The Duality of Strong Convexity and Strong Smoothness Applications to Machine Learning

Shai Shalev-Shwartz

Toyota Technological Institute at Chicago

Talk at AFOSR workshop, January, 2009

January 2009

Outline

Lemma

f is strongly convex w.r.t. $\|\cdot\| \Longleftrightarrow f^{\star}$ is strongly smooth w.r.t. $\|\cdot\|_{\star}$

Applications:

- Rademacher Bounds (\Rightarrow Generalization Bounds)

Outline

Lemma

f is strongly convex w.r.t. $\|\cdot\| \Longleftrightarrow f^{\star}$ is strongly smooth w.r.t. $\|\cdot\|_{\star}$

Applications:

- Rademacher Bounds (\Rightarrow Generalization Bounds)
- Low regret online algorithms (\Rightarrow runtime of SGD/SMD)

Outline

Lemma

f is strongly convex w.r.t. $\|\cdot\| \Longleftrightarrow f^{\star}$ is strongly smooth w.r.t. $\|\cdot\|_{\star}$

Applications:

- Rademacher Bounds (\Rightarrow Generalization Bounds)
- Low regret online algorithms (\Rightarrow runtime of SGD/SMD)
- Boosting

Outline

Lemma

f is strongly convex w.r.t. $\|\cdot\| \Longleftrightarrow f^{\star}$ is strongly smooth w.r.t. $\|\cdot\|_{\star}$

Applications:

- Rademacher Bounds (\Rightarrow Generalization Bounds)
- Low regret online algorithms (\Rightarrow runtime of SGD/SMD)
- Boosting
- Sparsity and ℓ_{1} norm

Outline

Lemma

f is strongly convex w.r.t. $\|\cdot\| \Longleftrightarrow f^{\star}$ is strongly smooth w.r.t. $\|\cdot\|_{\star}$

Applications:

- Rademacher Bounds (\Rightarrow Generalization Bounds)
- Low regret online algorithms (\Rightarrow runtime of SGD/SMD)
- Boosting
- Sparsity and ℓ_{1} norm
- Concentration inequalities

Outline

Lemma

f is strongly convex w.r.t. $\|\cdot\| \Longleftrightarrow f^{\star}$ is strongly smooth w.r.t. $\|\cdot\|_{\star}$

Applications:

- Rademacher Bounds (\Rightarrow Generalization Bounds)
- Low regret online algorithms (\Rightarrow runtime of SGD/SMD)
- Boosting
- Sparsity and ℓ_{1} norm
- Concentration inequalities
- Matrix regularization (Multi-task, group Lasso, dynamic bounds)

Motivating Problem - Generalization Bounds

- Linear predictor is a mapping $\mathbf{x} \mapsto \phi(\langle\mathbf{w}, \mathbf{x}\rangle)$
- E.g. $\mathbf{x} \mapsto\langle\mathbf{w}, \mathbf{x}\rangle$ or $\mathbf{x} \mapsto \operatorname{sgn}(\langle\mathbf{w}, \mathbf{x}\rangle)$
- Loss of \mathbf{w} on (\mathbf{x}, y) is assessed by $\ell(\langle\mathbf{w}, \mathbf{x}\rangle, y)$
- Goal: minimize expected loss $L(\mathbf{w})=\mathbb{E}_{(\mathbf{x}, y)}[\ell(\langle\mathbf{w}, \mathbf{x}\rangle, y)]$
- Instead, minimize empirical loss $\hat{L}(\mathbf{w})=\frac{1}{n} \sum_{i=1}^{n} \ell\left(\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle, y_{i}\right)$
- Bartlett and Mendelson [2002]:

If ℓ Lipschitz and bounded, w.p. at least $1-\delta$

$$
\forall \mathbf{w} \in S, \quad L(\mathbf{w}) \leq \hat{L}(\mathbf{w})+\frac{2}{n} \mathcal{R}_{n}(S)+\sqrt{\frac{\log (1 / \delta)}{2 n}}
$$

where

$$
\mathcal{R}_{n}(S) \stackrel{\text { def }}{=} \underset{\underset{\epsilon}{\mathrm{iid}} \sim\{ \pm 1\}^{n}}{ }\left[\sup _{\mathbf{u} \in S} \sum_{i=1}^{n} \epsilon_{i}\left\langle\mathbf{u}, \mathbf{x}_{i}\right\rangle\right]
$$

Background - Fenchel Conjugate

Two equivalent representations of a convex function

Set of Points

Set of Tangents

Background - Fenchel Conjugate

Two equivalent representations of a convex function

Set of Points

Set of Tangents

Background - Fenchel Conjugate

Two equivalent representations of a convex function
Point $(\mathbf{w}, f(\mathbf{w}))$
Tangent $\left(\boldsymbol{\theta},-f^{\star}(\boldsymbol{\theta})\right)$

Background - Fenchel Conjugate

Two equivalent representations of a convex function
Point $(\mathbf{w}, f(\mathbf{w}))$
Tangent $\left(\boldsymbol{\theta},-f^{\star}(\boldsymbol{\theta})\right)$

Background - Fenchel Conjugate

- The definition immediately implies Fenchel-Young inequality:

$$
\begin{aligned}
\forall \mathbf{u}, \quad f^{\star}(\boldsymbol{\theta}) & =\max _{\mathbf{w}}\langle\mathbf{w}, \boldsymbol{\theta}\rangle-f(\mathbf{w}) \\
& \geq\langle\mathbf{u}, \boldsymbol{\theta}\rangle-f(\mathbf{u})
\end{aligned}
$$

Background - Fenchel Conjugate

- The definition immediately implies Fenchel-Young inequality:

$$
\begin{aligned}
\forall \mathbf{u}, \quad f^{\star}(\boldsymbol{\theta}) & =\max _{\mathbf{w}}\langle\mathbf{w}, \boldsymbol{\theta}\rangle-f(\mathbf{w}) \\
& \geq\langle\mathbf{u}, \boldsymbol{\theta}\rangle-f(\mathbf{u})
\end{aligned}
$$

- If f is closed and convex then $f^{\star \star}=f$

Background - Fenchel Conjugate

- The definition immediately implies Fenchel-Young inequality:

$$
\begin{aligned}
\forall \mathbf{u}, \quad f^{\star}(\boldsymbol{\theta}) & =\max _{\mathbf{w}}\langle\mathbf{w}, \boldsymbol{\theta}\rangle-f(\mathbf{w}) \\
& \geq\langle\mathbf{u}, \boldsymbol{\theta}\rangle-f(\mathbf{u})
\end{aligned}
$$

- If f is closed and convex then $f^{\star \star}=f$
- By the way, this implies Jensen's inequality:

$$
\begin{aligned}
f(\mathbb{E}[\mathbf{w}]) & =\max _{\boldsymbol{\theta}}\langle\boldsymbol{\theta}, \mathbb{E}[\mathbf{w}]\rangle-f^{\star}(\boldsymbol{\theta}) \\
& =\max _{\boldsymbol{\theta}} \mathbb{E}\left[\langle\boldsymbol{\theta}, \mathbf{w}\rangle-f^{\star}(\boldsymbol{\theta})\right] \\
& \leq \mathbb{E}\left[\max _{\boldsymbol{\theta}}\langle\boldsymbol{\theta}, \mathbf{w}\rangle-f^{\star}(\boldsymbol{\theta})\right]=\mathbb{E}[f(\mathbf{w})]
\end{aligned}
$$

Background - Fenchel Conjugate

Examples:

$f(\mathbf{w})$	$f^{\star}(\boldsymbol{\theta})$				
$\frac{1}{2}\\|\mathbf{w}\\|^{2}$	$\frac{1}{2}\\|\boldsymbol{\theta}\\|_{\star}^{2}$				
$\\|\mathbf{w}\\|$	Indicator of unit $\\|\cdot\\|_{\star}$ ball				
$\sum_{i} w_{i} \log \left(w_{i}\right)$	$\log \left(\sum_{i} e^{\theta_{i}}\right)$				
Indicator of prob. simplex	$\max _{i} \theta_{i}$				
$c g(\mathbf{w})$ for $c>0$	$c g^{\star}(\boldsymbol{\theta} / c)$				
$\inf _{\mathbf{x}} g_{1}(\mathbf{w})+g_{2}(\mathbf{w}-\mathbf{x})$	$g_{1}^{\star}(\boldsymbol{\theta})+g_{2}^{\star}(\boldsymbol{\theta})$				

Background - Fenchel Conjugate

Examples:

	$f(\mathbf{w})$		
	$\frac{1}{2}\\|\mathbf{w}\\|^{2}$		
	$\\|\mathbf{w}\\|$		
	$\sum_{i} w_{i} \log \left(w_{i}\right)$		
\Rightarrow	Indicator of unit $\\|\cdot\\|_{\star}$ ball		
$\Rightarrow \quad$	$\log \left(\sum_{i} e^{\theta_{i}}\right)$		
	Indicator of prob. simplex		
	$c g(\mathbf{w})$ for $c>0$		
$\inf _{\mathbf{x}} g_{1}(\mathbf{w})+g_{2}(\mathbf{w}-\mathbf{x})$	$c g^{\star}(\boldsymbol{\theta} / c)$		
	$g_{1}^{\star}(\boldsymbol{\theta})+g_{2}^{\star}(\boldsymbol{\theta})$		

(used for boosting)

Background - Fenchel Conjugate

Examples:

$f(\mathbf{w})$	$f^{\star}(\boldsymbol{\theta})$				
	$\frac{1}{2}\\|\mathbf{w}\\|^{2}$				
$\\|\mathbf{w}\\|$	$\frac{1}{2}\\|\boldsymbol{\theta}\\|_{\star}^{2}$				
	$\sum_{i} w_{i} \log \left(w_{i}\right)$				
Indicator of unit $\\|\cdot\\|_{\star}$ ball					
	$\log \left(\sum_{i} e^{\theta_{i}}\right)$				
	$\max _{i} \theta_{i}$				
	$c g(\mathbf{w})$ for $c>0$				
$\inf _{\mathbf{x}} g_{1}(\mathbf{w})+g_{2}(\mathbf{w}-\mathbf{x})$	$c g^{\star}(\boldsymbol{\theta} / c)$				
	$g_{1}^{\star}(\boldsymbol{\theta})+g_{2}^{\star}(\boldsymbol{\theta})$				

(infimal convolution theorem)

f is strongly convex $\Longleftrightarrow f^{\star}$ is strongly smooth

The following properties are equivalent:

- $f(\mathbf{w})$ is σ-strongly convex w.r.t. $\|\cdot\|$
- $f^{\star}(\mathbf{w})$ is $\frac{1}{\sigma}$-strongly smooth w.r.t. $\|\cdot\|_{\star}$

f is strongly convex $\Longleftrightarrow f^{\star}$ is strongly smooth

The following properties are equivalent:

- $f(\mathbf{w})$ is σ-strongly convex w.r.t. $\|\cdot\|$, that is

$$
\forall \mathbf{w}, \mathbf{u}, \boldsymbol{\theta} \in \partial f(\mathbf{u}), \quad f(\mathbf{w})-f(\mathbf{u})-\langle\boldsymbol{\theta}, \mathbf{w}-\mathbf{u}\rangle \geq \frac{\sigma}{2}\|\mathbf{u}-\mathbf{w}\|^{2} .
$$

- $f^{\star}(\mathbf{w})$ is $\frac{1}{\sigma}$-strongly smooth w.r.t. $\|\cdot\|_{\star}$

f is strongly convex $\Longleftrightarrow f^{\star}$ is strongly smooth

The following properties are equivalent:

- $f(\mathbf{w})$ is σ-strongly convex w.r.t. $\|\cdot\|$, that is

$$
\forall \mathbf{w}, \mathbf{u}, \boldsymbol{\theta} \in \partial f(\mathbf{u}), \quad f(\mathbf{w})-f(\mathbf{u})-\langle\boldsymbol{\theta}, \mathbf{w}-\mathbf{u}\rangle \geq \frac{\sigma}{2}\|\mathbf{u}-\mathbf{w}\|^{2} .
$$

- $f^{\star}(\mathbf{w})$ is $\frac{1}{\sigma}$-strongly smooth w.r.t. $\|\cdot\|_{\star}$, that is

$$
\forall \mathbf{w}, \mathbf{u}, \quad f^{\star}(\mathbf{w})-f^{\star}(\mathbf{u})-\left\langle\nabla f^{\star}(\mathbf{u}), \mathbf{w}-\mathbf{u}\right\rangle \leq \frac{1}{2 \sigma}\|\mathbf{u}-\mathbf{w}\|_{\star}^{2}
$$

f is strongly convex $\Longleftrightarrow f^{\star}$ is strongly smooth

Examples:

$f(\mathbf{w})$	$f^{\star}(\boldsymbol{\theta})$	w.r.t. norm	σ						
$\frac{1}{2}\\|\mathbf{w}\\|_{2}^{2}$	$\frac{1}{2}\\|\boldsymbol{\theta}\\|_{2}^{2}$	$\\|\cdot\\|_{2}$	1						

f is strongly convex $\Longleftrightarrow f^{\star}$ is strongly smooth

Examples:

$f(\mathbf{w})$	$f^{\star}(\boldsymbol{\theta})$	w.r.t. norm	σ						
$\frac{1}{2}\\|\mathbf{w}\\|_{2}^{2}$	$\frac{1}{2}\\|\boldsymbol{\theta}\\|_{2}^{2}$	$\\|\cdot\\|_{2}$	1						
$\frac{1}{2}\\|\mathbf{w}\\|_{q}^{2}$	$\frac{1}{2}\\|\boldsymbol{\theta}\\|_{p}^{2}$	$\\|\cdot\\|_{q}$	$(q-1)$						

(where $q \in(1,2]$ and $\frac{1}{q}+\frac{1}{p}=1$)

f is strongly convex $\Longleftrightarrow f^{\star}$ is strongly smooth

Examples:

$f(\mathbf{w})$	$f^{\star}(\boldsymbol{\theta})$	w.r.t. norm	σ						
$\frac{1}{2}\\|\mathbf{w}\\|_{2}^{2}$	$\frac{1}{2}\\|\boldsymbol{\theta}\\|_{2}^{2}$	$\\|\cdot\\|_{2}$	1						
$\frac{1}{2}\\|\mathbf{w}\\|_{q}^{2}$	$\frac{1}{2}\\|\boldsymbol{\theta}\\|_{p}^{2}$	$\\|\cdot\\|_{q}$	$(q-1)$						
$\sum_{i} w_{i} \log \left(w_{i}\right)$	$\log \left(\sum_{i} e^{\theta_{i}}\right)$	$\\|\cdot\\|_{1}$	1						

Importance

Theorem (1)

Let

- f be σ strongly convex w.r.t. $\|\cdot\|$
- Assume $f^{\star}(\mathbf{0})=0$ (for simplicity)
- $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ be arbitrary sequence of vectors
- Denote $\mathbf{w}_{t}=\nabla f^{\star}\left(\sum_{j<t} \mathbf{v}_{j}\right)$

Then, for any u we have

$$
\sum_{t}\left\langle\mathbf{u}, \mathbf{v}_{t}\right\rangle-f(\mathbf{u}) \leq f^{\star}\left(\sum_{t} \mathbf{v}_{t}\right) \leq \sum_{t}\left(\left\langle\mathbf{w}_{t}, \mathbf{v}_{t}\right\rangle+\frac{1}{2 \sigma}\left\|\mathbf{v}_{t}\right\|_{\star}^{2}\right)
$$

Importance

Theorem (1)

Let

- f be σ strongly convex w.r.t. $\|\cdot\|$
- Assume $f^{\star}(\mathbf{0})=0$ (for simplicity)
- $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ be arbitrary sequence of vectors
- Denote $\mathbf{w}_{t}=\nabla f^{\star}\left(\sum_{j<t} \mathbf{v}_{j}\right)$

Then, for any \mathbf{u} we have

$$
\sum_{t}\left\langle\mathbf{u}, \mathbf{v}_{t}\right\rangle-f(\mathbf{u}) \leq f^{\star}\left(\sum_{t} \mathbf{v}_{t}\right) \leq \sum_{t}\left(\left\langle\mathbf{w}_{t}, \mathbf{v}_{t}\right\rangle+\frac{1}{2 \sigma}\left\|\mathbf{v}_{t}\right\|_{\star}^{2}\right)
$$

Proof.

The first inequality is Fenchel-Young and the second inequality follows from the $\frac{1}{\sigma}$ smoothness of f^{\star} by induction.

Back to Rademacher Complexities

- Theorem 1:

$$
\sum_{t}\left\langle\mathbf{u}, \mathbf{v}_{t}\right\rangle-f(\mathbf{u}) \leq \sum_{t}\left(\left\langle\mathbf{w}_{t}, \mathbf{v}_{t}\right\rangle+\frac{1}{2 \sigma}\left\|\mathbf{v}_{t}\right\|_{\star}^{2}\right)
$$

Back to Rademacher Complexities

- Theorem 1 :

$$
\sum_{t}\left\langle\mathbf{u}, \mathbf{v}_{t}\right\rangle-f(\mathbf{u}) \leq \sum_{t}\left(\left\langle\mathbf{w}_{t}, \mathbf{v}_{t}\right\rangle+\frac{1}{2 \sigma}\left\|\mathbf{v}_{t}\right\|_{\star}^{2}\right)
$$

- Therefore, for all S :

$$
\sup _{\mathbf{u} \in S} \sum_{t}\left\langle\mathbf{u}, \mathbf{v}_{t}\right\rangle \leq \frac{1}{2 \sigma} \sum_{t}\left\|\mathbf{v}_{t}\right\|_{\star}^{2}+\sup _{\mathbf{u} \in S} f(\mathbf{u})+\sum_{t}\left\langle\mathbf{w}_{t}, \mathbf{v}_{t}\right\rangle
$$

Based on Kakade, Sridharan, Tewari [2008]

Back to Rademacher Complexities

- Theorem 1 :

$$
\sum_{t}\left\langle\mathbf{u}, \mathbf{v}_{t}\right\rangle-f(\mathbf{u}) \leq \sum_{t}\left(\left\langle\mathbf{w}_{t}, \mathbf{v}_{t}\right\rangle+\frac{1}{2 \sigma}\left\|\mathbf{v}_{t}\right\|_{\star}^{2}\right)
$$

- Therefore, for all S :

$$
\sup _{\mathbf{u} \in S} \sum_{t}\left\langle\mathbf{u}, \mathbf{v}_{t}\right\rangle \leq \frac{1}{2 \sigma} \sum_{t}\left\|\mathbf{v}_{t}\right\|_{\star}^{2}+\sup _{\mathbf{u} \in S} f(\mathbf{u})+\sum_{t}\left\langle\mathbf{w}_{t}, \mathbf{v}_{t}\right\rangle
$$

- Applying with $\mathbf{v}_{t}=\epsilon_{t} \mathbf{x}_{t}$ and taking expectation we obtain:

$$
\mathcal{R}_{n}(S) \leq \frac{1}{2 \sigma} \sum_{t} \mathbb{E}\left[\epsilon_{t}^{2}\right]\left\|\mathbf{x}_{t}\right\|_{\star}^{2}+\sup _{\mathbf{u} \in S} f(\mathbf{u})+\underbrace{\mathbb{E}\left[\sum_{t}\left\langle\mathbf{w}_{t}, \epsilon_{t} \mathbf{x}_{t}\right\rangle\right]}_{=0}
$$

Based on Kakade, Sridharan, Tewari [2008]

Rademacher Bounds - Examples

S	$f(\mathbf{w})$	X	$R_{n}(S)$						
$\left\{\mathbf{w}:\\|\mathbf{w}\\|_{2} \leq W\right\}$	$\frac{\sigma}{2}\\|\mathbf{w}\\|_{2}^{2}$	$\frac{\sum_{i}\left\\|\mathbf{x}_{i}\right\\|_{2}^{2}}{n}$	$X W \sqrt{n}$						

Rademacher Bounds - Examples

S	$f(\mathbf{w})$	X	$R_{n}(S)$						
$\left\{\mathbf{w}:\\|\mathbf{w}\\|_{2} \leq W\right\}$	$\frac{\sigma}{2}\\|\mathbf{w}\\|_{2}^{2}$	$\frac{\sum_{i}\left\\|\mathbf{x}_{i}\right\\|_{2}^{2}}{n}$	$X W \sqrt{n}$						
$\left\{\mathbf{w}:\\|\mathbf{w}\\|_{q} \leq W\right\}$	$\frac{\sigma}{2}\\|\mathbf{w}\\|_{q}^{2}$	$\frac{\sum_{i}\left\\|\mathbf{x}_{i}\right\\|_{p}^{2}}{n}$	$X W \sqrt{(p-1) n}$						

Rademacher Bounds - Examples

S	$f(\mathbf{w})$	X	$R_{n}(S)$						
$\left\{\mathbf{w}:\\|\mathbf{w}\\|_{2} \leq W\right\}$	$\frac{\sigma}{2}\\|\mathbf{w}\\|_{2}^{2}$	$\frac{\sum_{i}\left\\|\mathbf{x}_{i}\right\\|_{2}^{2}}{n}$	$X W \sqrt{n}$						
$\left\{\mathbf{w}:\\|\mathbf{w}\\|_{q} \leq W\right\}$	$\frac{\sigma}{2}\\|\mathbf{w}\\|_{q}^{2}$	$\frac{\sum_{i}\left\\|\mathbf{x}_{i}\right\\|_{p}^{2}}{n}$	$X W \sqrt{(p-1) n}$						
Prob. simplex	$\sigma \sum_{i} w_{i} \log \left(d w_{i}\right)$	$\frac{\sum_{i}\left\\|\mathbf{x}_{i}\right\\|_{\infty}^{2}}{n}$	$X \sqrt{\log (d) n}$						

Intermediate Summary

$$
f \text { strongly convex } \Longleftrightarrow f^{\star} \text { smooth }
$$

Fenchel-Young

Theorem 1
zero-mean

Coming Next ...

Online Learning - Brief Background

- Studied in game theory, information theory, and machine learning
- Examples:
- Repeated 2-players games (Hannan [57], Blackwell [56])
- Predicting with side information (Rosenblatt's Perceptron [58], Weighted Majority of Littlestone and Warmuth [88,94])
- Predicting of individual sequences (Cover [78], Feder, Merhav and Gutman [92])
- Online convex optimization - a general abstract prediction model (Gordon [99], Zinkevich [03])
- Using our lemma, we can easily derived optimal low regret algorithms

Online Learning

Prediction Game - Online Optimization

For $t=1, \ldots, n$

- Learner chooses a decision $\mathbf{w}_{t} \in S$
- Environment chooses a loss function $\ell_{t}: S \rightarrow \mathbb{R}$
- Learner pays loss $\ell_{t}\left(\mathbf{w}_{t}\right)$
- Regret of learner for not always following the best decision in S

$$
\sum_{t=1}^{n} \ell_{t}\left(\mathbf{w}_{t}\right)-\min _{\mathbf{u} \in S} \sum_{t=1}^{n} \ell_{t}(\mathbf{u})
$$

- Goal: Conditions on S and loss functions that guarantee low regret learning strategy

Online Learning

- Assume $f \sigma$-strongly convex on S w.r.t. $\|\cdot\|$
- Recall Theorem 1: For $\mathbf{w}_{t}=\nabla f^{\star}\left(\sum_{j<t} \mathbf{v}_{j}\right)$ we have

$$
\sum_{t}\left\langle\mathbf{u}-\mathbf{w}_{t}, \mathbf{v}_{t}\right\rangle \leq f(\mathbf{u})+\frac{1}{2 \sigma} \sum_{t}\left\|\mathbf{v}_{t}\right\|_{\star}^{2}
$$

- Assume ℓ_{t} convex and apply with $\mathbf{v}_{t} \in \partial \ell_{t}\left(\mathbf{w}_{t}\right)$, thus

$$
\ell_{t}\left(\mathbf{w}_{t}\right)-\ell_{t}(\mathbf{u}) \leq\left\langle\mathbf{u}-\mathbf{w}_{t}, \mathbf{v}_{t}\right\rangle
$$

- Assume ℓ_{t} Lipschitz w.r.t. dual norm, thus $\left\|\mathbf{v}_{t}\right\|_{\star} \leq V$
- We obtain the regret bound (S. and Singer [06]):

$$
\sum_{t=1}^{n} \ell_{t}\left(\mathbf{w}_{t}\right)-\min _{\mathbf{u} \in S} \sum_{t=1}^{n} \ell_{t}(\mathbf{u}) \leq \max _{\mathbf{u} \in S} f(\mathbf{u})+\frac{n V^{2}}{2 \sigma}
$$

Online Learning - Example I

Predicting the next bit of a sequence

For $t=1, \ldots, n$

- Learner predict $\hat{y}_{t} \in\{0,1\}$
- Environment responds with $y_{t} \in\{0,1\}$
- Learner pays 1 if $\hat{y}_{t} \neq y_{t}$

Modeling:

- $S=[0,1], f(w)=\frac{\sigma}{2} w^{2}, \sigma=\sqrt{n}$
- Predict $\hat{y}_{t}=1$ with probability $w_{t} \in S$
- Then, probability of $\hat{y}_{t} \neq y_{t}$ is $\ell_{t}\left(w_{t}\right)=\left|y_{t}-w_{t}\right|$, which is convex
- The expected regret is thus bounded by \sqrt{n}

Online Learning - Example II

Predicting with expert advice

For $t=1, \ldots, n$

- Learner receives a vector $\mathbf{x}_{t} \in[0,1]^{d}$ of experts advice
- Learner need to predict $\hat{y}_{t} \in\{0,1\}$
- Environment responds with $y_{t} \in\{0,1\}$
- Learner pays 1 if $\hat{y}_{t} \neq y_{t}$

Modeling:

- S is d dimensional probability simplex, $f(\mathbf{w})=\sigma \sum_{i} w_{i} \log \left(w_{i}\right)$, $\sigma=\sqrt{n / \log (d)}$
- Predict $\hat{y}_{t}=1$ with probability $\left\langle\mathbf{w}_{t}, \mathbf{x}_{t}\right\rangle$
- Then, probability of $\hat{y}_{t} \neq y_{t}$ is $\ell_{t}\left(w_{t}\right)=\left|y_{t}-\left\langle w_{t}, \mathbf{x}_{t}\right\rangle\right|$, which is convex
- The expected regret is thus bounded by $\sqrt{\log (d) n}$

Optimization from a Machine Learning Perspective

- Assume we'd like to solve regularized loss minimization:

$$
\min _{\mathbf{w}} f(\mathbf{w})+\frac{1}{n} \sum_{i=1}^{n} \ell\left(\mathbf{w}, \mathbf{z}_{i}\right)
$$

- Stochastic Mirror Descent
- At each step, sample i uniformly at random and feed an online learner the loss $\ell_{t}(\mathbf{w})=\ell\left(\mathbf{w}, \mathbf{z}_{i}\right)$
- Return averaged \mathbf{w}_{t} of the online learner
- Number of iterations required to achieve accuracy ϵ is order of sample complexity !
- Optimality (S. and Srebro [08])

Intermediate Summary

Coming Next ...

Boosting

Input:

- Training set of examples $\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{m}, y_{m}\right)$
- d weak hypotheses h_{1}, \ldots, h_{d}

Output:

- Strong hypothesis: $H_{\mathbf{w}}(\cdot)=\sum_{i=1}^{d} w_{i} h_{i}(\cdot)$

Weak Learnability Assumption

- For any probability $\mathbf{p} \in \mathbb{S}^{m}$ over examples
- Exists h_{j} with edge at least γ,

$$
\sum_{i} p_{i} y_{i} h_{j}\left(\mathbf{x}_{i}\right)=\operatorname{Pr}\left[h_{j}=y\right]-\operatorname{Pr}\left[h_{j} \neq y\right] \geq \gamma
$$

Deriving Boosting Algorithm from Theorem 1

Goal: Find \mathbf{w} s.t. $\min _{i} y_{i} H_{\mathbf{w}}\left(\mathbf{x}_{i}\right)>0$.

- Equivalently: Find $\mathbf{w}, \boldsymbol{\mu}$ s.t. $\mu_{i}=y_{i} H_{\mathbf{w}}\left(\mathbf{x}_{i}\right)$ and $\min _{i} \mu_{i}>0$
- Define: $L(\boldsymbol{\mu})=\log \left(\frac{1}{m} \sum_{i} \exp \left(-\mu_{i}\right)\right)\left(1\right.$-smooth w.r.t. $\left.\|\cdot\|_{\infty}\right)$
- Observe: $L(\boldsymbol{\mu}) \leq-\log (m) \Rightarrow \min _{i} \mu_{i}>0$
- Recall from Theorem 1: $L\left(\boldsymbol{\mu}_{n}\right) \leq \sum_{t}\left(\left\langle\nabla L\left(\boldsymbol{\mu}_{t}\right), \mathbf{v}_{t}\right\rangle+\frac{1}{2}\left\|\mathbf{v}_{t}\right\|_{\infty}^{2}\right)$
- Observe: $\mathbf{p} \stackrel{\text { def }}{=} \nabla L\left(\boldsymbol{\mu}_{t}\right) \in \mathbb{S}^{m}$.
- Weak learnability \Rightarrow exists r_{t} s.t. $\sum_{i} p_{i} y_{i} h_{r_{t}}\left(\mathbf{x}_{i}\right) \geq \gamma$
- Apply Theorem 1 with $v_{t, i}=-\gamma y_{i} h_{r_{t}}\left(\mathbf{x}_{i}\right)$ gives $L\left(\boldsymbol{\mu}_{n}\right) \leq-\frac{n \gamma^{2}}{2}$
- Therefore, $n \geq \frac{2 \log (m)}{\gamma^{2}} \Rightarrow \min _{i} \mu_{n, i}>0$

Boosting - Brief history

Is weak learnability equivalent to strong learnability ?

Boosting - Brief history

Is weak learnability equivalent to strong learnability?

Yes!

Boosting - Brief history

Is weak learnability equivalent to strong learnability ?

> Yes!

You can use AdaBoost

Boosting - Brief history

Is weak learnability equivalent to strong learnability ?
Yes!

You can use AdaBoost

Boosting is related to margin

Boosting - Brief history

Is weak learnability equivalent to strong learnability ?
Yes!

You can use AdaBoost

Boosting is related to margin

Of course, it is a corollary of the minimax theorem

Weak Learnability $=$ Separability with ℓ_{1} margin

$$
A=\left(\begin{array}{ccc}
y_{1} h_{1}\left(\mathbf{x}_{1}\right) & \ldots & y_{1} h_{d}\left(\mathbf{x}_{1}\right) \\
\vdots & \ddots & \vdots \\
y_{m} h_{1}\left(\mathbf{x}_{m}\right) & \ldots & y_{m} h_{d}\left(\mathbf{x}_{m}\right)
\end{array}\right)
$$

Minimax theorem

$$
\max _{\mathbf{w} \in \mathbb{S}^{d}} \underbrace{\min _{i}(A \mathbf{w})_{i}}_{\text {margin }}=\gamma=\underbrace{\min _{\mathbf{p} \in \mathbb{S}^{m}} \max _{j}\left(\mathbf{p}^{T} A\right)_{j}}_{\gamma \text { Weak learnability }}
$$

Reinterpreting Boosting Result

	Assumption	\#iterations	runtime
AdaBoost	$\ell_{1} \operatorname{margin} \gamma$	$\frac{\log (m)}{\gamma^{2}}$	$\frac{m \log (m) d}{\gamma^{2}}$
Perceptron	ℓ_{2} margin γ	$\frac{d}{\gamma^{2}}$	$\frac{d^{2}}{\gamma^{2}}$
Winnow	$\ell_{1} \operatorname{margin} \gamma$	$\frac{\log (d)}{\gamma^{2}}$	$\frac{d \log (d)}{\gamma^{2}}$

Summary

More Applications

Sparsification

- Theorem: For smooth loss functions, any low ℓ_{1} linear predictor can be converted into sparse linear predictor
- Proof idea: definition of smoothness + probabilistic construction
- Theorem: Also true for non-smooth but Lipschitz loss functions
- Proof idea: infimal-convolution + our main lemma \Rightarrow it's possible to approximate any Lipschitz function by a smooth function

More Applications

Sparsification

- Theorem: For smooth loss functions, any low ℓ_{1} linear predictor can be converted into sparse linear predictor
- Proof idea: definition of smoothness + probabilistic construction
- Theorem: Also true for non-smooth but Lipschitz loss functions
- Proof idea: infimal-convolution + our main lemma \Rightarrow it's possible to approximate any Lipschitz function by a smooth function

Concentration Inequalities

- Pinelis-like concentration results for martingales in Banach spaces

More Applications - Matrix Regularization

- Lemma: The matrix function $F(A)=f(\sigma(A))$, where f is strongly convex w.r.t. $\|\mathbf{w}\|$, is strongly convex w.r.t. $\|\sigma(A)\|$
- Corollaries:
- Generalization bounds for multi-task learning
- Regret bounds for multi-task learning

More Applications - Matrix Regularization

- Lemma: The matrix function $F(A)=f(\sigma(A))$, where f is strongly convex w.r.t. $\|\mathbf{w}\|$, is strongly convex w.r.t. $\|\sigma(A)\|$
- Corollaries:
- Generalization bounds for multi-task learning
- Regret bounds for multi-task learning
- Lemma: The matrix function $F(A)=\left\|\left(\left\|A_{1,},\right\|_{2}, \ldots,\left\|A_{m,},\right\|_{2}\right)\right\|_{q}^{2}$ is strongly convex w.r.t. the matrix norm $\left\|\left(\left\|A_{1,},\right\|_{2}, \ldots,\left\|A_{m},\right\|_{2}\right)\right\|_{q}$
- Corollaries:
- Generalization bounds for group Lasso, kernel learning, multi-task learning
- Regret bounds for the above and also shifting regret bounds

Summary

Lemma

f is strongly convex w.r.t. $\|\cdot\| \Longleftrightarrow f^{\star}$ is strongly smooth w.r.t. $\|\cdot\|_{\star}$

- Isolating a single useful property of regularization functions
- Deriving many known result easily based on this property
- Good theory should also predict new results - we derived new algorithms and bounds from the generalized theory

