ is a contraction mapping: for any two vector in R|S| we
have ‖T ∗(u)− T ∗(v)‖∞ ≤ γ‖u− v‖∞
The proof follows from Banach’s fixed point theorem

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 18 / 32

Value Iteration

Iterative algorithm for finding V ∗:
Start with some arbitrary V0 and update

Vt+1(s) = max
a∈A

[
ρ(s, a) + γ E

s′∼τ(s,a)
Vt(s

′)

]
Theorem: ‖Vt − V ∗‖∞ ≤ γt ‖V0 − V ∗‖∞
Proof idea:

Define T ∗ : R|S| → R|S| to be the operator s.t. Vt+1 = T ∗(Vt)
Show that T ∗ is a contraction mapping: for any two vector in R|S| we
have ‖T ∗(u)− T ∗(v)‖∞ ≤ γ‖u− v‖∞
The proof follows from Banach’s fixed point theorem

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 18 / 32

Value Iteration

Iterative algorithm for finding V ∗:
Start with some arbitrary V0 and update

Vt+1(s) = max
a∈A

[
ρ(s, a) + γ E

s′∼τ(s,a)
Vt(s

′)

]
Theorem: ‖Vt − V ∗‖∞ ≤ γt ‖V0 − V ∗‖∞
Proof idea:

Define T ∗ : R|S| → R|S| to be the operator s.t. Vt+1 = T ∗(Vt)

Show that T ∗ is a contraction mapping: for any two vector in R|S| we
have ‖T ∗(u)− T ∗(v)‖∞ ≤ γ‖u− v‖∞
The proof follows from Banach’s fixed point theorem

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 18 / 32

Value Iteration

Iterative algorithm for finding V ∗:
Start with some arbitrary V0 and update

Vt+1(s) = max
a∈A

[
ρ(s, a) + γ E

s′∼τ(s,a)
Vt(s

′)

]
Theorem: ‖Vt − V ∗‖∞ ≤ γt ‖V0 − V ∗‖∞
Proof idea:

Define T ∗ : R|S| → R|S| to be the operator s.t. Vt+1 = T ∗(Vt)
Show that T ∗ is a contraction mapping: for any two vector in R|S| we
have ‖T ∗(u)− T ∗(v)‖∞ ≤ γ‖u− v‖∞

The proof follows from Banach’s fixed point theorem

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 18 / 32

Value Iteration

Iterative algorithm for finding V ∗:
Start with some arbitrary V0 and update

Vt+1(s) = max
a∈A

[
ρ(s, a) + γ E

s′∼τ(s,a)
Vt(s

′)

]
Theorem: ‖Vt − V ∗‖∞ ≤ γt ‖V0 − V ∗‖∞
Proof idea:

Define T ∗ : R|S| → R|S| to be the operator s.t. Vt+1 = T ∗(Vt)
Show that T ∗ is a contraction mapping: for any two vector in R|S| we
have ‖T ∗(u)− T ∗(v)‖∞ ≤ γ‖u− v‖∞
The proof follows from Banach’s fixed point theorem

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 18 / 32

Naive Learner

Step 1: Estimate τ and ρ by applying purely random policy

Step 2: Apply Value Iteration to learn the optimal policy

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 19 / 32

Q-Learning

Bellman’s equation for the Q function:

Q∗(s, a) = ρ(s, a) + γ E
s′∼τ(s,a)

max
a′

Q∗(s′, a′)

Given (st, at, st+1, rt), define

δst,at(Q) = Q(st, at)−
(
rt + γmax

a′
Q(st+1, a

′)

)
Initialize Q1 and update

Qt+1(s, a) = Qt(s, a)− ηtδst,at(Qt)1[s = st, a = at]

The above update aims at converging to Bellman’s equation

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 20 / 32

Q-Learning

Bellman’s equation for the Q function:

Q∗(s, a) = ρ(s, a) + γ E
s′∼τ(s,a)

max
a′

Q∗(s′, a′)

Given (st, at, st+1, rt), define

δst,at(Q) = Q(st, at)−
(
rt + γmax

a′
Q(st+1, a

′)

)

Initialize Q1 and update

Qt+1(s, a) = Qt(s, a)− ηtδst,at(Qt)1[s = st, a = at]

The above update aims at converging to Bellman’s equation

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 20 / 32

Q-Learning

Bellman’s equation for the Q function:

Q∗(s, a) = ρ(s, a) + γ E
s′∼τ(s,a)

max
a′

Q∗(s′, a′)

Given (st, at, st+1, rt), define

δst,at(Q) = Q(st, at)−
(
rt + γmax

a′
Q(st+1, a

′)

)
Initialize Q1 and update

Qt+1(s, a) = Qt(s, a)− ηtδst,at(Qt)1[s = st, a = at]

The above update aims at converging to Bellman’s equation

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 20 / 32

Q-Learning

Bellman’s equation for the Q function:

Q∗(s, a) = ρ(s, a) + γ E
s′∼τ(s,a)

max
a′

Q∗(s′, a′)

Given (st, at, st+1, rt), define

δst,at(Q) = Q(st, at)−
(
rt + γmax

a′
Q(st+1, a

′)

)
Initialize Q1 and update

Qt+1(s, a) = Qt(s, a)− ηtδst,at(Qt)1[s = st, a = at]

The above update aims at converging to Bellman’s equation

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 20 / 32

Exploration for Q-Learning

Q-Learning can be applied for any choice of at (it is an “off policy”
learner)

Speed of convergence can be improved if we balance the
exploration-exploitation tradeoff (by one of the methods described
previously)

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 21 / 32

Exploration for Q-Learning

Q-Learning can be applied for any choice of at (it is an “off policy”
learner)

Speed of convergence can be improved if we balance the
exploration-exploitation tradeoff (by one of the methods described
previously)

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 21 / 32

The Curse of Dimensionality

The Q function is a table of size |S| × |A|
This size grows exponentially with the dimensions of S and A

The convergence of the “tabular” Q-learning (namely, maintaing Q is
a table of size |S| × |A|) becomes very slow

We describe two approaches to overcome this problem:

Function Approximation
Temporal Abstractions

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 22 / 32

Function Approximation for Q-Learning

Maintain a parametric hypothesis class of Q functions

Rewrite δ as a function of the parameter θ:

δst,at(θ) = Qθ(st, at)−
(
rt + γmax

a′
Qθt(st+1, a

′)

)
Since we want to minimize 1

2δst,at(θ)
2 we take a gradient step:

θt+1 = θt − ηtδst,at(θt)∇Qθ(st, at)

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 23 / 32

Function Approximation for Q-Learning

Maintain a parametric hypothesis class of Q functions

Rewrite δ as a function of the parameter θ:

δst,at(θ) = Qθ(st, at)−
(
rt + γmax

a′
Qθt(st+1, a

′)

)

Since we want to minimize 1
2δst,at(θ)

2 we take a gradient step:

θt+1 = θt − ηtδst,at(θt)∇Qθ(st, at)

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 23 / 32

Function Approximation for Q-Learning

Maintain a parametric hypothesis class of Q functions

Rewrite δ as a function of the parameter θ:

δst,at(θ) = Qθ(st, at)−
(
rt + γmax

a′
Qθt(st+1, a

′)

)
Since we want to minimize 1

2δst,at(θ)
2 we take a gradient step:

θt+1 = θt − ηtδst,at(θt)∇Qθ(st, at)

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 23 / 32

Deep-Q-Learning

Used by DeepMind to learn to play Atari games

Let Qθ : S → R|A| be a deep network, where we take S ⊂ Rd and
assume that |A| is not too larger

Exploration: ε-greedy

Memory replay: After executing at and observing rt, st+1 we store the
example (st, at, rt, st+1) in a database. Instead of updating just based
on the last example, update based on a mini-batch of random
examples from the database

Freezing Q: Every C step, freeze the value of Qθ and denote it by Q̂.
Then, redefine δ to be

δst,at(θ) = Qθ(st, at)−
(
rt + γmax

a′
Q̂(st+1, a

′)

)
This has some stabilization effect on the algorithm

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 24 / 32

Deep-Q-Learning

Used by DeepMind to learn to play Atari games

Let Qθ : S → R|A| be a deep network, where we take S ⊂ Rd and
assume that |A| is not too larger

Exploration: ε-greedy

Memory replay: After executing at and observing rt, st+1 we store the
example (st, at, rt, st+1) in a database. Instead of updating just based
on the last example, update based on a mini-batch of random
examples from the database

Freezing Q: Every C step, freeze the value of Qθ and denote it by Q̂.
Then, redefine δ to be

δst,at(θ) = Qθ(st, at)−
(
rt + γmax

a′
Q̂(st+1, a

′)

)
This has some stabilization effect on the algorithm

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 24 / 32

Deep-Q-Learning

Used by DeepMind to learn to play Atari games

Let Qθ : S → R|A| be a deep network, where we take S ⊂ Rd and
assume that |A| is not too larger

Exploration: ε-greedy

Memory replay: After executing at and observing rt, st+1 we store the
example (st, at, rt, st+1) in a database. Instead of updating just based
on the last example, update based on a mini-batch of random
examples from the database

Freezing Q: Every C step, freeze the value of Qθ and denote it by Q̂.
Then, redefine δ to be

δst,at(θ) = Qθ(st, at)−
(
rt + γmax

a′
Q̂(st+1, a

′)

)
This has some stabilization effect on the algorithm

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 24 / 32

Deep-Q-Learning

Used by DeepMind to learn to play Atari games

Let Qθ : S → R|A| be a deep network, where we take S ⊂ Rd and
assume that |A| is not too larger

Exploration: ε-greedy

Memory replay: After executing at and observing rt, st+1 we store the
example (st, at, rt, st+1) in a database. Instead of updating just based
on the last example, update based on a mini-batch of random
examples from the database

Freezing Q: Every C step, freeze the value of Qθ and denote it by Q̂.
Then, redefine δ to be

δst,at(θ) = Qθ(st, at)−
(
rt + γmax

a′
Q̂(st+1, a

′)

)
This has some stabilization effect on the algorithm

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 24 / 32

Deep-Q-Learning

Used by DeepMind to learn to play Atari games

Let Qθ : S → R|A| be a deep network, where we take S ⊂ Rd and
assume that |A| is not too larger

Exploration: ε-greedy

Memory replay: After executing at and observing rt, st+1 we store the
example (st, at, rt, st+1) in a database. Instead of updating just based
on the last example, update based on a mini-batch of random
examples from the database

Freezing Q: Every C step, freeze the value of Qθ and denote it by Q̂.
Then, redefine δ to be

δst,at(θ) = Qθ(st, at)−
(
rt + γmax

a′
Q̂(st+1, a

′)

)
This has some stabilization effect on the algorithm

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 24 / 32

Intuition: Structuring a State Space

Consider some state space S ⊂ Rd

Suppose we partition it to S = S1 ·∪ S2 ·∪ . . . ·∪ Sk
Assuming homogenous actions within each Si, we can apply Q
learning while using [k] as a new state space

One can think of Deep-Q-Learning as automatically finding the
partition (the first layers of the network)

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 25 / 32

Temporal Abstraction

Decisions are often structured into sub-tasks with a broad range of
time scale. E.g.:

Task: Call a taxi
Step 1: finding my phone
Step 2: finding the number
Step 3: dialing the first digit
. . .
Step 20: commanding my finger muscle to move into the right place ...

Options: (Sutton, Precup, Singh)
An option is a pair (π, β) where

π : S → A is the policy to apply while within the “option”
β : S → [0, 1] is a stochastic termination function

Instead of directly choosing actions, the agent picks an option ot ∈ O,
and this option is applied until it terminates
That is, we should learn a policy over options, µ : S → O
We can learn µ similarly to how we learn a vanilla policy, and the
advantage is that mt may be easier to pick O than picking A

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 26 / 32

Temporal Abstraction

Decisions are often structured into sub-tasks with a broad range of
time scale. E.g.:

Task: Call a taxi
Step 1: finding my phone
Step 2: finding the number
Step 3: dialing the first digit
. . .
Step 20: commanding my finger muscle to move into the right place ...

Options: (Sutton, Precup, Singh)
An option is a pair (π, β) where

π : S → A is the policy to apply while within the “option”
β : S → [0, 1] is a stochastic termination function

Instead of directly choosing actions, the agent picks an option ot ∈ O,
and this option is applied until it terminates
That is, we should learn a policy over options, µ : S → O
We can learn µ similarly to how we learn a vanilla policy, and the
advantage is that mt may be easier to pick O than picking A

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 26 / 32

Temporal Abstraction

Decisions are often structured into sub-tasks with a broad range of
time scale. E.g.:

Task: Call a taxi
Step 1: finding my phone
Step 2: finding the number
Step 3: dialing the first digit
. . .
Step 20: commanding my finger muscle to move into the right place ...

Options: (Sutton, Precup, Singh)
An option is a pair (π, β) where

π : S → A is the policy to apply while within the “option”
β : S → [0, 1] is a stochastic termination function

Instead of directly choosing actions, the agent picks an option ot ∈ O,
and this option is applied until it terminates
That is, we should learn a policy over options, µ : S → O

We can learn µ similarly to how we learn a vanilla policy, and the
advantage is that mt may be easier to pick O than picking A

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 26 / 32

Temporal Abstraction

Decisions are often structured into sub-tasks with a broad range of
time scale. E.g.:

Task: Call a taxi
Step 1: finding my phone
Step 2: finding the number
Step 3: dialing the first digit
. . .
Step 20: commanding my finger muscle to move into the right place ...

Options: (Sutton, Precup, Singh)
An option is a pair (π, β) where

π : S → A is the policy to apply while within the “option”
β : S → [0, 1] is a stochastic termination function

Instead of directly choosing actions, the agent picks an option ot ∈ O,
and this option is applied until it terminates
That is, we should learn a policy over options, µ : S → O
We can learn µ similarly to how we learn a vanilla policy, and the
advantage is that mt may be easier to pick O than picking A

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 26 / 32

Limitations of MDPs

The Markovian assumption is mathematically convenient but rarely
holds in practice

POMDP = Partially Observed MDP: There is a hidden Markovian
state, but we only observe a view that depends on it

Another approach is “direct policy search”, that do not necessarily
rely on the Markovian assumption.

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 27 / 32

Summary

Reinforcement Learning is a powerful and useful learning setting, but
is much harder than Supervised Learning

The Exploration-Exploitation Tradeoff

MDP: Connecting the future rewards to current actions using a
Markovian assumption

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 28 / 32

Appendix

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 29 / 32

Stationary Distribution of an MDP

A MDP and a deterministic policy function π induces a Markov chain
over S, because P[st+1|st, at, . . . , s1, a1] = P[st+1|st]
The stationary distribution over S is the probability vector q such that
qs = limT→∞

1
T

∑T
t=1 1[st = s]

We have that qs =
∑

s′ qs′ P[s|s′]
We have RT (π)→

∑
s qsρs where ρs = (s, π(s))

Using P to denote the matrix s.t. Ps,s′ = P[s|s′], we obtain that the
average reward is the solution of the following Linear Program (LP):

min
q
〈q,−ρ〉 s.t. q ≥ 0, 〈q, 1〉 = 1, (P − I)q = 0

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 30 / 32

The Dual Problem and the Value Function

Primal

min
q∈R|S|

〈q,−ρ〉 s.t. q ≥ 0, 〈q, 1〉 = 1, (P − I)q = 0

Dual: define A = [(P> − I),1]

max
v∈R|S|+1

〈v, [0, . . . , 0, 1]〉 s.t. Av ≤ −ρ

Equivalently:

max
v∈R|S|,β∈R

β s.t. β ≤ −ρ+ (I − P>)v = v − [ρ+ P>v]

Equivalently (since at the optimum, β = mins[vs − (ρs + (P>v)s)])

max
v∈R|S|

min
s

[vs − (ρs + (P>v)s)]

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 31 / 32

Solution

Assumption: rewards are ≥ 0

Claim: If there’s a solution to (I − P>)v = ρ, then it is an optimal
solution for which β = 0

Proof: For any v, choose s s.t. vs is minimal, then (P>v)s ≥ vs,
because the rows of P> are probabilities vector. Since ρs ≥ 0, we
have that for this s, vs − (ρs + (P>v)s) ≤ 0, so β ≤ 0, which
concludes our proof.

Shai Shalev-Shwartz (Hebrew U) IML Lecture RL RL 32 / 32

	Reinforcement Learning
	Multi-Armed Bandit
	-greedy exploration
	EXP3
	UCB

	Markov Decision Process (MDP)
	Value Iteration
	Q-Learning
	Deep-Q-Learning
	Temporal Abstraction

	Appendix

