Online Prediction, Low Regret, and Convex Duality

Shai Shalev-Shwartz

Toyota Technological Institute at Chicago

GIF Workshop, Tübingen, May 15-16, 2008

Predicting the next element of a binary sequence

Prediction task

For $t=1,2, \ldots, T$

- Predict: $\hat{y}_{t} \in\{ \pm 1\}$
- Get: $y_{t} \in\{ \pm 1\}$
- Suffer loss: $\ell_{0-1}\left(\hat{y}_{t}, y_{t}\right)= \begin{cases}1 & y_{t} \neq \hat{y}_{t} \\ 0 & y_{t}=\hat{y}_{t}\end{cases}$

Regret

- Best in hindsight $y^{\star}=\operatorname{sign}\left(\sum_{t} y_{t}\right)$
- Regret: $R_{T}=\sum_{t=1}^{T} \ell_{0-1}\left(\hat{y}_{t}, y_{t}\right)-\sum_{t=1}^{T} \ell_{0-1}\left(y^{\star}, y_{t}\right)$

Abstract Prediction Model

- Set of decisions S
- Set of loss functions $\mathcal{L}=\{\ell: S \rightarrow \mathbb{R}\}$

Prediction Game

For $t=1, \ldots, T$

- Learner chooses a decision $\mathbf{w}_{t} \in S$
- Environment chooses a loss function $\ell_{t} \in \mathcal{L}$
- Learner suffers loss $\ell_{t}\left(\mathbf{w}_{t}\right)$
- Goal: Conditions on S and \mathcal{L} that guarantee low regret

$$
R_{T}:=\sum_{t=1}^{T} \ell_{t}\left(\mathbf{w}_{t}\right)-\sum_{t=1}^{T} \ell_{t}\left(\mathbf{w}^{\star}\right) \stackrel{!}{=} o(T)
$$

Outline

- Identifying sufficient conditions for predictability
- Size matters?
- No!
- Maybe yes with randomization?
- A modern view: revealing an underlying convexity
- Regret and Convex Duality
- Generality and related work
- Experimental results

Impossibility Result

- $S=\{ \pm 1\}$
- $\mathcal{L}=\left\{\ell_{0-1}\left(w_{t}, 1\right), \ell_{0-1}\left(w_{t},-1\right)\right\}$
- Adversary can make the cumulative loss of the learner to be T by using $\ell_{t}(\cdot)=\ell_{0-1}\left(\cdot,-w_{t}\right)$
- The loss of the constant prediction $w^{\star}=\operatorname{sign}\left(\sum_{t} w_{t}\right)$ is at most T/2
- Regret is at least $T / 2$

Conclusion

- In the above example, $|S|=|\mathcal{L}|=2$.
- Small size does not guarantee low regret

Solution: Randomized Predictions

- Learner predicts $\hat{y}_{t}=1$ with probability w_{t}
- Best in hindsight: $y_{t}^{\star}=1$ with probability w^{\star} where $w^{\star}=\frac{\left|\left\{t: y_{t}=1\right\}\right|}{T}$
- Analyze the expected regret:

$$
\sum_{t=1}^{T} \mathbb{E}\left[\hat{y}_{t} \neq y_{t}\right]-\sum_{t=1}^{T} \mathbb{E}\left[y_{t}^{\star} \neq y_{t}\right]
$$

- There are algorithms that achieve expected regret of $O(\sqrt{T})$

A modern view: revealing an underlying convexity

- Expected zero-one loss can be rewritten as

$$
\mathbb{E}\left[\hat{y}_{t} \neq y_{t}\right]= \begin{cases}1-w_{t} & \text { if } y_{t}=1 \\ w_{t} & \text { if } y_{t}=-1\end{cases}
$$

- Going back to our abstract model, we get that:
- $S=[0,1]$
- $\mathcal{L}=\{\ell(w)=1-w, \ell(w)=w\}$

Properties

- All functions in \mathcal{L} are linear (and thus are convex and Lipschitz)
- S is convex and bounded
- Sufficient conditions for low regret?

Are we just playing with formalities?

The convexity assumption is natural in many cases.

Example: Prediction with Expert Advice

- Learner receives a vector $\left(x_{1}^{t}, \ldots, x_{d}^{t}\right) \in[-1,1]^{d}$ of experts advice
- Learner needs to predict a target $\hat{y}_{t} \in \mathbb{R}$
- Environment gives correct target $y_{t} \in \mathbb{R}$
- Learner suffers loss $\left|y_{t}-\hat{y}_{t}\right|$
- Goal: Be almost as good as the best experts committee

$$
\sum_{t}\left|y_{t}-\hat{y}_{t}\right|-\sum_{t}\left|y_{t}-\left\langle\mathbf{w}^{\star}, \mathbf{x}^{t}\right\rangle\right| \stackrel{!}{=} o(T)
$$

Are we just playing with formalities?

The convexity assumption is natural in many cases.

Example: Prediction with Expert Advice

- Learner receives a vector $\left(x_{1}^{t}, \ldots, x_{d}^{t}\right) \in[-1,1]^{d}$ of experts advice
- Learner needs to predict a target $\hat{y}_{t} \in \mathbb{R}$
- Environment gives correct target $y_{t} \in \mathbb{R}$
- Learner suffers loss $\left|y_{t}-\hat{y}_{t}\right|$
- Goal: Be almost as good as the best experts committee

$$
\sum_{t}\left|y_{t}-\hat{y}_{t}\right|-\sum_{t}\left|y_{t}-\left\langle\mathbf{w}^{\star}, \mathbf{x}^{t}\right\rangle\right| \stackrel{!}{=} o(T)
$$

Modeling

- S is the d-dimensional probability simplex
- $\mathcal{L}=\left\{\ell_{\mathbf{x}, y}(\mathbf{w})=|y-\langle\mathbf{w}, \mathbf{x}\rangle|: \mathbf{x} \in[-1,1]^{d}, y \in[-1,1]\right\}$

Are we just playing with formalities?

Example: Convexifying finite decision sets

- Learner should predict an element $s_{t} \in S^{\prime}=\{1, \ldots, N\}$
- Environment presents non-convex loss function $\ell_{t}^{\prime}: S^{\prime} \rightarrow[0,1]$
- Learner suffers loss $\ell_{t}^{\prime}\left(s_{t}\right)$
- Goal: Be almost as good as the best pure prediction

$$
\sum_{t} \ell_{t}^{\prime}\left(s_{t}\right)-\sum_{t} \ell_{t}^{\prime}\left(s^{\star}\right) \stackrel{!}{=} o(T)
$$

Are we just playing with formalities?

Example: Convexifying finite decision sets

- Learner should predict an element $s_{t} \in S^{\prime}=\{1, \ldots, N\}$
- Environment presents non-convex loss function $\ell_{t}^{\prime}: S^{\prime} \rightarrow[0,1]$
- Learner suffers loss $\ell_{t}^{\prime}\left(s_{t}\right)$
- Goal: Be almost as good as the best pure prediction

$$
\sum_{t} \ell_{t}^{\prime}\left(s_{t}\right)-\sum_{t} \ell_{t}^{\prime}\left(s^{\star}\right) \stackrel{!}{=} o(T)
$$

Modeling

- S is the N-dimensional probability simplex
- Prediction s_{t} is chosen randomly according to $\mathbf{w}_{t} \in S$
- $\mathcal{L}=\left\{\ell_{\mathbf{r}}(\mathbf{w})=\langle\mathbf{w}, \mathbf{r}\rangle: \mathbf{r} \in[0,1]^{N}\right\}$
- $\mathbb{E}\left[\ell_{t}^{\prime}\left(s_{t}\right)\right]=\ell_{\ell_{t}^{\prime}}\left(\mathbf{w}_{t}\right)$

Sufficient Conditions for low regret

The Online Convex Programming (OCP) model

- All functions in \mathcal{L} are convex and L-Lipschitz
- S is convex and $\max \left\{\|\mathbf{w}\|_{2}: \mathbf{w} \in S\right\}=D$
- Then, there exists an algorithm with regret $O(L D \sqrt{T})$
- This is tight (i.e. the minimax value of the game)

Bibliography

- The OCP model was presented by Gordon (1999)
- Zinkevich (2003) proved a regret bound of $O\left(\left(L^{2}+D^{2}\right) \sqrt{T}\right)$

Dimension independency?

Yes !

- The regret bound does not depend on the dimensionality of S
- Similarly to Support Vector Machines, we can use Kernel functions

Dimension independency?

Yes!

- The regret bound does not depend on the dimensionality of S
- Similarly to Support Vector Machines, we can use Kernel functions

Yes ?

- Consider again the prediction with expert advice problem
- d experts, each of which gives an "advice" in $[-1,1]$
- S is the probability simplex and thus $D=1$
- Lipschitz constant is $L=\sqrt{d}$
- Regret is $\Omega(\sqrt{d T})$.
- Is this the best we can do ?

Low regret algorithmic framework for OCP

- A low regret algorithmic framework for OCP
- Family of sufficient conditions for low regret
- In particular - Alternatives to the Lipschitz condition
- In the expert committee example - logarithmic dependence on dimension
- Main observation: Relating regret and duality

Fenchel Conjugate

The Fenchel conjugate of the function $f: S \rightarrow \mathbb{R}$ is $f^{\star}: \mathbb{R}^{d} \rightarrow \mathbb{R}$

$$
f^{\star}(\boldsymbol{\lambda})=\max _{\mathbf{w} \in S}\langle\mathbf{w}, \boldsymbol{\lambda}\rangle-f(\mathbf{w})
$$

If f is closed and convex then $f^{\star \star}=f$

Fenchel Duality

$$
\max _{\boldsymbol{\lambda}}-f^{\star}(-\boldsymbol{\lambda})-g^{\star}(\boldsymbol{\lambda}) \leq \min _{\mathbf{w}} f(\mathbf{w})+g(\mathbf{w})
$$

Fenchel Duality

$$
\max _{\boldsymbol{\lambda}}-f^{\star}(-\boldsymbol{\lambda})-g^{\star}(\boldsymbol{\lambda}) \leq \min _{\mathbf{w}} f(\mathbf{w})+g(\mathbf{w})
$$

Regret and Duality

- Recall that our goal is:

$$
\forall \mathbf{w}^{\star} \in S, \quad \sum_{t=1}^{T} \ell_{t}\left(\mathbf{w}_{t}\right)-\sum_{t=1}^{T} \ell_{t}\left(\mathbf{w}^{\star}\right) \leq L D \sqrt{T}
$$

Regret and Duality

- Recall that our goal is:

$$
\forall \mathbf{w}^{\star} \in S, \quad \sum_{t=1}^{T} \ell_{t}\left(\mathbf{w}_{t}\right)-\sum_{t=1}^{T} \ell_{t}\left(\mathbf{w}^{\star}\right) \leq L D \sqrt{T}
$$

- Rewrite it in a 'silly' way

$$
\sum_{t=1}^{T} \ell_{t}\left(\mathbf{w}_{t}\right) \leq \min _{\mathbf{w} \in S} L D \sqrt{T}+\sum_{t=1}^{T} \ell_{t}(\mathbf{w})
$$

Regret and Duality

- Recall that our goal is:

$$
\forall \mathbf{w}^{\star} \in S, \quad \sum_{t=1}^{T} \ell_{t}\left(\mathbf{w}_{t}\right)-\sum_{t=1}^{T} \ell_{t}\left(\mathbf{w}^{\star}\right) \leq L D \sqrt{T}
$$

- Rewrite it in a 'silly' way

$$
\sum_{t=1}^{T} \ell_{t}\left(\mathbf{w}_{t}\right) \leq \min _{\mathbf{w} \in S} L D \sqrt{T}+\sum_{t=1}^{T} \ell_{t}(\mathbf{w})
$$

- Replace $L D \sqrt{T}$ with a function $f: S \rightarrow \mathbb{R}$ s.t. $\max _{\mathbf{w}} f(\mathbf{w}) \leq L D \sqrt{T}$.
E.g. $f(\mathbf{w})=c\|\mathbf{w}\|^{2}$ for $c=L \sqrt{T} / D$. Obtaining:

$$
\sum_{t=1}^{T} \ell_{t}\left(\mathbf{w}_{t}\right) \leq \min _{\mathbf{w} \in S} f(\mathbf{w})+\sum_{t=1}^{T} \ell_{t}(\mathbf{w})
$$

Regret and Duality

- Recall that our goal is:

$$
\forall \mathbf{w}^{\star} \in S, \quad \sum_{t=1}^{T} \ell_{t}\left(\mathbf{w}_{t}\right)-\sum_{t=1}^{T} \ell_{t}\left(\mathbf{w}^{\star}\right) \leq L D \sqrt{T}
$$

- Rewrite it in a 'silly' way

$$
\sum_{t=1}^{T} \ell_{t}\left(\mathbf{w}_{t}\right) \leq \min _{\mathbf{w} \in S} L D \sqrt{T}+\sum_{t=1}^{T} \ell_{t}(\mathbf{w})
$$

- Replace $L D \sqrt{T}$ with a function $f: S \rightarrow \mathbb{R}$ s.t. $\max _{\mathbf{w}} f(\mathbf{w}) \leq L D \sqrt{T}$. E.g. $f(\mathbf{w})=c\|\mathbf{w}\|^{2}$ for $c=L \sqrt{T} / D$. Obtaining:

$$
\sum_{t=1}^{T} \ell_{t}\left(\mathbf{w}_{t}\right) \leq \min _{\mathbf{w} \in S} f(\mathbf{w})+\sum_{t=1}^{T} \ell_{t}(\mathbf{w})
$$

- Lower bound of a minimization problem. Duality ?

Properties of the dual problem

$\max _{\lambda_{1}, \ldots, \lambda_{T}}-f^{\star}\left(-\sum_{t} \lambda_{t}\right)-\sum_{t} \ell_{t}^{\star}\left(\lambda_{t}\right) \leq \min _{\mathbf{w} \in S} f(\mathbf{w})+\sum_{t=1}^{T} \ell_{t}(\mathbf{w})$

Decomposability of the dual

- There's a different dual variable for each online round
- Future loss functions do not affect dual variables of current and past rounds
- Therefore, the dual can be optimized incrementally
- To optimize $\boldsymbol{\lambda}_{1}, \ldots, \boldsymbol{\lambda}_{t}$, it is enough to know $\ell_{1}, \ldots, \ell_{t}$

Primal-Dual Online Prediction Strategy

Algorithmic Framework

- Initialize $\boldsymbol{\lambda}_{1}=\ldots=\boldsymbol{\lambda}_{T}=\mathbf{0}$
- For $t=1,2, \ldots, T$
- Construct \mathbf{w}_{t} from the dual variables
- Receive ℓ_{t}
- Update dual variables $\boldsymbol{\lambda}_{1}, \ldots, \boldsymbol{\lambda}_{t}$

Primal-Dual Online Prediction Strategy

Algorithmic Framework

- Initialize $\boldsymbol{\lambda}_{1}=\ldots=\boldsymbol{\lambda}_{T}=\mathbf{0}$
- For $t=1,2, \ldots, T$
- Construct \mathbf{w}_{t} from the dual variables
- Receive ℓ_{t}
- Update dual variables $\boldsymbol{\lambda}_{1}, \ldots, \boldsymbol{\lambda}_{t}$

Lemma

Let \mathcal{D}_{t} be the dual value at round t and w.l.o.g assume $\mathcal{D}_{1}=0$.

- Assume that $\max _{\mathbf{w} \in S} f(\mathbf{w}) \leq a \sqrt{T}$
- Assume that $\mathcal{D}_{t+1}-\mathcal{D}_{t} \geq \ell_{t}\left(\mathbf{w}_{t}\right)-\frac{a}{\sqrt{T}}$

Then, the regret is bounded by $2 a \sqrt{T}$
The proof follows directly from the weak duality theorem

Strong convexity and sufficient dual increase

Strong Convexity w.r.t. norm

A function f is σ-strongly convex over S w.r.t $\|\cdot\|$ if for all $\mathbf{u}, \mathbf{v} \in S$

$$
\frac{f(\mathbf{u})+f(\mathbf{v})}{2} \geq f\left(\frac{\mathbf{u}+\mathbf{v}}{2}\right)+\frac{\sigma}{8}\|\mathbf{u}-\mathbf{v}\|^{2}
$$

Lemma (Sufficient Dual Increase)

Assume:

- f is σ-strongly convex w.r.t. $\|\cdot\|$
- ℓ_{t} is closed and convex
- ∇_{t} is a sub-gradient of ℓ_{t} at \mathbf{w}_{t}

Then, there exists a simple dual update rule s.t.

$$
\mathcal{D}_{t+1}-\mathcal{D}_{t} \geq \ell_{t}\left(\mathbf{w}_{t}\right)-\frac{\left\|\nabla_{t}\right\|_{\star}^{2}}{2 \sigma}
$$

Generalized Boundedness-Lipschitz condition

Theorem

Assume:

- Exists $f: S \rightarrow \mathbb{R}$ which is 1 -strongly convex w.r.t. $\|\cdot\|$
- $D=\max _{\mathbf{w} \in S} \sqrt{f(\mathbf{w})}$
- ℓ_{t} is closed and convex
- $\left\|\nabla_{t}\right\|_{\star} \leq L$ (Lipschitz w.r.t. norm $\|\cdot\|_{\star}$)

Then, there exists an algorithm with regret bound $2 D L \sqrt{T}$

Generalized Boundedness-Lipschitz condition

Theorem

Assume:

- Exists $f: S \rightarrow \mathbb{R}$ which is 1 -strongly convex w.r.t. $\|\cdot\|$
- $D=\max _{\mathbf{w} \in S} \sqrt{f(\mathbf{w})}$
- ℓ_{t} is closed and convex
- $\left\|\nabla_{t}\right\|_{\star} \leq L$ (Lipschitz w.r.t. norm $\|\cdot\|_{\star}$)

Then, there exists an algorithm with regret bound $2 D L \sqrt{T}$
Example usage - back to expert problem

- Take f to be the relative entropy
- f is strongly convex w.r.t. $\|\cdot\|_{1}$ and $D=\sqrt{\log (d)}$
- $\left\|\nabla_{t}\right\|_{\star}=\left\|\mathbf{x}^{t}\right\|_{\infty} \leq 1$
- Regret bound becomes $O(\sqrt{\log (d) T})$

Self Boundedness instead of Lipschitz

Theorem

Replacing Lipschitz condition with the following self-bounded property:

$$
\left\|\nabla_{t}\right\| \leq L \sqrt{\ell_{t}\left(\mathbf{w}_{t}\right)}
$$

Then,

$$
R_{T} \leq O\left(L D \sqrt{\sum_{t} \ell_{t}\left(\mathbf{w}^{\star}\right)}+L^{2} D^{2}\right) .
$$

Examples

- $\ell(\mathbf{w})=\frac{1}{2}(\langle\mathbf{w}, \mathbf{x}\rangle-y)^{2}$ is $(\sqrt{2}\|\mathbf{x}\|)$-self-bounded
- $\ell(\mathbf{w})=\log (1.26+\exp (-y\langle\mathbf{w}, \mathbf{x}\rangle))$ is $(\|\mathbf{x}\|)$-self-bounded

Generality and Related Work

Generality and Related Work

- Family of loss functions (\mathcal{L})

- Online Learning (Perceptron, linear regression, multiclass prediction, structured output, ...)
- Game theory (Playing repeated games, correlated equilibrium)
- Information theory (Prediction of individual sequences)
- Convex optimization (SGD, dual decomposition)

Generality and Related Work

- Complexity function (f)
- Online learning (Grove, Littlestone, Schuurmans; Kivinen, Warmuth; Gentile; Vovk)
- Game theory (Hart and Mas-collel)
- Optimization (Nemirovsky, Yudin; Beck, Teboulle, Nesterov)
- Unified frameworks (Cesa-Bianchi and Lugosi)

Generality and Related Work

- Dual update schemes
- Only two extremes were studied:
- Gradient update (naive update of a single dual variable)
- Follow the leader (Equivalent to full optimization)
- Our analysis enables the entire spectrum

Experiments

- Task: route emails to folders
- 7 users from the Enron dataset
- Bag of words representation
- 6 Algorithms
- 2 complexity functions (Euclidean and Entropy)
- 3 dual ascent methods
- DA1: Fixed sub-gradient $\left(\lambda_{t}=s_{t} \in \partial \ell_{t}\left(\mathbf{w}_{t}\right)\right)$
- DA2: Optimal sub-gradient $\left(\boldsymbol{\lambda}_{t}=\alpha_{t} \boldsymbol{s}_{t}\right.$ with optimal $\left.\alpha_{t}\right)$
- DA3: Optimal $\left(\boldsymbol{\lambda}_{t}=\arg \max _{\boldsymbol{\lambda}} \mathcal{D}\left(\boldsymbol{\lambda}_{1}, \ldots, \boldsymbol{\lambda}_{t-1}, \boldsymbol{\lambda}, 0, \ldots\right)\right)$
- Performance expectation
- Entropy outperforms Euclidean
- DA3 better than DA2 better than DA1

Experimental Results - 3 Dual Updates

Euclidean complexity

Entropic complexity

Experimental Results - 2 Complexity Functions

D1

D3

Summary and Future work

Summary

- The online convex programming is a powerful model
- Achieving low regret by primal-dual algorithmic framework
- Sufficient conditions for predictability

Current and future work

- Logarithmic regret algorithms
- Prediction with limited feedback (Bandit algorithms)
- Boosting, sparsity, and ℓ_{1} norm
- Similar sufficient conditions for stochastic optimization (PAC learning)

