Using more data to speed-up training time

Shai Shalev-Shwartz

School of Computer Science and Engineering
The Hebrew University of Jerusalem

COST Workshop,
 NIPS 2011

Based on joint work with

- Nati Srebro
- Ohad Shamir and Eran Tromer

Outline

- Time-Sample Complexity
- General Techniques:
(1) A larger hypothesis class
- Formal Derivation of Gaps
(2) A different loss function
(3) Approximate optimization

Agnostic PAC Learning

- Domain Z (e.g. $Z=\mathcal{X} \times \mathcal{Y}$)
- Hypothesis class \mathcal{H} (our "inductive bias")
- Loss function: $\ell: \mathcal{H} \times Z \rightarrow \mathbb{R}$
- \mathcal{D} - unknown distribution over Z
- True risk: $L_{\mathcal{D}}(h)=\mathbb{E}_{z \sim \mathcal{D}}[\ell(h, z)]$
- Training set: $S=\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{m}, y_{m}\right) \stackrel{\text { i.i.d. }}{\sim} \mathcal{D}^{m}$
- Goal: use S to find h_{S} s.t.

$$
\underset{S}{\mathbb{E}} L_{\mathcal{D}}\left(h_{S}\right) \leq \min _{h \in \mathcal{H}} L_{\mathcal{D}}(h)+\epsilon
$$

Joint Time-Sample Complexity

Goal:

$$
\underset{S \sim D^{m}}{\mathbb{E}}\left[L_{\mathcal{D}}\left(h_{S}\right)\right] \leq \min _{h \in \mathcal{H}} L_{\mathcal{D}}(h)+\epsilon
$$

Joint Time-Sample Complexity

Goal:

$$
\underset{S \sim D^{m}}{\mathbb{E}}\left[L_{\mathcal{D}}\left(h_{S}\right)\right] \leq \min _{h \in \mathcal{H}} L_{\mathcal{D}}(h)+\epsilon
$$

- Sample complexity: How many examples are needed ?
- Time complexity: How much time is needed ?

Joint Time-Sample Complexity

Goal:

$$
\underset{S \sim D^{m}}{\mathbb{E}}\left[L_{\mathcal{D}}\left(h_{S}\right)\right] \leq \min _{h \in \mathcal{H}} L_{\mathcal{D}}(h)+\epsilon
$$

- Sample complexity: How many examples are needed ?
- Time complexity: How much time is needed ?

Time-sample complexity

$T_{\mathcal{H}, \epsilon}(m)=$ how much time is needed when $|S|=m$?

Joint Time-Sample Complexity

- Decatur, Goldreich, Ron 1998: "Computational Sample Complexity"
- Only distinguishes polynomial vs. non-polynomial
- Only binary classification in the realizable case
- Very few results on "real-world" problems, e.g. Rocco Servedio showed gaps for 1-decision lists
- Bottou \& Bousquet 2008: "The Tradeoffs of Large Scale Learning"
- Study the effect of optimization error in generalized linear problems based on upper bounds

How Can More Data Reduce Runtime?

(1) A larger hypothesis class
(2) A different loss function
(3) Approximate optimization

Example: Agnostic learning Preferences

The Learning Problem:

- $\mathcal{X}=[d] \times[d], \mathcal{Y}=\{0,1\}, Z=\mathcal{X} \times \mathcal{Y}$
- Given $(i, j) \in \mathcal{X}$ predict if i is preferable over j
- \mathcal{H} is all permutations over [d]
- Loss function $=$ zero-one loss

Example: Agnostic learning Preferences

The Learning Problem:

- $\mathcal{X}=[d] \times[d], \mathcal{Y}=\{0,1\}, Z=\mathcal{X} \times \mathcal{Y}$
- Given $(i, j) \in \mathcal{X}$ predict if i is preferable over j
- \mathcal{H} is all permutations over [d]
- Loss function $=$ zero-one loss

Method I:

- $\mathrm{ERM}_{\mathcal{H}}$
- Sample complexity is $\frac{d \log (d)}{\epsilon^{2}}$

Example: Agnostic learning Preferences

The Learning Problem:

- $\mathcal{X}=[d] \times[d], \mathcal{Y}=\{0,1\}, Z=\mathcal{X} \times \mathcal{Y}$
- Given $(i, j) \in \mathcal{X}$ predict if i is preferable over j
- \mathcal{H} is all permutations over $[d]$
- Loss function $=$ zero-one loss

Method I:

- $\mathrm{ERM}_{\mathcal{H}}$
- Sample complexity is $\frac{d \log (d)}{\epsilon^{2}}$
- Varun Kanade and Thomas Steinke (2011): If RP $\neq N P$, it is not possible to efficiently find an ϵ-accurate permutation

Example: Agnostic learning Preferences

The Learning Problem:

- $\mathcal{X}=[d] \times[d], \mathcal{Y}=\{0,1\}, Z=\mathcal{X} \times \mathcal{Y}$
- Given $(i, j) \in \mathcal{X}$ predict if i is preferable over j
- \mathcal{H} is all permutations over [d]
- Loss function $=$ zero-one loss

Method I:

- $\mathrm{ERM}_{\mathcal{H}}$
- Sample complexity is $\frac{d \log (d)}{\epsilon^{2}}$
- Varun Kanade and Thomas Steinke (2011): If RP $\neq N P$, it is not possible to efficiently find an ϵ-accurate permutation
- Claim: If $m \geq d^{2} / \epsilon^{2}$ it is possible to find a predictor with error $\leq \epsilon$ in polynomial time

Example: Agnostic learning Preferences

- Let $\mathcal{H}^{(n)}$ be the set of all functions from \mathcal{X} to \mathcal{Y}
- $\mathrm{ERM}_{\mathcal{H}^{(n)}}$ can be computed efficiently
- Sample complexity: $V C\left(\mathcal{H}^{(n)}\right) / \epsilon^{2}=d^{2} / \epsilon^{2}$
- Improper learning

More Data Less Work

	Samples	Time
$\operatorname{ERM}_{\mathcal{H}}$	$d \log (d)$	$d!$
$\operatorname{ERM}_{\mathcal{H}^{(n)}}$	d^{2}	d^{2}

Lower bounds?

- Analysis is based on upper bounds
- Is it possible to (improperly) learn efficiently with $d \log (d)$ examples ? (Posed as an open problem by Jake Abernathy)
- Main open problem: establish gaps by deriving lower bounds (for improper learning!)

Formal Derivation of Gaps

Theorem: Assume one-way permutations exist, there exists an agnostic learning problem such that:

Proof: One Way Permutations

$P:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ is one-way permutation if it's one-to-one and

- It is easy to compute $\mathbf{w}=P(\mathbf{s})$
- It is hard to compute $\mathbf{s}=P^{-1}(\mathbf{w})$

Proof: One Way Permutations

$P:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ is one-way permutation if it's one-to-one and

- It is easy to compute $\mathbf{w}=P(\mathbf{s})$
- It is hard to compute $\mathbf{s}=P^{-1}(\mathbf{w})$

Goldreich-Levin Theorem: If P is one way, then for any algorithm A,

$$
\exists \mathbf{w} \text { s.t. } \underset{\mathbf{r}}{\mathbb{P}}[A(\mathbf{r}, P(\mathbf{w}))=\langle\mathbf{r}, \mathbf{w}\rangle]<\frac{1}{2}+\frac{1}{\operatorname{poly}(n)}
$$

Proof: The Learning Problem

The Domain

- Let P be a one-way permutation.
- $\mathcal{X}=\{0,1\}^{2 n}, \mathcal{Y}=\{0,1\}$
- Domain: $Z \subset \mathcal{X} \times \mathcal{Y}$
- $((\mathbf{r}, \mathbf{s}), b) \in Z$ iff $\left\langle P^{-1}(\mathbf{s}), \mathbf{r}\right\rangle=b$
- (Inner product over GF(2))

Proof: The Learning Problem

The Hypothesis Class

- $\mathcal{H}=\left\{h_{\mathbf{w}}: \mathbf{w} \in\{0,1\}^{n}\right\}$ where $h_{\mathbf{w}}: \mathcal{X} \rightarrow[0,1]$ is

$$
h_{\mathbf{w}}(\mathbf{r}, \mathbf{s})= \begin{cases}\langle\mathbf{w}, \mathbf{r}\rangle & \text { if } \mathbf{s}=P(\mathbf{w}) \\ 1 / 2 & \text { o.w. }\end{cases}
$$

The Loss Function:

- Absolute loss (= expected 0-1)

$$
\ell(h,((\mathbf{r}, \mathbf{s}), b))=|h(\mathbf{r}, \mathbf{s})-b|
$$

Proof: The Learning Problem

The Hypothesis Class

- $\mathcal{H}=\left\{h_{\mathbf{w}}: \mathbf{w} \in\{0,1\}^{n}\right\}$ where $h_{\mathbf{w}}: \mathcal{X} \rightarrow[0,1]$ is

$$
h_{\mathbf{w}}(\mathbf{r}, \mathbf{s})= \begin{cases}\langle\mathbf{w}, \mathbf{r}\rangle & \text { if } \mathbf{s}=P(\mathbf{w}) \\ 1 / 2 & \text { o.w. }\end{cases}
$$

The Loss Function:

- Absolute loss (= expected 0-1)

$$
\ell(h,((\mathbf{r}, \mathbf{s}), b))=|h(\mathbf{r}, \mathbf{s})-b|= \begin{cases}0 & \text { if } \mathbf{s}=P(\mathbf{w}) \\ 1 / 2 & \text { o.w. }\end{cases}
$$

- Note: $L_{\mathcal{D}}\left(h_{\mathbf{w}}\right)=\mathbb{P}[\mathbf{s} \neq P(\mathbf{w})] \cdot \frac{1}{2}$

Proof: The Learning Problem

The Hypothesis Class

- $\mathcal{H}=\left\{h_{\mathbf{w}}: \mathbf{w} \in\{0,1\}^{n}\right\}$ where $h_{\mathbf{w}}: \mathcal{X} \rightarrow[0,1]$ is

$$
h_{\mathbf{w}}(\mathbf{r}, \mathbf{s})= \begin{cases}\langle\mathbf{w}, \mathbf{r}\rangle & \text { if } \mathbf{s}=P(\mathbf{w}) \\ 1 / 2 & \text { o.w. }\end{cases}
$$

The Loss Function:

- Absolute loss (= expected 0-1)

$$
\ell(h,((\mathbf{r}, \mathbf{s}), b))=|h(\mathbf{r}, \mathbf{s})-b|= \begin{cases}0 & \text { if } \mathbf{s}=P(\mathbf{w}) \\ 1 / 2 & \text { o.w. }\end{cases}
$$

- Note: $L_{\mathcal{D}}\left(h_{\mathbf{w}}\right)=\mathbb{P}[\mathbf{s} \neq P(\mathbf{w})] \cdot \frac{1}{2}$
- Agnostic: $L_{\mathcal{D}}\left(h_{\mathbf{w}}\right)=0$ only if $\mathbb{P}[\mathbf{s}=P(\mathbf{w})]=1$

Proof of Second Claim

Proof of Second Claim

- Suppose we can learn with $m=O(\log (n))$ examples
- $\forall \mathbf{w}$, define $\mathcal{D}_{\mathbf{w}}$ s.t. \mathbf{r} is uniform, $\mathbf{s}=P(\mathbf{w})$, and $b=\langle\mathbf{r}, \mathbf{w}\rangle$
- To generate an i.i.d. training set from $\mathcal{D}_{\mathbf{w}}$:
- Pick $\mathbf{r}_{1}, \ldots, \mathbf{r}_{m}$ and b_{1}, \ldots, b_{m} at random
- If $b_{i}=\left\langle\mathbf{r}_{i}, \mathbf{w}\right\rangle$ for all i we're done
- This happens w.p. $1 / 2^{m}=1 / \operatorname{poly}(n)$
- Feed the training set to the learner, to get $h_{\mathbf{w}^{\prime}}(\mathbf{r}, P(\mathbf{w})) \approx\langle\mathbf{r}, \mathbf{w}\rangle$
- Goldreich-Levin theorem \Rightarrow contradiction

Proof of First Claim

- Recall: $L_{\mathcal{D}}\left(h_{\mathbf{w}}\right)=\mathbb{P}[\mathbf{s} \neq P(\mathbf{w})] \cdot \frac{1}{2}=\mathbb{P}\left[P^{-1}(\mathbf{s}) \neq \mathbf{w}\right] \cdot \frac{1}{2}$
- Problem reduces to multiclass prediction with hypothesis class of constant predictors
- Sample complexity is $1 / \epsilon^{2}$

Proof of Third Claim

Proof of Third Claim

Proof of Third Claim

- Original class:

$$
h_{\mathbf{w}}(\mathbf{r}, \mathbf{s})= \begin{cases}\langle\mathbf{w}, \mathbf{r}\rangle & \text { if } \mathbf{s}=P(\mathbf{w}) \\ 1 / 2 & \text { o.w. }\end{cases}
$$

- New class:

$$
h_{\left(\left(\mathbf{r}_{1}, \mathbf{s}^{\prime}\right), b_{1}\right), \ldots,\left(\left(\mathbf{r}_{\left.\left.m^{\prime}, \mathbf{s}^{\prime}\right), b_{m^{\prime}}\right)}(\mathbf{r}, \mathbf{s})=\left\{\begin{array}{ll}
\sum_{i} \alpha_{i} b_{i} & \text { if } \mathbf{r}=\sum_{i} \alpha_{i} \mathbf{r}_{i} \wedge \mathbf{s}=\mathbf{s}^{\prime} \\
1 / 2 & \text { o.w. }
\end{array} \text { (}{ }^{\prime} .\right.\right.\right.}
$$

- New class is efficiently learnable with $m=n / \epsilon^{2}$

Outline

- Time-Sample Complexity \checkmark
- General Techniques:
(1) A larger hypothesis class \checkmark
- Formal Derivation of Gaps (for a synthetic problem) \checkmark
(2) A different loss function
(3) Approximate optimization

Example: Learning Margin-Based Halfspaces

- Without noise, can learn efficiently even if $m=$ sample complexity
- With arbitrary noise, cannot learn efficiently even if $m=\infty$
(S., Shamir, Sridharan 2010)
- What about stochastic noise ?

Learning Margin-Based Halfspaces with Stochastic Noise

$$
\mathcal{H}=\left\{\mathbf{x} \mapsto \phi(\langle\mathbf{w}, \mathbf{x}\rangle):\|\mathbf{w}\|_{2} \leq 1\right\}, \quad \phi: \mathbb{R} \rightarrow[0,1] \text { is } \frac{1}{\mu} \text {-Lipschitz }
$$

- Probabilistic classifier: $\operatorname{Pr}\left[h_{\mathbf{w}}(\mathbf{x})=1\right]=\phi(\langle\mathbf{w}, \mathbf{x}\rangle)$
- Loss function: $\ell(\mathbf{w} ;(\mathbf{x}, y))=\operatorname{Pr}\left[h_{\mathbf{w}}(\mathbf{x}) \neq y\right]=|\phi(\langle\mathbf{w}, \mathbf{x}\rangle)-y|$
- Assumption: $\operatorname{Pr}[y=1 \mid \mathbf{x}]=\phi\left(\left\langle\mathbf{w}^{\star}, \mathbf{x}\right\rangle\right)$

Learning Halfspaces with Stochastic Noise

- Goal: find h s.t.

$$
\mathbb{E}[|h(\mathbf{x})-y|]-\mathbb{E}\left[\left|\phi\left(\left\langle\mathbf{w}^{\star}, \mathbf{x}\right\rangle\right)-y\right|\right] \leq \epsilon .
$$

Learning Halfspaces with Stochastic Noise

- Goal: find h s.t.

$$
\mathbb{E}[|h(\mathbf{x})-y|]-\mathbb{E}\left[\left|\phi\left(\left\langle\mathbf{w}^{\star}, \mathbf{x}\right\rangle\right)-y\right|\right] \leq \epsilon
$$

- Idea: replace the loss function:

$$
\begin{aligned}
\mathbb{E}|h(\mathbf{x})-y| & -\mathbb{E}\left|\phi\left(\left\langle\mathbf{w}^{\star}, \mathbf{x}\right\rangle\right)-y\right| \\
& \leq \mathbb{E}\left[\mid h(\mathbf{x})-\phi\left(\left\langle\mathbf{w}^{\star}, \mathbf{x}\right\rangle \mid\right]\right. \\
& \leq \sqrt{\mathbb{E}\left[\left(h(\mathbf{x})-\phi\left(\left\langle\mathbf{w}^{\star}, \mathbf{x}\right\rangle\right)\right)^{2}\right]}
\end{aligned}
$$

Learning Halfspaces with Stochastic Noise

- Goal: find h s.t.

$$
\mathbb{E}[|h(\mathbf{x})-y|]-\mathbb{E}\left[\left|\phi\left(\left\langle\mathbf{w}^{\star}, \mathbf{x}\right\rangle\right)-y\right|\right] \leq \epsilon .
$$

- Idea: replace the loss function:

$$
\begin{aligned}
\mathbb{E}|h(\mathbf{x})-y| & -\mathbb{E}\left|\phi\left(\left\langle\mathbf{w}^{\star}, \mathbf{x}\right\rangle\right)-y\right| \\
& \leq \mathbb{E}\left[\mid h(\mathbf{x})-\phi\left(\left\langle\mathbf{w}^{\star}, \mathbf{x}\right\rangle \mid\right]\right. \\
& \leq \sqrt{\mathbb{E}\left[\left(h(\mathbf{x})-\phi\left(\left\langle\mathbf{w}^{\star}, \mathbf{x}\right\rangle\right)\right)^{2}\right]}
\end{aligned}
$$

- Kalai-Sastry, Kakade-Kalai-Kanade-Shamir: The GLM-Tron algorithm learns h such that

$$
\mathbb{E}\left[(h(\mathbf{x})-\phi(\langle\mathbf{w}, \mathbf{x}\rangle))^{2}\right] \leq O\left(\sqrt{\frac{1 / \mu^{2}}{m}}\right)
$$

Learning Halfspaces with Stochastic Noise

- Goal: find h s.t.

$$
\mathbb{E}[|h(\mathbf{x})-y|]-\mathbb{E}\left[\left|\phi\left(\left\langle\mathbf{w}^{\star}, \mathbf{x}\right\rangle\right)-y\right|\right] \leq \epsilon
$$

- Idea: replace the loss function:

$$
\begin{aligned}
\mathbb{E}|h(\mathbf{x})-y| & -\mathbb{E}\left|\phi\left(\left\langle\mathbf{w}^{\star}, \mathbf{x}\right\rangle\right)-y\right| \\
& \leq \mathbb{E}\left[\mid h(\mathbf{x})-\phi\left(\left\langle\mathbf{w}^{\star}, \mathbf{x}\right\rangle \mid\right]\right. \\
& \leq \sqrt{\mathbb{E}\left[\left(h(\mathbf{x})-\phi\left(\left\langle\mathbf{w}^{\star}, \mathbf{x}\right\rangle\right)\right)^{2}\right]}
\end{aligned}
$$

- Kalai-Sastry, Kakade-Kalai-Kanade-Shamir: The GLM-Tron algorithm learns h such that

$$
\mathbb{E}\left[(h(\mathbf{x})-\phi(\langle\mathbf{w}, \mathbf{x}\rangle))^{2}\right] \leq O\left(\sqrt{\frac{1 / \mu^{2}}{m}}\right)
$$

- Corollary: There is an efficient algorithm that learns Halfspaces with stochastic noise using $\left(1 /(\mu \epsilon)^{4}\right)$ examples

More Data Less Work

	Samples	Time
ERM $_{\mathcal{H}}$	$\frac{1}{\mu^{2} \epsilon^{2}}$	$e^{\frac{1}{\mu \epsilon}}$
GLM-Tron	$\frac{1}{\mu^{4} \epsilon^{4}}$	$\frac{1}{\mu^{4} \epsilon^{4}}$

The General Technique

$$
\underset{S}{\mathbb{E}}\left[L_{\mathcal{D}}\left(h_{S}\right)\right]-\min _{h \in \mathcal{H}} L_{\mathcal{D}}(h) \leq f\left(\underset{S}{\mathbb{E}}\left[L_{\mathcal{D}}^{(n)}\left(h_{S}\right)\right]-\min _{h \in \mathcal{H}} L_{\mathcal{D}}^{(n)}(h)\right)
$$

How Can More Data Reduce Runtime?

(1) A larger hypothesis class \checkmark
(2) A different loss function \checkmark
(3) Approximate optimization

3-term error decomposition (Bottou \& Bousquet)

$$
h^{\star}=\operatorname{argmin}_{h \in \mathcal{H}} L_{\mathcal{D}}(h) \quad ; \quad h_{S}^{\star}=\operatorname{argmin}_{h \in \mathcal{H}} L_{S}(h)
$$

3-term error decomposition (Bottou \& Bousquet)

$$
\begin{aligned}
& h^{\star}=\operatorname{argmin}_{h \in \mathcal{H}} L_{\mathcal{D}}(h) ; \quad h_{S}^{\star}=\operatorname{argmin}_{h \in \mathcal{H}} L_{S}(h) \\
& L_{\mathcal{D}}\left(h_{S}\right)=\underbrace{L_{\mathcal{D}}\left(h^{\star}\right)}_{\text {approximation }}+\underbrace{L_{\mathcal{D}}\left(h_{S}^{\star}\right)-L_{\mathcal{D}}\left(h^{\star}\right)}_{\text {estimation }}+\underbrace{L_{\mathcal{D}}\left(h_{S}\right)-L_{\mathcal{D}}\left(h_{S}^{\star}\right)}_{\text {optimization }}
\end{aligned}
$$

3 -term error decomposition (Bottou \& Bousquet)

$$
h^{\star}=\operatorname{argmin}_{h \in \mathcal{H}} L_{\mathcal{D}}(h) \quad ; \quad h_{S}^{\star}=\operatorname{argmin}_{h \in \mathcal{H}} L_{S}(h)
$$

$$
L_{\mathcal{D}}\left(h_{S}\right)=\underbrace{L_{\mathcal{D}}\left(h^{\star}\right)}_{\text {approximation }}+\underbrace{L_{\mathcal{D}}\left(h_{S}^{\star}\right)-L_{\mathcal{D}}\left(h^{\star}\right)}_{\text {estimation }}+\underbrace{L_{\mathcal{D}}\left(h_{S}\right)-L_{\mathcal{D}}\left(h_{S}^{\star}\right)}_{\text {optimization }}
$$

Convex Learning Problems

- \mathcal{H} is a convex set
- For all \mathbf{z}, the function $\ell(\cdot, \mathbf{z})$ is convex and Lipschitz
- Example: SVM learning (hinge-loss minimization)

Solving Convex Learning Problems

Solving Convex Learning Problems

- Both methods have the same sample complexity in the worst case.
- But, ERM can be better on many distributions

Second-Order Stochastic Gradient Descent

- Smaller sample complexity under some spectral assumptions, E.g Leon Bottou's talk today
- But, runtime is $\Omega\left(d^{2}\right)$ per iteration
- When d is large, we might prefer running SGD (for approximately solving the ERM problem)

More Data Less Work for SGD

Theoretical

Empirical (CCAT)

Summary

- A formal model for Time-Sample Complexity
- Different techniques for improving training time when more examples are available
- Formal derivation of gaps

Open Questions

- Other techniques ?
- Showing gaps for real-world problems ?

