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Outline

Time-Sample Complexity

General Techniques:
1 A larger hypothesis class

Formal Derivation of Gaps

2 A different loss function
3 Approximate optimization
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Agnostic PAC Learning

Domain Z (e.g. Z = X × Y)

Hypothesis class H (our “inductive bias”)

Loss function: ` : H× Z → R
D - unknown distribution over Z

True risk: LD(h) = Ez∼D[`(h, z)]

Training set: S = (x1, y1), . . . , (xm, ym)
i.i.d.∼ Dm

Goal: use S to find hS s.t.

E
S
LD(hS) ≤ min

h∈H
LD(h) + ε
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Joint Time-Sample Complexity

Goal:
E

S∼Dm
[LD(hS)] ≤ min

h∈H
LD(h) + ε

Sample complexity: How many examples are needed ?

Time complexity: How much time is needed ?

TH,ε(m) = how much time is needed when |S| = m ?

Time-sample complexity

TH,ε

m
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Joint Time-Sample Complexity

Decatur, Goldreich, Ron 1998: “Computational Sample Complexity”

Only distinguishes polynomial vs. non-polynomial
Only binary classification in the realizable case
Very few results on ”real-world” problems, e.g.
Rocco Servedio showed gaps for 1-decision lists

Bottou & Bousquet 2008: “The Tradeoffs of Large Scale Learning”

Study the effect of optimization error in generalized linear problems
based on upper bounds
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How Can More Data Reduce Runtime?

1 A larger hypothesis class

2 A different loss function

3 Approximate optimization
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Example: Agnostic learning Preferences

The Learning Problem:

X = [d]× [d], Y = {0, 1}, Z = X × Y
Given (i, j) ∈ X predict if i is preferable over j

H is all permutations over [d]

Loss function = zero-one loss

Method I:

ERMH

Sample complexity is d log(d)
ε2

Varun Kanade and Thomas Steinke (2011): If RP6=NP, it is not
possible to efficiently find an ε-accurate permutation

Claim: If m ≥ d2/ε2 it is possible to find a predictor with error ≤ ε in
polynomial time
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Example: Agnostic learning Preferences

Let H(n) be the set of all functions from X to Y
ERMH(n) can be computed efficiently

Sample complexity: V C(H(n))/ε2 = d2/ε2

Improper learning

H

H(n)
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More Data Less Work

?Time

Samples

ERMH

ERMH(n)

Samples Time

ERMH d log(d) d!
ERMH(n) d2 d2
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Lower bounds ?

Analysis is based on upper bounds

Is it possible to (improperly) learn efficiently with d log(d) examples ?
(Posed as an open problem by Jake Abernathy)

Main open problem: establish gaps by deriving lower bounds (for
improper learning!)
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Formal Derivation of Gaps

Theorem: Assume one-way permutations exist, there exists an agnostic
learning problem such that:

TH,ε(m)

2n + 1
ε2

> poly(n)

n3

ε6

m
n
ε2log(n)1

ε2
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Proof: One Way Permutations

P : {0, 1}n → {0, 1}n is one-way permutation if it’s one-to-one and

It is easy to compute w = P (s)

It is hard to compute s = P−1(w)

Goldreich-Levin Theorem: If P is one way, then for any algorithm A,

∃w s.t. P
r
[A(r, P (w)) = 〈r,w〉] < 1

2
+

1

poly(n)
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Proof: The Learning Problem

The Domain

Let P be a one-way permutation.

X = {0, 1}2n,Y = {0, 1}
Domain: Z ⊂ X × Y

((r, s), b) ∈ Z iff 〈P−1(s), r〉 = b

(Inner product over GF(2))
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Proof: The Learning Problem

The Hypothesis Class

H = {hw : w ∈ {0, 1}n} where hw : X → [0, 1] is

hw(r, s) =

{
〈w, r〉 if s = P (w)

1/2 o.w.

The Loss Function:

Absolute loss (= expected 0-1)

`(h, ((r, s), b)) = |h(r, s)− b|

=

{
0 if s = P (w)

1/2 o.w.

Note: LD(hw) = P[s 6= P (w)] · 12
Agnostic: LD(hw) = 0 only if P[s = P (w)] = 1
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Proof of Second Claim

2n + 1
ε2

> poly(n)
n3

ε6

m
n
ε2log(n)1

ε2

Suppose we can learn with m = O(log(n)) examples

∀w, define Dw s.t. r is uniform, s = P (w), and b = 〈r,w〉
To generate an i.i.d. training set from Dw:

Pick r1, . . . , rm and b1, . . . , bm at random
If bi = 〈ri,w〉 for all i we’re done
This happens w.p. 1/2m = 1/poly(n)

Feed the training set to the learner, to get hw′(r, P (w)) ≈ 〈r,w〉
Goldreich-Levin theorem ⇒ contradiction
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Proof of First Claim

2n + 1
ε2

> poly(n)
n3

ε6

m
n
ε2log(n)1

ε2

Recall: LD(hw) = P[s 6= P (w)] · 12 = P[P−1(s) 6= w] · 12
Problem reduces to multiclass prediction with hypothesis class of
constant predictors

Sample complexity is 1/ε2
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Proof of Third Claim

2n + 1
ε2

> poly(n)
n3

ε6

m
n
ε2log(n)1

ε2

H

H(n)

Original class:

hw(r, s) =

{
〈w, r〉 if s = P (w)

1/2 o.w.

New class:

h((r1,s′),b1),...,((rm′ ,s′),bm′ )(r, s) =

{∑
i αibi if r =

∑
i αiri ∧ s = s′

1/2 o.w.

New class is efficiently learnable with m = n/ε2
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Outline

Time-Sample Complexity X
General Techniques:

1 A larger hypothesis class X
Formal Derivation of Gaps (for a synthetic problem) X

2 A different loss function
3 Approximate optimization
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Example: Learning Margin-Based Halfspaces

noiseNone X

Arbitrary x

Stochastic ?

Without noise, can learn efficiently even if m = sample complexity

With arbitrary noise, cannot learn efficiently even if m =∞
(S., Shamir, Sridharan 2010)

What about stochastic noise ?
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Learning Margin-Based Halfspaces with Stochastic Noise

H = {x 7→ φ(〈w,x〉) : ‖w‖2 ≤ 1}, φ : R→ [0, 1] is 1
µ -Lipschitz

-1 1

1

Probabilistic classifier: Pr[hw(x) = 1] = φ(〈w,x〉)
Loss function: `(w; (x, y)) = Pr[hw(x) 6= y] = |φ(〈w,x〉)− y|
Assumption: Pr[y = 1|x] = φ(〈w?,x〉)
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Learning Halfspaces with Stochastic Noise

Goal: find h s.t.

E[|h(x)− y|]− E[|φ(〈w?,x〉)− y|] ≤ ε .

Idea: replace the loss function:

E |h(x)− y| − E |φ(〈w?,x〉)− y|
≤ E[|h(x)− φ(〈w?,x〉|]

≤
√

E[(h(x)− φ(〈w?,x〉))2]

Kalai-Sastry, Kakade-Kalai-Kanade-Shamir: The GLM-Tron algorithm
learns h such that

E[(h(x)− φ(〈w,x〉))2] ≤ O

(√
1/µ2

m

)
Corollary: There is an efficient algorithm that learns Halfspaces with
stochastic noise using (1/(µε)4) examples
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More Data Less Work

?Time

Samples

ERMH

GLM-Tron

Samples Time

ERMH
1

µ2ε2
e

1
µε

GLM-Tron 1
µ4ε4

1
µ4ε4
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The General Technique

E
S

[LD(hS)]−min
h∈H

LD(h) ≤ f
(
E
S

[L
(n)
D (hS)]−min

h∈H
L
(n)
D (h)

)
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How Can More Data Reduce Runtime?

1 A larger hypothesis class X
2 A different loss function X
3 Approximate optimization
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3-term error decomposition (Bottou & Bousquet)

h? = argminh∈H LD(h) ; h?S = argminh∈H LS(h)

LD(hS) = LD(h?)︸ ︷︷ ︸
approximation

+LD(h?S)− LD(h?)︸ ︷︷ ︸
estimation

+LD(hS)− LD(h?S)︸ ︷︷ ︸
optimization

approximation

estimation

optimization

LD(hS)

LD(hS)

m
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Convex Learning Problems

H is a convex set

For all z, the function `(·, z) is convex and Lipschitz

Example: SVM learning (hinge-loss minimization)
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Solving Convex Learning Problems

Goal: minh Ez∼D[`(h, z)]

minh
1
m

∑m
i=1 `(h, zi)

ERM

h← h− η∇`(h, zi)

SGD

Both methods have the same sample complexity in the worst case.

But, ERM can be better on many distributions
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Second-Order Stochastic Gradient Descent

Smaller sample complexity under some spectral assumptions, E.g
Leon Bottou’s talk today

But, runtime is Ω(d2) per iteration

When d is large, we might prefer running SGD (for approximately
solving the ERM problem)
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More Data Less Work for SGD

Theoretical Empirical (CCAT)
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Summary

A formal model for Time-Sample Complexity

Different techniques for improving training time when more examples
are available

Formal derivation of gaps

Open Questions

Other techniques ?

Showing gaps for real-world problems ?
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