Using more data to speed-up training time

Shai Shalev-Shwartz

School of Computer Science and Engineering The Hebrew University of Jerusalem

COST Workshop, NIPS 2011

Based on joint work with

- Nati Srebro
- Ohad Shamir and Eran Tromer

- Time-Sample Complexity
- General Techniques:
 - A larger hypothesis class
 - Formal Derivation of Gaps
 - 2 A different loss function
 - Approximate optimization

- Domain Z (e.g. $Z = \mathcal{X} \times \mathcal{Y}$)
- Hypothesis class \mathcal{H} (our "inductive bias")
- Loss function: $\ell : \mathcal{H} \times Z \to \mathbb{R}$
- $\mathcal D$ unknown distribution over Z
- True risk: $L_{\mathcal{D}}(h) = \mathbb{E}_{z \sim \mathcal{D}}[\ell(h, z)]$
- Training set: $S = (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m) \overset{\text{i.i.d.}}{\sim} \mathcal{D}^m$
- Goal: use S to find h_S s.t.

$$\mathbb{E}_{S} L_{\mathcal{D}}(h_{S}) \le \min_{h \in \mathcal{H}} L_{\mathcal{D}}(h) + \epsilon$$

Joint Time-Sample Complexity

Goal:

$$\mathbb{E}_{S \sim \mathcal{D}^m}[L_{\mathcal{D}}(h_S)] \leq \min_{h \in \mathcal{H}} L_{\mathcal{D}}(h) + \epsilon$$

3

< 4 ₽ > < 3

Joint Time-Sample Complexity

Goal:

$$\mathop{\mathbb{E}}_{S \sim \mathcal{D}^m} [L_{\mathcal{D}}(h_S)] \leq \min_{h \in \mathcal{H}} L_{\mathcal{D}}(h) + \epsilon$$

- Sample complexity: How many examples are needed ?
- Time complexity: How much time is needed ?

Joint Time-Sample Complexity

Goal:

$$\mathbb{E}_{S \sim \mathcal{D}^m}[L_{\mathcal{D}}(h_S)] \leq \min_{h \in \mathcal{H}} L_{\mathcal{D}}(h) + \epsilon$$

- Sample complexity: How many examples are needed ?
- Time complexity: How much time is needed ?

• Decatur, Goldreich, Ron 1998: "Computational Sample Complexity"

- Only distinguishes polynomial vs. non-polynomial
- Only binary classification in the realizable case
- Very few results on "real-world" problems, e.g. Rocco Servedio showed gaps for 1-decision lists
- Bottou & Bousquet 2008: "The Tradeoffs of Large Scale Learning"
 - Study the effect of *optimization error* in generalized linear problems based on upper bounds

- A larger hypothesis class
- A different loss function
- Approximate optimization

The Learning Problem:

- $\mathcal{X} = [d] \times [d]$, $\mathcal{Y} = \{0, 1\}$, $Z = \mathcal{X} \times \mathcal{Y}$
- Given $(i,j) \in \mathcal{X}$ predict if i is preferable over j
- \mathcal{H} is all permutations over [d]
- Loss function = zero-one loss

The Learning Problem:

- $\mathcal{X} = [d] \times [d]$, $\mathcal{Y} = \{0, 1\}$, $Z = \mathcal{X} \times \mathcal{Y}$
- $\bullet~\mbox{Given}~(i,j)\in \mathcal{X}$ predict if i is preferable over j
- \mathcal{H} is all permutations over [d]
- Loss function = zero-one loss

Method I:

- ERM $_{\mathcal{H}}$
- Sample complexity is $\frac{d \log(d)}{\epsilon^2}$

The Learning Problem:

- $\mathcal{X} = [d] \times [d]$, $\mathcal{Y} = \{0, 1\}$, $Z = \mathcal{X} \times \mathcal{Y}$
- Given $(i,j) \in \mathcal{X}$ predict if i is preferable over j
- \mathcal{H} is all permutations over [d]
- Loss function = zero-one loss

Method I:

- ERM $_{\mathcal{H}}$
- Sample complexity is $\frac{d \log(d)}{\epsilon^2}$
- Varun Kanade and Thomas Steinke (2011): If RP≠NP, it is not possible to efficiently find an ε-accurate permutation

The Learning Problem:

- $\mathcal{X} = [d] \times [d]$, $\mathcal{Y} = \{0, 1\}$, $Z = \mathcal{X} \times \mathcal{Y}$
- $\bullet~\mbox{Given}~(i,j)\in \mathcal{X}$ predict if i is preferable over j
- \mathcal{H} is all permutations over [d]
- Loss function = zero-one loss

Method I:

- ERM $_{\mathcal{H}}$
- Sample complexity is $\frac{d \log(d)}{\epsilon^2}$
- Varun Kanade and Thomas Steinke (2011): If RP≠NP, it is not possible to efficiently find an ε-accurate permutation
- Claim: If $m \geq d^2/\epsilon^2$ it is possible to find a predictor with error $\leq \epsilon$ in polynomial time

/□ ▶ 《 ⋽ ▶ 《 ⋽

- \bullet Let $\mathcal{H}^{(n)}$ be the set of all functions from $\mathcal X$ to $\mathcal Y$
- $\mathsf{ERM}_{\mathcal{H}^{(n)}}$ can be computed efficiently
- Sample complexity: $VC(\mathcal{H}^{(n)})/\epsilon^2 = d^2/\epsilon^2$
- Improper learning

	Samples	Time
$ERM_{\mathcal{H}}$	$d\log(d)$	d!
$ERM_{\mathcal{H}^{(n)}}$	d^2	d^2

COST NIPS'11 9 / 30

- Analysis is based on upper bounds
- Is it possible to (improperly) learn efficiently with $d \log(d)$ examples ? (Posed as an open problem by Jake Abernathy)
- Main open problem: establish gaps by deriving lower bounds (for improper learning!)

Formal Derivation of Gaps

Theorem: Assume one-way permutations exist, there exists an agnostic learning problem such that:

Proof: One Way Permutations

 $P: \{0,1\}^n \rightarrow \{0,1\}^n$ is one-way permutation if it's one-to-one and

- It is easy to compute $\mathbf{w} = P(\mathbf{s})$
- It is hard to compute $\mathbf{s} = P^{-1}(\mathbf{w})$

Proof: One Way Permutations

 $P: \{0,1\}^n \rightarrow \{0,1\}^n$ is one-way permutation if it's one-to-one and

- It is easy to compute $\mathbf{w} = P(\mathbf{s})$
- It is hard to compute $\mathbf{s} = P^{-1}(\mathbf{w})$

Goldreich-Levin Theorem: If P is one way, then for any algorithm A,

$$\exists \mathbf{w} \text{ s.t. } \mathbb{P}[A(\mathbf{r}, P(\mathbf{w})) = \langle \mathbf{r}, \mathbf{w} \rangle] < \frac{1}{2} + \frac{1}{\operatorname{poly}(n)}$$

The Domain

- Let P be a one-way permutation.
- $\mathcal{X} = \{0, 1\}^{2n}, \mathcal{Y} = \{0, 1\}$
- Domain: $Z \subset \mathcal{X} imes \mathcal{Y}$
 - $((\mathbf{r}, \mathbf{s}), b) \in Z$ iff $\langle P^{-1}(\mathbf{s}), \mathbf{r} \rangle = b$
- (Inner product over GF(2))

Proof: The Learning Problem

The Hypothesis Class

•
$$\mathcal{H} = \{h_{\mathbf{w}} : \mathbf{w} \in \{0,1\}^n\}$$
 where $h_{\mathbf{w}} : \mathcal{X} \to [0,1]$ is

$$h_{\mathbf{w}}(\mathbf{r}, \mathbf{s}) = \begin{cases} \langle \mathbf{w}, \mathbf{r} \rangle & \text{if } \mathbf{s} = P(\mathbf{w}) \\ 1/2 & \text{o.w.} \end{cases}$$

The Loss Function:

• Absolute loss (= expected 0-1)

$$\ell(h, ((\mathbf{r}, \mathbf{s}), b)) = |h(\mathbf{r}, \mathbf{s}) - b|$$

Proof: The Learning Problem

The Hypothesis Class

•
$$\mathcal{H} = \{h_{\mathbf{w}} : \mathbf{w} \in \{0,1\}^n\}$$
 where $h_{\mathbf{w}} : \mathcal{X} \to [0,1]$ is

$$h_{\mathbf{w}}(\mathbf{r}, \mathbf{s}) = \begin{cases} \langle \mathbf{w}, \mathbf{r} \rangle & \text{if } \mathbf{s} = P(\mathbf{w}) \\ 1/2 & \text{o.w.} \end{cases}$$

The Loss Function:

$$\ell(h, ((\mathbf{r}, \mathbf{s}), b)) = |h(\mathbf{r}, \mathbf{s}) - b| = \begin{cases} 0 & \text{if } \mathbf{s} = P(\mathbf{w}) \\ 1/2 & \text{o.w.} \end{cases}$$

• Note:
$$L_{\mathcal{D}}(h_{\mathbf{w}}) = \mathbb{P}[\mathbf{s} \neq P(\mathbf{w})] \cdot \frac{1}{2}$$

Proof: The Learning Problem

The Hypothesis Class

•
$$\mathcal{H} = \{h_{\mathbf{w}} : \mathbf{w} \in \{0,1\}^n\}$$
 where $h_{\mathbf{w}} : \mathcal{X} \to [0,1]$ is

$$h_{\mathbf{w}}(\mathbf{r}, \mathbf{s}) = \begin{cases} \langle \mathbf{w}, \mathbf{r} \rangle & \text{if } \mathbf{s} = P(\mathbf{w}) \\ 1/2 & \text{o.w.} \end{cases}$$

The Loss Function:

• Absolute loss (= expected 0-1)

$$\ell(h, ((\mathbf{r}, \mathbf{s}), b)) = |h(\mathbf{r}, \mathbf{s}) - b| = \begin{cases} 0 & \text{if } \mathbf{s} = P(\mathbf{w}) \\ 1/2 & \text{o.w.} \end{cases}$$

- Note: $L_{\mathcal{D}}(h_{\mathbf{w}}) = \mathbb{P}[\mathbf{s} \neq P(\mathbf{w})] \cdot \frac{1}{2}$
- Agnostic: $L_{\mathcal{D}}(h_{\mathbf{w}}) = 0$ only if $\mathbb{P}[\mathbf{s} = P(\mathbf{w})] = 1$

Proof of Second Claim

э

A 🖓 h

э

Proof of Second Claim

- Suppose we can learn with $m = O(\log(n))$ examples
- $\forall \mathbf{w}$, define $\mathcal{D}_{\mathbf{w}}$ s.t. \mathbf{r} is uniform, $\mathbf{s} = P(\mathbf{w})$, and $b = \langle \mathbf{r}, \mathbf{w} \rangle$
- To generate an i.i.d. training set from $\mathcal{D}_{\mathbf{w}}$:
 - Pick $\mathbf{r}_1, \ldots, \mathbf{r}_m$ and b_1, \ldots, b_m at random
 - If $b_i = \langle \mathbf{r}_i, \mathbf{w} \rangle$ for all i we're done
 - This happens w.p. $1/2^m = 1/\text{poly}(n)$
- Feed the training set to the learner, to get $h_{\mathbf{w}'}(\mathbf{r}, P(\mathbf{w})) \approx \langle \mathbf{r}, \mathbf{w} \rangle$
- Goldreich-Levin theorem \Rightarrow contradiction

Proof of First Claim

- Recall: $L_{\mathcal{D}}(h_{\mathbf{w}}) = \mathbb{P}[\mathbf{s} \neq P(\mathbf{w})] \cdot \frac{1}{2} = \mathbb{P}[P^{-1}(\mathbf{s}) \neq \mathbf{w}] \cdot \frac{1}{2}$
- Problem reduces to *multiclass* prediction with hypothesis class of constant predictors
- Sample complexity is $1/\epsilon^2$

Proof of Third Claim

표 문 문

Image: A match a ma

Proof of Third Claim

3. 3

Image: A math and A math and

Proof of Third Claim

• Original class:

$$h_{\mathbf{w}}(\mathbf{r}, \mathbf{s}) = \begin{cases} \langle \mathbf{w}, \mathbf{r} \rangle & \text{if } \mathbf{s} = P(\mathbf{w}) \\ 1/2 & \text{o.w.} \end{cases}$$

New class:

$$h_{((\mathbf{r}_1,\mathbf{s}'),b_1),\dots,((\mathbf{r}_{m'},\mathbf{s}'),b_{m'})}(\mathbf{r},\mathbf{s}) = \begin{cases} \sum_i \alpha_i b_i & \text{if } \mathbf{r} = \sum_i \alpha_i \mathbf{r}_i \wedge \mathbf{s} = \mathbf{s}' \\ 1/2 & \text{o.w.} \end{cases}$$

• New class is efficiently learnable with $m = n/\epsilon^2$

- Time-Sample Complexity \checkmark
- General Techniques:
 - **1** A larger hypothesis class \checkmark
 - Formal Derivation of Gaps (for a synthetic problem) \checkmark
 - A different loss function
 - Approximate optimization

- Without noise, can learn efficiently even if m = sample complexity
- With arbitrary noise, cannot learn efficiently even if $m = \infty$ (S., Shamir, Sridharan 2010)
- What about stochastic noise ?

Learning Margin-Based Halfspaces with Stochastic Noise

$$\mathcal{H} = \{ \mathbf{x} \mapsto \phi(\langle \mathbf{w}, \mathbf{x} \rangle) : \| \mathbf{w} \|_2 \le 1 \}, \quad \phi : \mathbb{R} \to [0, 1] \text{ is } \frac{1}{\mu} \text{-Lipschitz}$$

- Probabilistic classifier: $\Pr[h_{\mathbf{w}}(\mathbf{x})=1]=\phi(\langle \mathbf{w},\mathbf{x}\rangle)$
- Loss function: $\ell(\mathbf{w}; (\mathbf{x}, y)) = \Pr[h_{\mathbf{w}}(\mathbf{x}) \neq y] = |\phi(\langle \mathbf{w}, \mathbf{x} \rangle) y|$
- Assumption: $\Pr[y = 1 | \mathbf{x}] = \phi(\langle \mathbf{w}^{\star}, \mathbf{x} \rangle)$

• Goal: find h s.t.

$$\mathbb{E}[|h(\mathbf{x}) - y|] - \mathbb{E}[|\phi(\langle \mathbf{w}^{\star}, \mathbf{x} \rangle) - y|] \le \epsilon .$$

• Goal: find h s.t.

$$\mathbb{E}[|h(\mathbf{x}) - y|] - \mathbb{E}[|\phi(\langle \mathbf{w}^{\star}, \mathbf{x} \rangle) - y|] \le \epsilon .$$

• Idea: replace the loss function:

$$\begin{split} \mathbb{E} \left| h(\mathbf{x}) - y \right| &- \mathbb{E} \left| \phi(\langle \mathbf{w}^{\star}, \mathbf{x} \rangle) - y \right| \\ &\leq \mathbb{E}[|h(\mathbf{x}) - \phi(\langle \mathbf{w}^{\star}, \mathbf{x} \rangle|] \\ &\leq \sqrt{\mathbb{E}[(h(\mathbf{x}) - \phi(\langle \mathbf{w}^{\star}, \mathbf{x} \rangle))^2]} \end{split}$$

COST NIPS'11

21 / 30

• Goal: find h s.t.

$$\mathbb{E}[|h(\mathbf{x}) - y|] - \mathbb{E}[|\phi(\langle \mathbf{w}^{\star}, \mathbf{x} \rangle) - y|] \le \epsilon .$$

• Idea: replace the loss function:

$$\begin{split} \mathbb{E} |h(\mathbf{x}) - y| &- \mathbb{E} |\phi(\langle \mathbf{w}^{\star}, \mathbf{x} \rangle) - y| \\ &\leq \mathbb{E}[|h(\mathbf{x}) - \phi(\langle \mathbf{w}^{\star}, \mathbf{x} \rangle|] \\ &\leq \sqrt{\mathbb{E}[(h(\mathbf{x}) - \phi(\langle \mathbf{w}^{\star}, \mathbf{x} \rangle))^2]} \end{split}$$

• Kalai-Sastry, Kakade-Kalai-Kanade-Shamir: The GLM-Tron algorithm learns h such that

$$\mathbb{E}[(h(\mathbf{x}) - \phi(\langle \mathbf{w}, \mathbf{x} \rangle))^2] \le O\left(\sqrt{\frac{1/\mu^2}{m}}\right)$$

• Goal: find h s.t.

$$\mathbb{E}[|h(\mathbf{x}) - y|] - \mathbb{E}[|\phi(\langle \mathbf{w}^{\star}, \mathbf{x} \rangle) - y|] \le \epsilon .$$

• Idea: replace the loss function:

$$\begin{split} \mathbb{E} \left| h(\mathbf{x}) - y \right| &- \mathbb{E} \left| \phi(\langle \mathbf{w}^{\star}, \mathbf{x} \rangle) - y \right| \\ &\leq \mathbb{E}[|h(\mathbf{x}) - \phi(\langle \mathbf{w}^{\star}, \mathbf{x} \rangle]] \\ &\leq \sqrt{\mathbb{E}[(h(\mathbf{x}) - \phi(\langle \mathbf{w}^{\star}, \mathbf{x} \rangle))^2]} \end{split}$$

• Kalai-Sastry, Kakade-Kalai-Kanade-Shamir: The GLM-Tron algorithm learns h such that

$$\mathbb{E}[(h(\mathbf{x}) - \phi(\langle \mathbf{w}, \mathbf{x} \rangle))^2] \le O\left(\sqrt{\frac{1/\mu^2}{m}}\right)$$

COST NIPS'11

21 / 30

• Corollary: There is an efficient algorithm that learns Halfspaces with stochastic noise using $(1/(\mu\epsilon)^4)$ examples

COST NIPS'11 22 / 30

$$\mathbb{E}_{S}[L_{\mathcal{D}}(h_{S})] - \min_{h \in \mathcal{H}} L_{\mathcal{D}}(h) \le f\left(\mathbb{E}_{S}[L_{\mathcal{D}}^{(n)}(h_{S})] - \min_{h \in \mathcal{H}} L_{\mathcal{D}}^{(n)}(h)\right)$$

Shai Shalev-Shwartz (Hebrew U) Using more data to speed-up training time

くほと くほと くほと

æ

- A larger hypothesis class \checkmark
- ② A different loss function √
- Approximate optimization

3-term error decomposition (Bottou & Bousquet)

$$h^{\star} = \operatorname{argmin}_{h \in \mathcal{H}} L_{\mathcal{D}}(h) \quad ; \quad h_{S}^{\star} = \operatorname{argmin}_{h \in \mathcal{H}} L_{S}(h)$$

3-term error decomposition (Bottou & Bousquet)

$$h^{\star} = \operatorname{argmin}_{h \in \mathcal{H}} L_{\mathcal{D}}(h) \quad ; \quad h_{S}^{\star} = \operatorname{argmin}_{h \in \mathcal{H}} L_{S}(h)$$
$$L_{\mathcal{D}}(h_{S}) = \underbrace{L_{\mathcal{D}}(h^{\star})}_{\text{approximation}} + \underbrace{L_{\mathcal{D}}(h_{S}^{\star}) - L_{\mathcal{D}}(h^{\star})}_{\text{estimation}} + \underbrace{L_{\mathcal{D}}(h_{S}) - L_{\mathcal{D}}(h_{S}^{\star})}_{\text{optimization}}$$

3-term error decomposition (Bottou & Bousquet)

Shai Shalev-Shwartz (Hebrew U) Using more data to speed-up training time

- \mathcal{H} is a convex set
- \bullet For all $\mathbf{z},$ the function $\ell(\cdot,\mathbf{z})$ is convex and Lipschitz
- Example: SVM learning (hinge-loss minimization)

Solving Convex Learning Problems

COST NIPS'11 27 / 30

Solving Convex Learning Problems

• Both methods have the same sample complexity in the worst case.

COST NIPS'11

27 / 30

• But, ERM can be better on many distributions

- Smaller sample complexity under some spectral assumptions, E.g Leon Bottou's talk today
- But, runtime is $\Omega(d^2)$ per iteration
- When *d* is large, we might prefer running SGD (for approximately solving the ERM problem)

- A formal model for Time-Sample Complexity
- Different techniques for improving training time when more examples are available
- Formal derivation of gaps

Open Questions

- Other techniques ?
- Showing gaps for real-world problems ?