The Duality of Strong Convexity and Strong Smoothness Applications to Machine Learning

Shai Shalev-Shwartz

Toyota Technological Institute at Chicago

Talk at AFOSR workshop, January, 2009

January 2009

f is strongly convex w.r.t. $\|\cdot\| \iff f^{\star}$ is strongly smooth w.r.t. $\|\cdot\|_{\star}$

Applications:

● Rademacher Bounds (⇒ Generalization Bounds)

3 K K 3 K

f is strongly convex w.r.t. $\|\cdot\| \iff f^{\star}$ is strongly smooth w.r.t. $\|\cdot\|_{\star}$

- Rademacher Bounds (\Rightarrow Generalization Bounds)
- Low regret online algorithms (\Rightarrow runtime of SGD/SMD)

f is strongly convex w.r.t. $\|\cdot\| \iff f^{\star}$ is strongly smooth w.r.t. $\|\cdot\|_{\star}$

Applications:

- Rademacher Bounds (\Rightarrow Generalization Bounds)
- Low regret online algorithms (\Rightarrow runtime of SGD/SMD)

Boosting

f is strongly convex w.r.t. $\|\cdot\| \iff f^{\star}$ is strongly smooth w.r.t. $\|\cdot\|_{\star}$

- Rademacher Bounds (\Rightarrow Generalization Bounds)
- Low regret online algorithms (\Rightarrow runtime of SGD/SMD)
- Boosting
- Sparsity and ℓ_1 norm

f is strongly convex w.r.t. $\|\cdot\| \iff f^{\star}$ is strongly smooth w.r.t. $\|\cdot\|_{\star}$

- Rademacher Bounds (\Rightarrow Generalization Bounds)
- Low regret online algorithms (\Rightarrow runtime of SGD/SMD)
- Boosting
- Sparsity and ℓ_1 norm
- Concentration inequalities

f is strongly convex w.r.t. $\|\cdot\| \iff f^{\star}$ is strongly smooth w.r.t. $\|\cdot\|_{\star}$

- Rademacher Bounds (⇒ Generalization Bounds)
- Low regret online algorithms (\Rightarrow runtime of SGD/SMD)
- Boosting
- Sparsity and ℓ_1 norm
- Concentration inequalities
- Matrix regularization (Multi-task, group Lasso, dynamic bounds)

Motivating Problem – Generalization Bounds

• Linear predictor is a mapping $\mathbf{x}\mapsto \phi(\langle \mathbf{w},\mathbf{x}\rangle)$

• E.g.
$$\mathbf{x} \mapsto \langle \mathbf{w}, \mathbf{x} \rangle$$
 or $\mathbf{x} \mapsto \operatorname{sgn}(\langle \mathbf{w}, \mathbf{x} \rangle)$

- Loss of ${\bf w}$ on $({\bf x},y)$ is assessed by $\ell(\langle {\bf w},{\bf x}\rangle,y)$
- Goal: minimize expected loss $L(\mathbf{w}) ~=~ \mathbb{E}_{(\mathbf{x},y)}[\ell(\langle \mathbf{w}, \mathbf{x} \rangle, y)]$
- Instead, minimize empirical loss $\hat{L}(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} \ell(\langle \mathbf{w}, \mathbf{x}_i \rangle, y_i)$
- Bartlett and Mendelson [2002]: If ℓ Lipschitz and bounded, w.p. at least $1-\delta$

$$\forall \mathbf{w} \in S, \ L(\mathbf{w}) \le \hat{L}(\mathbf{w}) + \frac{2}{n} \mathcal{R}_n(S) + \sqrt{\frac{\log(1/\delta)}{2n}}$$

where

$$\mathcal{R}_n(S) \stackrel{\text{def}}{=} \mathbb{E}_{\epsilon \sim \{\pm 1\}^n} \left[\sup_{\mathbf{u} \in S} \sum_{i=1}^n \epsilon_i \langle \mathbf{u}, \mathbf{x}_i \rangle \right]$$

Two equivalent representations of a convex function

Duality for ML

Two equivalent representations of a convex function

Two equivalent representations of a convex function

Two equivalent representations of a convex function

• The definition immediately implies Fenchel-Young inequality:

$$\begin{aligned} \forall \mathbf{u}, \quad f^{\star}(\boldsymbol{\theta}) &= \max_{\mathbf{w}} \langle \mathbf{w}, \boldsymbol{\theta} \rangle - f(\mathbf{w}) \\ &\geq \langle \mathbf{u}, \boldsymbol{\theta} \rangle - f(\mathbf{u}) \end{aligned}$$

• The definition immediately implies Fenchel-Young inequality:

$$\begin{aligned} \forall \mathbf{u}, \quad f^{\star}(\boldsymbol{\theta}) &= \max_{\mathbf{w}} \langle \mathbf{w}, \boldsymbol{\theta} \rangle - f(\mathbf{w}) \\ &\geq \langle \mathbf{u}, \boldsymbol{\theta} \rangle - f(\mathbf{u}) \end{aligned}$$

• If f is closed and convex then $f^{\star\star}=f$

• The definition immediately implies Fenchel-Young inequality:

$$\begin{aligned} \forall \mathbf{u}, \quad f^{\star}(\boldsymbol{\theta}) &= \max_{\mathbf{w}} \langle \mathbf{w}, \boldsymbol{\theta} \rangle - f(\mathbf{w}) \\ &\geq \langle \mathbf{u}, \boldsymbol{\theta} \rangle - f(\mathbf{u}) \end{aligned}$$

- $\bullet~$ If f is closed and convex then $f^{\star\star}=f$
- By the way, this implies Jensen's inequality:

$$\begin{split} f(\mathbb{E}[\mathbf{w}]) &= \max_{\boldsymbol{\theta}} \langle \boldsymbol{\theta}, \mathbb{E}[\mathbf{w}] \rangle - f^{\star}(\boldsymbol{\theta}) \\ &= \max_{\boldsymbol{\theta}} \mathbb{E} \left[\langle \boldsymbol{\theta}, \mathbf{w} \rangle - f^{\star}(\boldsymbol{\theta}) \right] \\ &\leq \mathbb{E}[\max_{\boldsymbol{\theta}} \langle \boldsymbol{\theta}, \mathbf{w} \rangle - f^{\star}(\boldsymbol{\theta})] = \mathbb{E}[f(\mathbf{w})] \end{split}$$

Examples:

$f(\mathbf{w})$	$f^{\star}(oldsymbol{ heta})$
$\frac{1}{2} \ \mathbf{w}\ ^2$	$rac{1}{2} \ oldsymbol{ heta}\ _{\star}^2$
$\ \mathbf{w}\ $	Indicator of unit $\ \cdot\ _{\star}$ ball
$\sum_i w_i \log(w_i)$	$\log\left(\sum_i e^{ heta_i} ight)$
Indicator of prob. simplex	$\max_i heta_i$
$cg(\mathbf{w})$ for $c>0$	$cg^{\star}(oldsymbol{ heta}/c)$
$\inf_{\mathbf{x}} g_1(\mathbf{w}) + g_2(\mathbf{w} - \mathbf{x})$	$g_1^\star(oldsymbol{ heta})+g_2^\star(oldsymbol{ heta})$

-

Examples:

	$f(\mathbf{w})$	$f^{\star}(\boldsymbol{ heta})$
	$rac{1}{2} \ \mathbf{w}\ ^2$	$rac{1}{2} \ oldsymbol{ heta}\ _{\star}^2$
	$\ \mathbf{w}\ $	Indicator of unit $\ \cdot\ _{\star}$ ball
\Rightarrow	$\sum_i w_i \log(w_i)$	$\log\left(\sum_{i}e^{ heta_{i}} ight)$
\Rightarrow	Indicator of prob. simplex	$\max_i \theta_i$
	$cg(\mathbf{w})$ for $c>0$	$c g^{\star}(oldsymbol{ heta}/c)$
	$\inf_{\mathbf{x}} g_1(\mathbf{w}) + g_2(\mathbf{w} - \mathbf{x})$	$g_1^\star(oldsymbol{ heta}) + g_2^\star(oldsymbol{ heta})$

(used for boosting)

Shai Shalev-Shwartz (TTI-C)

Jan'09 7 / 29

Examples:

	$f(\mathbf{w})$	$f^{\star}(\boldsymbol{ heta})$
	$rac{1}{2} \ \mathbf{w}\ ^2$	$rac{1}{2} \ oldsymbol{ heta}\ _{\star}^2$
	$\ \mathbf{w}\ $	Indicator of unit $\ \cdot\ _{\star}$ ball
	$\sum_i w_i \log(w_i)$	$\log\left(\sum_{i} e^{\theta_{i}}\right)$
	Indicator of prob. simplex	$\max_i heta_i$
	$c g(\mathbf{w})$ for $c > 0$	$cg^{\star}(oldsymbol{ heta}/c)$
\Rightarrow	$\inf_{\mathbf{x}} g_1(\mathbf{w}) + g_2(\mathbf{w} - \mathbf{x})$	$\left \hspace{1cm} g_1^\star(oldsymbol{ heta}) + g_2^\star(oldsymbol{ heta}) ight.$

(infimal convolution theorem)

f is strongly convex $\iff f^{\star}$ is strongly smooth

The following properties are equivalent:

• $f(\mathbf{w})$ is σ -strongly convex w.r.t. $\|\cdot\|$

• $f^{\star}(\mathbf{w})$ is $\frac{1}{\sigma}$ -strongly smooth w.r.t. $\|\cdot\|_{\star}$

f is strongly convex $\iff f^{\star}$ is strongly smooth

The following properties are equivalent:

• $f(\mathbf{w})$ is σ -strongly convex w.r.t. $\|\cdot\|$, that is

$$orall \mathbf{w}, \mathbf{u}, oldsymbol{ heta} \in \partial f(\mathbf{u}), \;\; \; f(\mathbf{w}) - f(\mathbf{u}) - \langle oldsymbol{ heta}, \mathbf{w} - \mathbf{u}
angle \geq rac{\sigma}{2} \| \mathbf{u} - \mathbf{w} \|^2 \; .$$

• $f^{\star}(\mathbf{w})$ is $\frac{1}{\sigma}$ -strongly smooth w.r.t. $\|\cdot\|_{\star}$

f is strongly convex $\iff f^{\star}$ is strongly smooth

The following properties are equivalent:

• $f(\mathbf{w})$ is σ -strongly convex w.r.t. $\|\cdot\|$, that is

$$\forall \mathbf{w}, \mathbf{u}, \boldsymbol{\theta} \in \partial f(\mathbf{u}), \ \ f(\mathbf{w}) - f(\mathbf{u}) - \langle \boldsymbol{\theta}, \mathbf{w} - \mathbf{u} \rangle \geq rac{\sigma}{2} \|\mathbf{u} - \mathbf{w}\|^2$$

• $f^{\star}(\mathbf{w})$ is $\frac{1}{\sigma}$ -strongly smooth w.r.t. $\|\cdot\|_{\star}$, that is

$$\forall \mathbf{w}, \mathbf{u}, \quad f^{\star}(\mathbf{w}) - f^{\star}(\mathbf{u}) - \langle \nabla f^{\star}(\mathbf{u}), \mathbf{w} - \mathbf{u} \rangle \leq \frac{1}{2\sigma} \|\mathbf{u} - \mathbf{w}\|_{\star}^2 .$$

Shai Shalev-Shwartz (TTI-C)

Examples:

$f(\mathbf{w})$	$f^{\star}(oldsymbol{ heta})$	w.r.t. norm	σ
$\frac{1}{2}\ \mathbf{w}\ _2^2$	$rac{1}{2} \ oldsymbol{ heta}\ _2^2$	$\ \cdot\ _2$	1

- ∢ ศ⊒ ▶

Examples:

$f(\mathbf{w})$	$f^{\star}(oldsymbol{ heta})$	w.r.t. norm	σ
$rac{1}{2}\ \mathbf{w}\ _2^2$	$rac{1}{2} \ oldsymbol{ heta}\ _2^2$	$\ \cdot\ _2$	1
$rac{1}{2} \ \mathbf{w}\ _q^2$	$rac{1}{2} \ oldsymbol{ heta}\ _p^2$	$\ \cdot\ _q$	(q - 1)

(where $q \in (1,2]$ and $\frac{1}{q} + \frac{1}{p} = 1$)

Examples:

$f(\mathbf{w})$	$f^{\star}(\boldsymbol{ heta})$	w.r.t. norm	σ
$rac{1}{2} \ \mathbf{w}\ _2^2$	$rac{1}{2}\ oldsymbol{ heta}\ _2^2$	$\ \cdot\ _2$	1
$rac{1}{2} \ \mathbf{w}\ _q^2$	$rac{1}{2} \ oldsymbol{ heta}\ _p^2$	$\ \cdot\ _q$	(q - 1)
$\sum_i w_i \log(w_i)$	$\log\left(\sum_{i}e^{\theta_{i}}\right)$	$\ \cdot\ _1$	1

イロト イヨト イヨト イヨト

Importance

Theorem (1)

Let

•
$$f$$
 be σ strongly convex w.r.t. $\|\cdot\|$

• Assume
$$f^{\star}(\mathbf{0}) = 0$$
 (for simplicity)

- $\mathbf{v}_1, \ldots, \mathbf{v}_n$ be arbitrary sequence of vectors
- Denote $\mathbf{w}_t = \nabla f^\star(\sum_{j < t} \mathbf{v}_j)$

Then, for any \mathbf{u} we have

$$\sum_{t} \langle \mathbf{u}, \mathbf{v}_t \rangle - f(\mathbf{u}) \le f^{\star}(\sum_{t} \mathbf{v}_t) \le \sum_{t} \left(\langle \mathbf{w}_t, \mathbf{v}_t \rangle + \frac{1}{2\sigma} \|\mathbf{v}_t\|_{\star}^2 \right) \;.$$

Image: Image:

Importance

Theorem (1)

Let

•
$$f$$
 be σ strongly convex w.r.t. $\|\cdot\|$

- Assume $f^{\star}(\mathbf{0}) = 0$ (for simplicity)
- $\mathbf{v}_1, \ldots, \mathbf{v}_n$ be arbitrary sequence of vectors
- Denote $\mathbf{w}_t =
 abla f^\star(\sum_{j < t} \mathbf{v}_j)$

Then, for any \mathbf{u} we have

$$\sum_{t} \langle \mathbf{u}, \mathbf{v}_t \rangle - f(\mathbf{u}) \le f^{\star}(\sum_{t} \mathbf{v}_t) \le \sum_{t} \left(\langle \mathbf{w}_t, \mathbf{v}_t \rangle + \frac{1}{2\sigma} \|\mathbf{v}_t\|_{\star}^2 \right) \;.$$

Proof.

The first inequality is Fenchel-Young and the second inequality follows from the $\frac{1}{\sigma}$ smoothness of f^* by induction.

Back to Rademacher Complexities

• Theorem 1:

$$\sum_{t} \langle \mathbf{u}, \mathbf{v}_t \rangle - f(\mathbf{u}) \leq \sum_{t} \left(\langle \mathbf{w}_t, \mathbf{v}_t \rangle + \frac{1}{2\sigma} \| \mathbf{v}_t \|_{\star}^2 \right) \; .$$

Based on Kakade, Sridharan, Tewari [2008]

Shai Shalev-Shwartz (TTI-C)

Duality for ML

Jan'09 11 / 29

Back to Rademacher Complexities

• Theorem 1:

$$\sum_t \langle \mathbf{u}, \mathbf{v}_t
angle - f(\mathbf{u}) \; \leq \; \sum_t \left(\langle \mathbf{w}_t, \mathbf{v}_t
angle + rac{1}{2\,\sigma} \|\mathbf{v}_t\|_\star^2
ight) \; .$$

• Therefore, for all S:

$$\sup_{\mathbf{u}\in S} \sum_{t} \langle \mathbf{u}, \mathbf{v}_t \rangle \leq \frac{1}{2\sigma} \sum_{t} \|\mathbf{v}_t\|_{\star}^2 + \sup_{\mathbf{u}\in S} f(\mathbf{u}) + \sum_{t} \langle \mathbf{w}_t, \mathbf{v}_t \rangle$$

Based on Kakade, Sridharan, Tewari [2008]

Shai Shalev-Shwartz (TTI-C)

Jan'09 11 / 29

Back to Rademacher Complexities

• Theorem 1:

$$\sum_t \langle \mathbf{u}, \mathbf{v}_t
angle - f(\mathbf{u}) \; \leq \; \sum_t \left(\langle \mathbf{w}_t, \mathbf{v}_t
angle + rac{1}{2\,\sigma} \| \mathbf{v}_t \|_\star^2
ight) \; .$$

• Therefore, for all S:

$$\sup_{\mathbf{u}\in S} \sum_{t} \langle \mathbf{u}, \mathbf{v}_t \rangle \leq \frac{1}{2\sigma} \sum_{t} \|\mathbf{v}_t\|_{\star}^2 + \sup_{\mathbf{u}\in S} f(\mathbf{u}) + \sum_{t} \langle \mathbf{w}_t, \mathbf{v}_t \rangle$$

• Applying with $\mathbf{v}_t = \epsilon_t \mathbf{x}_t$ and taking expectation we obtain:

$$\mathcal{R}_{n}(S) \leq \frac{1}{2\sigma} \sum_{t} \mathbb{E}[\epsilon_{t}^{2}] \|\mathbf{x}_{t}\|_{\star}^{2} + \sup_{\mathbf{u} \in S} f(\mathbf{u}) + \underbrace{\mathbb{E}\left[\sum_{t} \langle \mathbf{w}_{t}, \epsilon_{t} | \mathbf{x}_{t} \rangle\right]}_{=0}$$

Based on Kakade, Sridharan, Tewari [2008]

Shai Shalev-Shwartz (TTI-C)

Jan'09 11 / 29

Rademacher Bounds – Examples

S	$f(\mathbf{w})$	X	$R_n(S)$
$\{\mathbf{w}: \ \mathbf{w}\ _2 \le W\}$	$rac{\sigma}{2} \ \mathbf{w}\ _2^2$	$\frac{\sum_i \ \mathbf{x}_i\ _2^2}{n}$	$X W \sqrt{n}$

< ロ > < 同 > < 三 > < 三

S	$f(\mathbf{w})$	X	$R_n(S)$
$\{\mathbf{w}: \ \mathbf{w}\ _2 \le W\}$	$rac{\sigma}{2} \ \mathbf{w} \ _2^2$	$\frac{\sum_i \ \mathbf{x}_i\ _2^2}{n}$	$X W \sqrt{n}$
$\{\mathbf{w}: \ \mathbf{w}\ _q \le W\}$	$\frac{\sigma}{2} \ \mathbf{w}\ _q^2$	$\frac{\sum_i \ \mathbf{x}_i\ _p^2}{n}$	$X W \sqrt{(p-1) n}$

* ロ > * 個 > * 注 > * 注 >

S	$f(\mathbf{w})$	X	$R_n(S)$
$\{\mathbf{w}: \ \mathbf{w}\ _2 \le W\}$	$rac{\sigma}{2} \ \mathbf{w}\ _2^2$	$\frac{\sum_i \ \mathbf{x}_i\ _2^2}{n}$	$X W \sqrt{n}$
$\{\mathbf{w}: \ \mathbf{w}\ _q \le W\}$	$rac{\sigma}{2} \ \mathbf{w}\ _q^2$	$\frac{\sum_i \ \mathbf{x}_i\ _p^2}{n}$	$X W \sqrt{(p-1) n}$
Prob. simplex	$\sigma \sum_{i} w_i \log(d w_i)$	$\frac{\sum_i \ \mathbf{x}_i\ _{\infty}^2}{n}$	$X\sqrt{\log(d)n}$

э

• • • • • • • • • • • •

Intermediate Summary

Coming Next ...

- Studied in game theory, information theory, and machine learning
- Examples:
 - Repeated 2-players games (Hannan [57], Blackwell [56])
 - Predicting with side information (Rosenblatt's Perceptron [58], Weighted Majority of Littlestone and Warmuth [88,94])
 - Predicting of individual sequences (Cover [78], Feder, Merhav and Gutman [92])
- Online convex optimization a general abstract prediction model (Gordon [99], Zinkevich [03])
- Using our lemma, we can easily derived optimal low regret algorithms

Online Learning

Prediction Game - Online Optimization

For $t = 1, \ldots, n$

- Learner chooses a decision $\mathbf{w}_t \in S$
- Environment chooses a loss function $\ell_t: S \to \mathbb{R}$
- Learner pays loss $\ell_t(\mathbf{w}_t)$

 $\bullet\,$ Regret of learner for not always following the best decision in S

$$\sum_{t=1}^n \ell_t(\mathbf{w}_t) - \min_{\mathbf{u} \in S} \sum_{t=1}^n \ell_t(\mathbf{u})$$

 \bullet Goal: Conditions on S and loss functions that guarantee low regret learning strategy

Online Learning

- Assume $f \ \sigma\text{-strongly convex on } S \text{ w.r.t. } \|\cdot\|$
- Recall Theorem 1: For $\mathbf{w}_t =
 abla f^\star(\sum_{j < t} \mathbf{v}_j)$ we have

$$\sum_t \langle \mathbf{u} - \mathbf{w}_t, \mathbf{v}_t \rangle \leq f(\mathbf{u}) + \frac{1}{2\sigma} \sum_t \|\mathbf{v}_t\|_\star^2$$

• Assume ℓ_t convex and apply with $\mathbf{v}_t \in \partial \ell_t(\mathbf{w}_t)$, thus

$$\ell_t(\mathbf{w}_t) - \ell_t(\mathbf{u}) \le \langle \mathbf{u} - \mathbf{w}_t, \mathbf{v}_t \rangle$$

- Assume ℓ_t Lipschitz w.r.t. dual norm, thus $\|\mathbf{v}_t\|_{\star} \leq V$
- We obtain the regret bound (S. and Singer [06]):

$$\sum_{t=1}^n \ell_t(\mathbf{w}_t) - \min_{\mathbf{u} \in S} \sum_{t=1}^n \ell_t(\mathbf{u}) \leq \max_{\mathbf{u} \in S} f(\mathbf{u}) + \frac{n V^2}{2\sigma}$$

Predicting the next bit of a sequence

For $t = 1, \ldots, n$

- Learner predict $\hat{y}_t \in \{0, 1\}$
- Environment responds with $y_t \in \{0,1\}$
- Learner pays 1 if $\hat{y}_t \neq y_t$

Modeling:

•
$$S = [0,1]$$
, $f(w) = \frac{\sigma}{2}w^2$, $\sigma = \sqrt{n}$

- Predict $\hat{y}_t = 1$ with probability $w_t \in S$
- Then, probability of $\hat{y}_t \neq y_t$ is $\ell_t(w_t) = |y_t w_t|$, which is convex
- The expected regret is thus bounded by \sqrt{n}

Predicting with expert advice

For $t = 1, \ldots, n$

- Learner receives a vector $\mathbf{x}_t \in [0,1]^d$ of experts advice
- Learner need to predict $\hat{y}_t \in \{0, 1\}$
- Environment responds with $y_t \in \{0, 1\}$
- Learner pays 1 if $\hat{y}_t \neq y_t$

Modeling:

- S is d dimensional probability simplex, $f(\mathbf{w}) = \sigma \sum_i w_i \log(w_i)$, $\sigma = \sqrt{n/\log(d)}$
- Predict $\hat{y}_t = 1$ with probability $\langle \mathbf{w}_t, \mathbf{x}_t \rangle$
- Then, probability of $\hat{y}_t \neq y_t$ is $\ell_t(w_t) = |y_t \langle w_t, \mathbf{x}_t \rangle|$, which is convex
- \bullet The expected regret is thus bounded by $\sqrt{\log(d)\,n}$

Optimization from a Machine Learning Perspective

• Assume we'd like to solve regularized loss minimization:

$$\min_{\mathbf{w}} f(\mathbf{w}) + \frac{1}{n} \sum_{i=1}^{n} \ell(\mathbf{w}, \mathbf{z}_i)$$

- Stochastic Mirror Descent
 - At each step, sample *i* uniformly at random and feed an online learner the loss $\ell_t(\mathbf{w}) = \ell(\mathbf{w}, \mathbf{z}_i)$
 - Return averaged \mathbf{w}_t of the online learner
- Number of iterations required to achieve accuracy ϵ is order of sample complexity !
- Optimality (S. and Srebro [08])

Intermediate Summary

Image: Image:

イロト イヨト イヨト イヨ

Input:

- Training set of examples $(\mathbf{x}_1, y_1), \ldots, (\mathbf{x}_m, y_m)$
- d weak hypotheses h_1, \ldots, h_d

Output:

• Strong hypothesis: $H_{\mathbf{w}}(\cdot) = \sum_{i=1}^d w_i h_i(\cdot)$

Weak Learnability Assumption

- For any probability $\mathbf{p} \in \mathbb{S}^m$ over examples
- Exists h_j with edge at least γ ,

$$\sum_{i} p_i y_i h_j(\mathbf{x}_i) = \Pr[h_j = y] - \Pr[h_j \neq y] \ge \gamma$$

Deriving Boosting Algorithm from Theorem 1

Goal: Find w s.t. $\min_i y_i H_w(\mathbf{x}_i) > 0$.

- Equivalently: Find $\mathbf{w}, \boldsymbol{\mu}$ s.t. $\mu_i = y_i H_{\mathbf{w}}(\mathbf{x}_i)$ and $\min_i \mu_i > 0$
- Define: $L(\mu) = \log \left(\frac{1}{m} \sum_{i} \exp(-\mu_i)\right)$ (1-smooth w.r.t. $\|\cdot\|_{\infty}$)
- Observe: $L(\boldsymbol{\mu}) \leq -\log(m) \Rightarrow \min_i \mu_i > 0$
- Recall from Theorem 1: $L(\boldsymbol{\mu}_n) \leq \sum_t \left(\langle \nabla L(\boldsymbol{\mu}_t), \mathbf{v}_t \rangle + \frac{1}{2} \| \mathbf{v}_t \|_{\infty}^2 \right)$
- Observe: $\mathbf{p} \stackrel{\text{def}}{=} \nabla L(\boldsymbol{\mu}_t) \in \mathbb{S}^m$.
- Weak learnability \Rightarrow exists r_t s.t. $\sum_i p_i y_i h_{r_t}(\mathbf{x}_i) \geq \gamma$
- Apply Theorem 1 with $v_{t,i} = -\gamma y_i h_{r_t}(\mathbf{x}_i)$ gives $L(\boldsymbol{\mu}_n) \leq rac{n \, \gamma^2}{2}$
- Therefore, $n \geq \frac{2\log(m)}{\gamma^2} \Rightarrow \min_i \mu_{n,i} > 0$

イロト イヨト イヨト イヨト

Is weak learnability equivalent to strong learnability ?

3 1 4

Is weak learnability equivalent to strong learnability ?

Yes!

Boosting – Brief history

Is weak learnability equivalent to strong learnability ?

Yes!

You can use AdaBoost

Boosting – Brief history

Is weak learnability equivalent to strong learnability ?

Yes!

You can use AdaBoost

Boosting is related to margin

Boosting – Brief history

Is weak learnability equivalent to strong learnability ?

Yes!

You can use AdaBoost

Boosting is related to margin

Of course, it is a corollary of the minimax theorem

$$A = \begin{pmatrix} y_1 h_1(\mathbf{x}_1) & \dots & y_1 h_d(\mathbf{x}_1) \\ \vdots & \ddots & \vdots \\ y_m h_1(\mathbf{x}_m) & \dots & y_m h_d(\mathbf{x}_m) \end{pmatrix}$$

Minimax theorem

	Assumption	#iterations	runtime
AdaBoost Perceptron Winnow	ℓ_1 margin γ ℓ_2 margin γ ℓ_1 margin γ	$\frac{\frac{\log(m)}{\gamma^2}}{\frac{d}{\gamma^2}}$ $\frac{\log(d)}{\gamma^2}$	$\frac{m \log(m) d}{\gamma^2}$ $\frac{d^2}{\gamma^2}$ $\frac{d \log(d)}{\gamma^2}$

イロト イ団ト イヨト イヨト

< ロ > < 同 > < 三 > < 三

Sparsification

- Theorem: For smooth loss functions, any low ℓ_1 linear predictor can be converted into sparse linear predictor
- Proof idea: definition of smoothness + probabilistic construction
- Theorem: Also true for non-smooth but Lipschitz loss functions
- Proof idea: infimal-convolution + our main lemma \Rightarrow it's possible to approximate any Lipschitz function by a smooth function

Sparsification

- Theorem: For smooth loss functions, any low ℓ_1 linear predictor can be converted into sparse linear predictor
- Proof idea: definition of smoothness + probabilistic construction
- Theorem: Also true for non-smooth but Lipschitz loss functions
- Proof idea: infimal-convolution + our main lemma \Rightarrow it's possible to approximate any Lipschitz function by a smooth function

Concentration Inequalities

• Pinelis-like concentration results for martingales in Banach spaces

More Applications – Matrix Regularization

- Lemma: The matrix function $F(A) = f(\sigma(A))$, where f is strongly convex w.r.t. $\|\mathbf{w}\|$, is strongly convex w.r.t. $\|\sigma(A)\|$
- Corollaries:
 - Generalization bounds for multi-task learning
 - Regret bounds for multi-task learning

More Applications – Matrix Regularization

- Lemma: The matrix function $F(A) = f(\sigma(A))$, where f is strongly convex w.r.t. $\|\mathbf{w}\|$, is strongly convex w.r.t. $\|\sigma(A)\|$
- Corollaries:
 - · Generalization bounds for multi-task learning
 - Regret bounds for multi-task learning
- Lemma: The matrix function $F(A) = \| (\|A_{1,\cdot}\|_2, \dots, \|A_{m,\cdot}\|_2) \|_q^2$ is strongly convex w.r.t. the matrix norm $\| (\|A_{1,\cdot}\|_2, \dots, \|A_{m,\cdot}\|_2) \|_q$
- Corollaries:
 - Generalization bounds for group Lasso, kernel learning, multi-task learning
 - Regret bounds for the above and also shifting regret bounds

f is strongly convex w.r.t. $\|\cdot\| \iff f^*$ is strongly smooth w.r.t. $\|\cdot\|_*$

- Isolating a single useful property of regularization functions
- Deriving many known result easily based on this property
- Good theory should also predict new results we derived new algorithms and bounds from the generalized theory