Online Prediction, Low Regret, and Convex Duality

Shai Shalev-Shwartz

Toyota Technological Institute at Chicago

GIF Workshop, Tübingen, May 15-16, 2008

Shalev-Shwartz (TTI-C)

Regret & Duality

Tübingen'08 1 / 28

Prediction task

For t = 1, 2, ..., T

- Predict: $\hat{y}_t \in \{\pm 1\}$
- Get: *y*^{*t*} ∈ {±1}

• Suffer loss:
$$\ell_{0-1}(\hat{y}_t, y_t) = \begin{cases} 1 & y_t \neq \hat{y}_t \\ 0 & y_t = \hat{y}_t \end{cases}$$

Regret

• Best in hindsight
$$y^* = \operatorname{sign}(\sum_t y_t)$$

• Regret: $R_T = \sum_{t=1}^T \ell_{0-1}(\hat{y}_t, y_t) - \sum_{t=1}^T \ell_{0-1}(y^*, y_t)$

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Abstract Prediction Model

- Set of decisions S
- Set of loss functions $\mathcal{L} = \{\ell : S \to \mathbb{R}\}$

Prediction Game

For t = 1, ..., T

- Learner chooses a decision $\mathbf{w}_t \in S$
- Environment chooses a loss function $\ell_t \in \mathcal{L}$
- Learner suffers loss l(wt)
- Goal: Conditions on S and L that guarantee low regret

$$R_T := \sum_{t=1}^T \ell_t(\mathbf{w}_t) - \sum_{t=1}^T \ell_t(\mathbf{w}^*) \stackrel{!}{=} o(T)$$

- Identifying sufficient conditions for predictability
 - Size matters?
 - No !
 - Maybe yes with randomization ?
 - A modern view: revealing an underlying convexity
- Regret and Convex Duality
- Generality and related work
- Experimental results

- E - N

- *S* = {±1}
- $\mathcal{L} = \{\ell_{0-1}(w_t, 1), \ell_{0-1}(w_t, -1)\}$
- Adversary can make the cumulative loss of the learner to be *T* by using $\ell_t(\cdot) = \ell_{0-1}(\cdot, -w_t)$
- The loss of the constant prediction $w^* = \operatorname{sign}(\sum_t w_t)$ is at most T/2
- Regret is at least T/2

Conclusion

- In the above example, $|S| = |\mathcal{L}| = 2$.
- Small size does not guarantee low regret

(4) (5) (4) (5)

- Learner predicts $\hat{y}_t = 1$ with probability w_t
- Best in hindsight: $y_t^* = 1$ with probability w^* where $w^* = \frac{|\{t:y_t=1\}|}{T}$
- Analyze the expected regret:

$$\sum_{t=1}^{T} \mathbb{E}[\hat{y}_t \neq y_t] - \sum_{t=1}^{T} \mathbb{E}[y_t^{\star} \neq y_t]$$

• There are algorithms that achieve expected regret of $O(\sqrt{T})$

A modern view: revealing an underlying convexity

Expected zero-one loss can be rewritten as

$$\mathbb{E}[\hat{y}_t \neq y_t] = \begin{cases} 1 - w_t & \text{if } y_t = 1 \\ w_t & \text{if } y_t = -1 \end{cases}$$

Going back to our abstract model, we get that:

•
$$S = [0, 1]$$

• $\mathcal{L} = \{\ell(w) = 1 - w, \ell(w) = w\}$

Properties

- All functions in L are linear (and thus are convex and Lipschitz)
- S is convex and bounded
- Sufficient conditions for low regret ?

The convexity assumption is natural in many cases.

Example: Prediction with Expert Advice

- Learner receives a vector $(x_1^t, \dots, x_d^t) \in [-1, 1]^d$ of experts advice
- Learner needs to predict a target $\hat{y}_t \in \mathbb{R}$
- Environment gives correct target $y_t \in \mathbb{R}$
- Learner suffers loss $|y_t \hat{y}_t|$
- Goal: Be almost as good as the best experts committee $\sum_{t} |y_t - \hat{y}_t| - \sum_{t} |y_t - \langle \mathbf{w}^{\star}, \mathbf{x}^t \rangle| \stackrel{!}{=} o(T)$

The convexity assumption is natural in many cases.

Example: Prediction with Expert Advice

- Learner receives a vector $(x_1^t, \dots, x_d^t) \in [-1, 1]^d$ of experts advice
- Learner needs to predict a target $\hat{y}_t \in \mathbb{R}$
- Environment gives correct target $y_t \in \mathbb{R}$
- Learner suffers loss $|y_t \hat{y}_t|$
- Goal: Be almost as good as the best experts committee $\sum_{t} |y_{t} - \hat{y}_{t}| - \sum_{t} |y_{t} - \langle \mathbf{w}^{\star}, \mathbf{x}^{t} \rangle| \stackrel{!}{=} o(T)$

Modeling

• *S* is the *d*-dimensional probability simplex

•
$$\mathcal{L} = \{\ell_{\mathbf{x}, \mathbf{y}}(\mathbf{w}) = |\mathbf{y} - \langle \mathbf{w}, \mathbf{x} \rangle| : \mathbf{x} \in [-1, 1]^d, \mathbf{y} \in [-1, 1]\}$$

Example: Convexifying finite decision sets

- Learner should predict an element $s_t \in S' = \{1, \dots, N\}$
- Environment presents non-convex loss function $\ell'_t: S' \to [0, 1]$
- Learner suffers loss $\ell'_t(s_t)$
- Goal: Be almost as good as the best pure prediction

$$\sum_t \ell'_t(\boldsymbol{s}_t) - \sum_t \ell'_t(\boldsymbol{s}^*) \stackrel{!}{=} o(T)$$

Example: Convexifying finite decision sets

- Learner should predict an element $s_t \in S' = \{1, \dots, N\}$
- Environment presents non-convex loss function $\ell'_t: S' \to [0, 1]$
- Learner suffers loss $\ell'_t(s_t)$
- Goal: Be almost as good as the best pure prediction

$$\sum_t \ell'_t(\boldsymbol{s}_t) - \sum_t \ell'_t(\boldsymbol{s}^\star) \stackrel{!}{=} \boldsymbol{o}(T)$$

Modeling

- S is the N-dimensional probability simplex
- Prediction s_t is chosen randomly according to $\mathbf{w}_t \in S$

•
$$\mathcal{L} = \{\ell_{\mathbf{r}}(\mathbf{w}) = \langle \mathbf{w}, \mathbf{r} \rangle : \mathbf{r} \in [0, 1]^N \}$$

•
$$\mathbb{E}[\ell'_t(s_t)] = \ell_{\ell'_t}(\mathbf{w}_t)$$

The Online Convex Programming (OCP) model

- All functions in \mathcal{L} are convex and L-Lipschitz
- S is convex and $\max\{\|\mathbf{w}\|_2 : \mathbf{w} \in S\} = D$
- Then, there exists an algorithm with regret $O(LD\sqrt{T})$
- This is tight (i.e. the minimax value of the game)

Bibliography

- The OCP model was presented by Gordon (1999)
- Zinkevich (2003) proved a regret bound of $O((L^2 + D^2)\sqrt{T})$

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Yes !

- The regret bound does not depend on the dimensionality of *S*
- Similarly to Support Vector Machines, we can use Kernel functions

Yes !

- The regret bound does not depend on the dimensionality of S
- Similarly to Support Vector Machines, we can use Kernel functions

Yes?

- Consider again the prediction with expert advice problem
- *d* experts, each of which gives an "advice" in [-1, 1]
- S is the probability simplex and thus D = 1
- Lipschitz constant is $L = \sqrt{d}$
- Regret is $\Omega(\sqrt{dT})$.
- Is this the best we can do ?

(4) (5) (4) (5)

Low regret algorithmic framework for OCP

- A low regret algorithmic framework for OCP
- Family of sufficient conditions for low regret
- In particular Alternatives to the Lipschitz condition
- In the expert committee example logarithmic dependence on dimension
- Main observation: Relating regret and duality

Fenchel Conjugate

The Fenchel conjugate of the function $f : S \to \mathbb{R}$ is $f^* : \mathbb{R}^d \to \mathbb{R}$

$$f^{\star}(\boldsymbol{\lambda}) = \max_{\mathbf{w}\in S} \langle \mathbf{w}, \boldsymbol{\lambda} \rangle - f(\mathbf{w})$$

If *f* is closed and convex then $f^{\star\star} = f$

Fenchel Duality

$$\max_{\boldsymbol{\lambda}} \ -f^{\star}(-\boldsymbol{\lambda}) - g^{\star}(\boldsymbol{\lambda}) \ \leq \ \min_{\boldsymbol{\mathsf{w}}} \ f(\boldsymbol{\mathsf{w}}) + g(\boldsymbol{\mathsf{w}})$$

イロト イヨト イヨト イヨト

イロト イヨト イヨト イヨト

• Recall that our goal is:

$$\forall \mathbf{w}^{\star} \in S, \quad \sum_{t=1}^{T} \ell_t(\mathbf{w}_t) - \sum_{t=1}^{T} \ell_t(\mathbf{w}^{\star}) \leq LD\sqrt{T}$$

• Recall that our goal is:

$$\forall \mathbf{w}^{\star} \in S, \quad \sum_{t=1}^{T} \ell_t(\mathbf{w}_t) - \sum_{t=1}^{T} \ell_t(\mathbf{w}^{\star}) \leq LD\sqrt{T}$$

• Rewrite it in a 'silly' way

$$\sum_{t=1}^{T} \ell_t(\mathbf{w}_t) \leq \min_{\mathbf{w} \in S} LD\sqrt{T} + \sum_{t=1}^{T} \ell_t(\mathbf{w})$$

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

• Recall that our goal is:

$$\forall \mathbf{w}^{\star} \in S, \quad \sum_{t=1}^{T} \ell_t(\mathbf{w}_t) - \sum_{t=1}^{T} \ell_t(\mathbf{w}^{\star}) \leq LD\sqrt{T}$$

• Rewrite it in a 'silly' way

$$\sum_{t=1}^{T} \ell_t(\mathbf{w}_t) \leq \min_{\mathbf{w} \in S} LD\sqrt{T} + \sum_{t=1}^{T} \ell_t(\mathbf{w})$$

• Replace $LD\sqrt{T}$ with a function $f : S \to \mathbb{R}$ s.t. $\max_{\mathbf{w}} f(\mathbf{w}) \le LD\sqrt{T}$. E.g. $f(\mathbf{w}) = c \|\mathbf{w}\|^2$ for $c = L\sqrt{T}/D$. Obtaining:

$$\sum_{t=1}^{T} \ell_t(\mathbf{w}_t) \leq \min_{\mathbf{w} \in S} f(\mathbf{w}) + \sum_{t=1}^{T} \ell_t(\mathbf{w})$$

• Recall that our goal is:

$$\forall \mathbf{w}^{\star} \in S, \quad \sum_{t=1}^{T} \ell_t(\mathbf{w}_t) - \sum_{t=1}^{T} \ell_t(\mathbf{w}^{\star}) \leq LD\sqrt{T}$$

Rewrite it in a 'silly' way

$$\sum_{t=1}^{T} \ell_t(\mathbf{w}_t) \leq \min_{\mathbf{w} \in S} LD\sqrt{T} + \sum_{t=1}^{T} \ell_t(\mathbf{w})$$

• Replace $LD\sqrt{T}$ with a function $f : S \to \mathbb{R}$ s.t. $\max_{\mathbf{w}} f(\mathbf{w}) \le LD\sqrt{T}$. E.g. $f(\mathbf{w}) = c \|\mathbf{w}\|^2$ for $c = L\sqrt{T}/D$. Obtaining:

$$\sum_{t=1}^{T} \ell_t(\mathbf{w}_t) \leq \min_{\mathbf{w} \in S} f(\mathbf{w}) + \sum_{t=1}^{T} \ell_t(\mathbf{w})$$

• Lower bound of a minimization problem. Duality ?

$$\max_{\boldsymbol{\lambda}_1,...,\boldsymbol{\lambda}_T} -f^{\star}(-\sum_t \boldsymbol{\lambda}_t) - \sum_t \ell_t^{\star}(\boldsymbol{\lambda}_t) \leq \min_{\boldsymbol{\mathsf{w}}\in\mathcal{S}} f(\boldsymbol{\mathsf{w}}) + \sum_{t=1}^T \ell_t(\boldsymbol{\mathsf{w}})$$

Decomposability of the dual

- There's a different dual variable for each online round
- Future loss functions do not affect dual variables of current and past rounds
- Therefore, the dual can be optimized incrementally
- To optimize $\lambda_1, \ldots, \lambda_t$, it is enough to know ℓ_1, \ldots, ℓ_t

Primal-Dual Online Prediction Strategy

Algorithmic Framework

- Initialize $\lambda_1 = \ldots = \lambda_T = \mathbf{0}$
- For *t* = 1, 2, ..., *T*
 - Construct w_t from the dual variables
 - Receive ℓ_t
 - Update dual variables $\lambda_1, \ldots, \lambda_t$

Primal-Dual Online Prediction Strategy

Algorithmic Framework

- Initialize $\lambda_1 = \ldots = \lambda_T = \mathbf{0}$
- For *t* = 1, 2, ..., *T*
 - Construct w_t from the dual variables
 - Receive ℓ_t
 - Update dual variables $\lambda_1, \ldots, \lambda_t$

Lemma

Let \mathcal{D}_t be the dual value at round t and w.l.o.g assume $\mathcal{D}_1 = 0$.

- Assume that $\max_{\mathbf{w}\in S} f(\mathbf{w}) \le a\sqrt{T}$
- Assume that $\mathcal{D}_{t+1} \mathcal{D}_t \geq \ell_t(\mathbf{w}_t) \frac{a}{\sqrt{T}}$

Then, the regret is bounded by $2a\sqrt{T}$

The proof follows directly from the weak duality theorem

< 🗇 > < E > < E >

Strong convexity and sufficient dual increase

Strong Convexity w.r.t. norm

A function *f* is σ -strongly convex over *S* w.r.t $\|\cdot\|$ if for all $\mathbf{u}, \mathbf{v} \in S$

$$\frac{f(\mathbf{u})+f(\mathbf{v})}{2} \geq f(\frac{\mathbf{u}+\mathbf{v}}{2}) + \frac{\sigma}{8} \|\mathbf{u}-\mathbf{v}\|^2$$

Lemma (Sufficient Dual Increase)

Assume:

- f is σ -strongly convex w.r.t. $\|\cdot\|$
- *ℓ_t* is closed and convex
- ∇_t is a sub-gradient of ℓ_t at \mathbf{w}_t

Then, there exists a simple dual update rule s.t.

$$\mathcal{D}_{t+1} - \mathcal{D}_t \geq \ell_t(\mathbf{w}_t) - \frac{\|\nabla_t\|_\star^2}{2\sigma}$$

ヘロマ 人間 アメヨアメヨ

Generalized Boundedness-Lipschitz condition

Theorem

Assume:

- Exists $f : S \to \mathbb{R}$ which is 1-strongly convex w.r.t. $\| \cdot \|$
- $D = \max_{\mathbf{w} \in S} \sqrt{f(\mathbf{w})}$
- *ℓ_t* is closed and convex
- $\|\nabla_t\|_{\star} \leq L$ (Lipschitz w.r.t. norm $\|\cdot\|_{\star}$)

Then, there exists an algorithm with regret bound 2 D L \sqrt{T}

Generalized Boundedness-Lipschitz condition

Theorem

Assume:

- Exists $f : S \to \mathbb{R}$ which is 1-strongly convex w.r.t. $\| \cdot \|$
- $D = \max_{\mathbf{w} \in S} \sqrt{f(\mathbf{w})}$
- *ℓ_t* is closed and convex
- $\|\nabla_t\|_{\star} \leq L$ (Lipschitz w.r.t. norm $\|\cdot\|_{\star}$)

Then, there exists an algorithm with regret bound 2 D L \sqrt{T}

Example usage – back to expert problem

- Take f to be the relative entropy
- *f* is strongly convex w.r.t. $\|\cdot\|_1$ and $D = \sqrt{\log(d)}$
- $\|\nabla_t\|_{\star} = \|\mathbf{x}^t\|_{\infty} \leq 1$
- Regret bound becomes $O(\sqrt{\log(d) T})$

Theorem

Replacing Lipschitz condition with the following self-bounded property:

$$\|\nabla_t\| \leq L\sqrt{\ell_t(\mathbf{w}_t)}$$

Then,

$$R_T \leq O\left(LD\sqrt{\sum_t \ell_t(\mathbf{w}^*)} + L^2 D^2\right)$$

Examples

Shalev-Shwartz (TTI-C)

.

• Family of loss functions (*L*)

- Online Learning (Perceptron, linear regression, multiclass prediction, structured output, ...)
- Game theory (Playing repeated games, correlated equilibrium)
- Information theory (Prediction of individual sequences)
- Convex optimization (SGD, dual decomposition)

Generality and Related Work

• Complexity function (f)

- Online learning (Grove, Littlestone, Schuurmans; Kivinen, Warmuth; Gentile; Vovk)
- Game theory (Hart and Mas-collel)
- Optimization (Nemirovsky, Yudin; Beck, Teboulle, Nesterov)
- Unified frameworks (Cesa-Bianchi and Lugosi)

- 3 →

Dual update schemes

- Only two extremes were studied:
 - Gradient update (naive update of a single dual variable)
 - Follow the leader (Equivalent to full optimization)
- Our analysis enables the entire spectrum

- Task: route emails to folders
- 7 users from the Enron dataset
- Bag of words representation
- 6 Algorithms
 - 2 complexity functions (Euclidean and Entropy)
 - 3 dual ascent methods
 - DA1: Fixed sub-gradient ($\lambda_t = s_t \in \partial \ell_t(\mathbf{w}_t)$)
 - DA2: Optimal sub-gradient ($\lambda_t = \alpha_t s_t$ with optimal α_t)
 - DA3: Optimal ($\lambda_t = \arg \max_{\lambda} \mathcal{D}(\lambda_1, \dots, \lambda_{t-1}, \lambda, 0, \dots)$)
- Performance expectation
 - Entropy outperforms Euclidean
 - DA3 better than DA2 better than DA1

Experimental Results – 3 Dual Updates

Entropic complexity

< 🗇 > < 🖻

Shalev-Shwartz (TTI-C)

Regret & Duality

Tübingen'08 26/28

DA3

Experimental Results – 2 Complexity Functions

Summary

- The online convex programming is a powerful model
- Achieving low regret by primal-dual algorithmic framework
- Sufficient conditions for predictability

Current and future work

- Logarithmic regret algorithms
- Prediction with limited feedback (Bandit algorithms)
- Boosting, sparsity, and ℓ_1 norm
- Similar sufficient conditions for stochastic optimization (PAC learning)

< □ > < □ > < □ > < □ >