

Learnability Beyond Uniform Convergence

Shai Shalev-Shwartz

School of CS and Engineering, The Hebrew University of Jerusalem

"Mathematical and Computational Foundations of Learning Theory", Dagstuhl 2011

Joint work with: N. Srebro, O. Shamir, K. Sridharan (COLT'09,JMLR'11) A. Daniely, S. Sabato, S. Ben-David (COLT'11)

The Fundamental Theorem of Learning Theory

For Binary Classification

The Fundamental Theorem of Learning Theory

For Regression

- Not true even in multiclass classification !
- What is learnable ? How to learn ?

Definitions

2 Learnability without uniform convergence

3 Characterizing Learnability using Stability

4 Characterizing Multiclass Learnability

5 Open Questions

Vapnik's General Learning Setting

- Hypothesis class \mathcal{H}
- \bullet Instance space ${\mathcal Z}$ with unknown distribution ${\mathcal D}$
- Loss function $\ell : \mathcal{H} \times \mathcal{Z} \to \mathbb{R}$

Given: Training set $S \sim D^m$ Goal: Probably approximately solve

$$\min_{h \in \mathcal{H}} L(h) \quad \text{where} \quad L(h) = \mathop{\mathbb{E}}_{z \sim \mathcal{D}} [\ell(h, z)]$$

• Binary classification:

- $\mathcal{Z} = \mathcal{X} \times \{0, 1\}$
- $h \in \mathcal{H}$ is a predictor $h : \mathcal{X} \to \{0, 1\}$
- $\ell(h,(x,y)) = \mathbf{1}[h(x) \neq y]$
- Multiclass categorization:
 - $\mathcal{Z} = \mathcal{X} \times \mathcal{Y}$
 - $h \in \mathcal{H}$ is a predictor $h : \mathcal{X} \to \mathcal{Y}$
 - $\ell(h,(x,y)) = \mathbf{1}[h(x) \neq y]$
- k-means clustering:
 - $\mathcal{Z} = \mathbb{R}^d$
 - $\mathcal{H} \subset (\mathbb{R}^d)^k$ specifies k cluster centers
 - $\ell((\mu_1, ..., \mu_k), z) = \min_j \|\mu_j z\|$
- Density Estimation:
 - h is a parameter of a density $p_h(z)$
 - $\ell(h,z) = -\log p_h(z)$

• Uniform Convergence:

For $m \geq m_{\scriptscriptstyle \mathrm{UC}}(\epsilon,\delta)$,

$$\mathbb{P}_{S \sim \mathcal{D}^m} \left[\forall h \in \mathcal{H}, \ |L_S(h) - L(h)| \le \epsilon \right] \ge 1 - \delta$$

• Uniform Convergence:

For $m \geq m_{\scriptscriptstyle \mathrm{UC}}(\epsilon,\delta)$,

$$\mathbb{P}_{S \sim \mathcal{D}^m} \left[\forall h \in \mathcal{H}, \ |L_S(h) - L(h)| \le \epsilon \right] \ge 1 - \delta$$

Learnable:

 $\exists \mathcal{A} \text{ s.t. for } m \geq m_{ ext{PAC}}(\epsilon, \delta)$,

$$\mathbb{P}_{S \sim \mathcal{D}^m} \left[L(\mathcal{A}(S)) \le \min_{h \in \mathcal{H}} L(h) + \epsilon \right] \ge 1 - \delta$$

• Uniform Convergence:

For $m \geq m_{\scriptscriptstyle \mathrm{UC}}(\epsilon,\delta)$,

$$\mathbb{P}_{S \sim \mathcal{D}^m} \left[\forall h \in \mathcal{H}, \ |L_S(h) - L(h)| \le \epsilon \right] \ge 1 - \delta$$

Learnable:

 $\exists \mathcal{A} \text{ s.t. for } m \geq m_{\scriptscriptstyle \mathrm{PAC}}(\epsilon,\delta)$,

$$\mathbb{P}_{S \sim \mathcal{D}^m} \left[L(\mathcal{A}(S)) \leq \min_{h \in \mathcal{H}} L(h) + \epsilon \right] \geq 1 - \delta$$

ERM:

An algorithm that returns $\mathcal{A}(S) \in \operatorname{argmin}_{h \in \mathcal{H}} L_S(h)$

• Uniform Convergence:

For $m \geq m_{\scriptscriptstyle \mathrm{UC}}(\epsilon,\delta)$,

$$\mathbb{P}_{S \sim \mathcal{D}^m} \left[\forall h \in \mathcal{H}, \ |L_S(h) - L(h)| \le \epsilon \right] \ge 1 - \delta$$

Learnable:

 $\exists \mathcal{A} \text{ s.t. for } m \geq m_{ ext{PAC}}(\epsilon, \delta)$,

$$\mathbb{P}_{S \sim \mathcal{D}^m} \left[L(\mathcal{A}(S)) \le \min_{h \in \mathcal{H}} L(h) + \epsilon \right] \ge 1 - \delta$$

ERM:

An algorithm that returns $\mathcal{A}(S) \in \operatorname{argmin}_{h \in \mathcal{H}} L_S(h)$

• Learnable by arbitrary ERM:

Like "Learnable" but \mathcal{A} should be an ERM. Denote sample complexity by $m_{\text{ERM}}(\epsilon, \delta)$

For Binary Classification

$$m_{
m UC}(\epsilon,\delta) \approx m_{
m ERM}(\epsilon,\delta) \approx m_{
m PAC}(\epsilon,\delta) \approx \frac{{
m VC}({\cal H})\log(1/\delta)}{\epsilon^2}$$

Jul'11 9 / 34

Definitions

2 Learnability without uniform convergence

3 Characterizing Learnability using Stability

Ocharacterizing Multiclass Learnability

5 Open Questions

Minorizing function:

Let H' be a class of binary classifiers with infinite VC dimension
Let H = H' ∪ {h₀}

• Let
$$\ell(h, (x, y)) = \begin{cases} 1 & \text{if } h \neq h_0 \land h(x) \neq y \\ 1/2 & \text{if } h \neq h_0 \land h(x) = y \\ 0 & \text{if } h = h_0 \end{cases}$$

- No uniform convergence ($m_{\rm \scriptscriptstyle UC}=\infty)$
- Learnable by ERM ($m_{\rm ERM}=0)$

From Vapnik's book ...

This example shows that there exist trivial cases of consistency that depend on whether a given set of functions contains a minorizing function. Therefore, any theory of consistency that uses the classical definition needs

FIGURE 3.2. A case of trivial consistency. The ERM method is inconsistent on the set of functions $\Theta(z, \alpha), \alpha \in \Lambda$, and is consistent on the set of functions $\phi(z) \cup \Theta(z, \alpha), \alpha \in \Lambda$.

Jul'11 12 / 34

- \mathcal{X} a set, $\mathcal{Y} = 2^{\mathcal{X}} \cup \{*\}.$
- $\mathcal{H} = \{h_T : T \subset \mathcal{X}\}$ where

$$h_T(x) = \begin{cases} * & x \notin T \\ T & x \in T \end{cases}$$

•
$$\mathcal{X}$$
 – a set, $\mathcal{Y} = 2^{\mathcal{X}} \cup \{*\}.$

• $\mathcal{H} = \{h_T : T \subset \mathcal{X}\}$ where

$$h_T(x) = \begin{cases} * & x \notin T \\ T & x \in T \end{cases}$$

- Claim: No uniform convergence: $m_{\rm UC} \geq |\mathcal{X}|/\epsilon$
 - Target function is h_{\emptyset}
 - For any training set S, take $T = \mathcal{X} \setminus S$
 - $L_S(h_T) = 0$ but $L(h_T) = \mathbb{P}[T]$

Second Counter Example — Multiclass

•
$$\mathcal{X}$$
 – a set, $\mathcal{Y} = 2^{\mathcal{X}} \cup \{*\}.$

• $\mathcal{H} = \{h_T : T \subset \mathcal{X}\}$ where

$$h_T(x) = \begin{cases} * & x \notin T \\ T & x \in T \end{cases}$$

• Claim: \mathcal{H} is Learnable: $m_{\text{PAC}} \leq \frac{1}{\epsilon}$

• Let T be the target

•
$$\mathcal{A}(S) = h_T$$
 if $(x,T) \in S$

- $\mathcal{A}(S) = h_{\emptyset} \text{ if } S = \{(x_1, *), \dots, (x_m, *)\}$
- In the 1st case, $L(\mathcal{A}(S)) = 0$.
- In the 2nd case, $L(\mathcal{A}(S)) = \mathbb{P}[T]$
- $\bullet\,$ With high probability, if $\mathbb{P}[T] > \epsilon$ then we'll be in the 1st case

Corollary

• $\frac{m_{UC}}{m_{PAC}} \approx |\mathcal{X}|.$

• If $|\mathcal{X}| \to \infty$ then the problem is learnable but there is no uniform convergence!

Consider the family of problems:

- \mathcal{H} is a convex set with $\max_{h \in \mathcal{H}} \|h\| \leq 1$
- \bullet For all $z,\,\ell(h,z)$ is convex and Lipschitz w.r.t. h

Consider the family of problems:

- \mathcal{H} is a convex set with $\max_{h \in \mathcal{H}} \|h\| \leq 1$
- For all z, $\ell(h,z)$ is convex and Lipschitz w.r.t. h

Claim:

• Problem is learnable by the rule:

$$\operatorname*{argmin}_{h \in \mathcal{H}} \frac{\lambda_m}{2} \|h\|^2 + \frac{1}{m} \sum_{i=1}^m \ell(h, z_i)$$

- No uniform convergence
- Not learnable by ERM

Proof (of "not learnable by arbitrary ERM")

• 1-Mean + missing features

Proof (of "not learnable by arbitrary ERM")

- 1-Mean + missing features
- $z=(\alpha,x)$, $\alpha\in\{0,1\}^d$, $x\in\mathbb{R}^d$, $\|x\|\leq 1$

•
$$\ell(h, (\alpha, x)) = \sqrt{\sum_i \alpha_i (h_i - x_i)^2}$$

- Take $\mathbb{P}[\alpha_i = 1] = 1/2$, $\mathbb{P}[x = \mu] = 1$
- Let h⁽ⁱ⁾ be s.t.

$$h_j^{(i)} = \begin{cases} 1 - \mu_j & \text{if } j = i \\ \mu_j & \text{o.w.} \end{cases}$$

• If d is large enough, exists i such that $h^{(i)}$ is an ERM • But $L(h^{(i)}) \geq 1/\sqrt{2}$

Proof (of "not even learnable by a unique ERM")

Perturb the loss a little bit:

$$\ell(h, (\alpha, x)) = \sqrt{\sum_{i} \alpha_i (h_i - x_i)^2} + \epsilon \sum_{i} 2^{-i} (h_i - 1)^2$$

- Now loss is strictly convex unique ERM
- But the unique ERM does not generalize (as before)

Definitions

2 Learnability without uniform convergence

3 Characterizing Learnability using Stability

4 Characterizing Multiclass Learnability

Open Questions

3 ×

Theorem

A sufficient and necessary condition for learnability is the existence of Asymptotic ERM (AERM) which is stable.

Definition (Stability)

We say that A is $\epsilon_{stable}(m)$ -uniform-replace-one stable if for all \mathcal{D} ,

$$\mathop{\mathbb{E}}_{S,z',i} |\ell(\mathcal{A}(S^{(i)});z') - \ell(\mathcal{A}(S);z')| \le \epsilon_{\text{stable}}(m).$$

- ∢ ∃ ▶

Definition (Stability)

We say that A is $\epsilon_{stable}(m)$ -uniform-replace-one stable if for all \mathcal{D} ,

$$\mathop{\mathbb{E}}_{S,z',i} |\ell(\mathcal{A}(S^{(i)});z') - \ell(\mathcal{A}(S);z')| \le \epsilon_{\text{stable}}(m).$$

Definition (AERM)

We say that A is an AERM (Asymptotic Empirical Risk Minimizer) with rate $\epsilon_{erm}(m)$ if for all D:

$$\mathop{\mathbb{E}}_{S \sim \mathcal{D}^m} [L_S(\mathcal{A}(S)) - \min_{h \in \mathcal{H}} L_S(h)] \le \epsilon_{\operatorname{erm}}(m)$$

Proof sketch: (Stable AERM is sufficient and necessary for Learnability)

Sufficient:

- For AERM: stability \Rightarrow generalization
- AERM+generalization \Rightarrow consistency

Necessary:

- \exists consistent $\mathcal{A} \Rightarrow$
 - \exists consistent and generalizing A' (using subsampling)
- Consistent+generalizing \Rightarrow AERM
- AERM+generalizing \Rightarrow stable

- Learnability $\iff \exists$ stable AERM
- But, how do we find one?
- And, is there a combinatorial notion of learnability (like VC dimension) ?

Definitions

2 Learnability without uniform convergence

3 Characterizing Learnability using Stability

4 Characterizing Multiclass Learnability

5 Open Questions

- Practical relevance
- A simple twist of binary classification
- In a sense, captures the essence of difficulty of the General Learning Setting

S is G-shattered by \mathcal{H} if $\exists f \in H$ s.t. for every $T \subseteq S$ exists $h \in \mathcal{H}$ with

$$\begin{split} h(x) &= f(x) \quad \text{if } x \in T \\ h(x) &\neq f(x) \quad \text{if } x \in S \setminus T \end{split}$$

S is G-shattered by ${\mathcal H}$ if $\exists f\in H$ s.t. for every $T\subseteq S$ exists $h\in {\mathcal H}$ with

$$\begin{split} h(x) &= f(x) \quad \text{if } x \in T \\ h(x) &\neq f(x) \quad \text{if } x \in S \setminus T \end{split}$$

Graph dimension: Maximal size of G-shattered set

S is G-shattered by ${\mathcal H}$ if $\exists f\in H$ s.t. for every $T\subseteq S$ exists $h\in {\mathcal H}$ with

 $h(x) = f(x) \text{ if } x \in T$ $h(x) \neq f(x) \text{ if } x \in S \setminus T$

Graph dimension: Maximal size of G-shattered set Remark: When $|\mathcal{Y}| = 2$, Graph dimension equals to VC dimension

• Consider again our counter example: $\mathcal{Y} = 2^{\mathcal{X}} \cup \{*\}$ and $\mathcal{H} = \{h_T : T \subset \mathcal{X}\}$ with

$$h_T(x) = \begin{cases} * & x \notin T \\ T & x \in T \end{cases}$$

(本間) (本語) (本語)

• Consider again our counter example: $\mathcal{Y} = 2^{\mathcal{X}} \cup \{*\}$ and $\mathcal{H} = \{h_T : T \subset \mathcal{X}\}$ with

$$h_T(x) = \begin{cases} * & x \notin T \\ T & x \in T \end{cases}$$

- Claim: Graph dimension of \mathcal{H} is $|\mathcal{X}|$
- Proof: Take $f = h_{\emptyset}$ and $S = \mathcal{X}$. For each $T \subset S$ take h_{T^c} . So, for $x \in T$, $h_{T^c}(x) = * = f(x)$ and for $x \notin T$, $h_{T^c}(x) = T \neq *$.

.

• Consider again our counter example: $\mathcal{Y} = 2^{\mathcal{X}} \cup \{*\}$ and $\mathcal{H} = \{h_T : T \subset \mathcal{X}\}$ with

$$h_T(x) = \begin{cases} * & x \notin T \\ T & x \in T \end{cases}$$

- Claim: Graph dimension of \mathcal{H} is $|\mathcal{X}|$
- Proof: Take $f = h_{\emptyset}$ and $S = \mathcal{X}$. For each $T \subset S$ take h_{T^c} . So, for $x \in T$, $h_{T^c}(x) = * = f(x)$ and for $x \notin T$, $h_{T^c}(x) = T \neq *$.
- Conclusion: Graph dimension does not characterize multiclass learnability (in fact, Graph dimension characterizes uniform convergence)

The Natarajan Dimension

S is N-shattered by \mathcal{H} if $\exists f_1, f_2 \in \mathcal{H}$ s.t. $\forall x \in S, f_1(x) \neq f_2(x)$, and for every $T \subseteq S$ exists $h \in \mathcal{H}$ with

$$h(x) = \begin{cases} f_1(x) & \text{if } x \in T \\ f_2(x) & \text{if } x \in S \setminus T \end{cases}$$

The Natarajan Dimension

S is N-shattered by \mathcal{H} if $\exists f_1, f_2 \in \mathcal{H}$ s.t. $\forall x \in S, f_1(x) \neq f_2(x)$, and for every $T \subseteq S$ exists $h \in \mathcal{H}$ with

$$h(x) = \begin{cases} f_1(x) & \text{if } x \in T \\ f_2(x) & \text{if } x \in S \setminus T \end{cases}$$

Natarajan dimension: Maximal size of N-shattered set

The Natarajan Dimension

S is N-shattered by \mathcal{H} if $\exists f_1, f_2 \in \mathcal{H}$ s.t. $\forall x \in S, f_1(x) \neq f_2(x)$, and for every $T \subseteq S$ exists $h \in \mathcal{H}$ with

$$h(x) = \begin{cases} f_1(x) & \text{if } x \in T \\ f_2(x) & \text{if } x \in S \setminus T \end{cases}$$

Natarajan dimension: Maximal size of N-shattered set

Remarks:

- When $|\mathcal{Y}| = 2$, Natarajan dimension also equals to VC dimension
- Natarajan ≤ Graph

• Consider again our counter example: $\mathcal{Y} = 2^{\mathcal{X}} \cup \{*\}$ and $\mathcal{H} = \{h_T : T \subset \mathcal{X}\}$ with

$$h_T(x) = \begin{cases} * & x \notin T \\ T & x \in T \end{cases}$$

- 4 @ > - 4 @ > - 4 @ >

• Consider again our counter example: $\mathcal{Y} = 2^{\mathcal{X}} \cup \{*\}$ and $\mathcal{H} = \{h_T : T \subset \mathcal{X}\}$ with

$$h_T(x) = \begin{cases} * & x \notin T \\ T & x \in T \end{cases}$$

- \bullet Claim: Natarajan dimension of ${\cal H}$ is 1
- Proof:

 - Constraints on f_1, f_2 are that $f_1(x) \neq f_2(x)$ for all x, and exists h with $h(x_1) = f_1(x)$ and $h_2(x) = f_2(x)$.
 - No (f_1, f_2) satisfies these two constraints.

• Consider again our counter example: $\mathcal{Y} = 2^{\mathcal{X}} \cup \{*\}$ and $\mathcal{H} = \{h_T : T \subset \mathcal{X}\}$ with

$$h_T(x) = \begin{cases} * & x \notin T \\ T & x \in T \end{cases}$$

- \bullet Claim: Natarajan dimension of ${\cal H}$ is 1
- Proof:

 - Constraints on f_1, f_2 are that $f_1(x) \neq f_2(x)$ for all x, and exists h with $h(x_1) = f_1(x)$ and $h_2(x) = f_2(x)$.
 - No (f_1, f_2) satisfies these two constraints.

• Does Natarajan dimension characterize multiclass learnability ?

Theorem

If \mathcal{H} is a class of symmetric functions with Natarajan dimension d then

$$rac{d+\ln(1/\delta)}{\epsilon} \ \le \ m_{\scriptscriptstyle PAC}(\epsilon,\delta) \ \le \ rac{d\ln(d/\epsilon)+\ln(1/\delta)}{\epsilon}$$

Jul'11 29 / 34

Theorem

If \mathcal{H} is a class of symmetric functions with Natarajan dimension d then

$$rac{d+\ln(1/\delta)}{\epsilon} \ \le \ m_{\scriptscriptstyle PAC}(\epsilon,\delta) \ \le \ rac{d\ln(d/\epsilon)+\ln(1/\delta)}{\epsilon}$$

A Principle for Designing Good ERMs

A good ERM is an ERM that, for every target hypothesis, considers a small number of hypotheses

A Principle for Designing Good ERMs

A good ERM is an ERM that, for every target hypothesis, considers a small number of hypotheses

- Given a target hypothesis $h^\star,$ let $\mathcal{S}(h^\star)=\{S:\mathrm{err}_S(h^\star)=0\}$
- Let $\mathcal{A}(\mathcal{S}(h^\star)) = \{\mathcal{A}(S): S \in \mathcal{S}(h^\star)\}$
- Claim: If $|\mathcal{A}(\mathcal{S}(h^{\star}))|$ is small then \mathcal{A} is consistent.

A Principle for Designing Good ERMs

A good ERM is an ERM that, for every target hypothesis, considers a small number of hypotheses

- \bullet Given a target hypothesis $h^\star,$ let $\mathcal{S}(h^\star)=\{S:\mathrm{err}_S(h^\star)=0\}$
- Let $\mathcal{A}(\mathcal{S}(h^\star)) = \{\mathcal{A}(S): S \in \mathcal{S}(h^\star)\}$
- Claim: If $|\mathcal{A}(\mathcal{S}(h^{\star}))|$ is small then \mathcal{A} is consistent.
- \bullet Obviously, $|\mathcal{A}(\mathcal{S}(h^{\star}))| \leq |\mathcal{H}|$ but can be much smaller
- Example: Recall our counter example, then $|\mathcal{A}_{bad}(\mathcal{S}(\emptyset))| = 2^{|\mathcal{X}|}$ while for all h^* , $|\mathcal{A}_{good}(\mathcal{S}(h^*))| \leq 2$

- Lemma: $|\mathcal{A}(\mathcal{S}(h^{\star}))| \leq m^d \cdot (\text{Max Range})^{2d}$
- Lemma: If *H* is symmetric and has Natarajan dimension *d*, then the Max Range of each *h* ∈ *H* is at most 2*d* + 1.

- We show how to calculate sample complexity of popular hypothesis classes particularly, multiclass-to-binary reductions
- Enables a rigorous comparison of known multiclass algorithms
 - Previous analysis (e.g. SS'01,BL'07): how the binary error translates to multiclass error
 - Our analysis: Direct calculation of the sample complexity of the multiclass classifier

• Multiclass-to-binary reductions:

- 1-vs-rest
- Linear multiclass construction: $\arg \max_i (Wx)_i$
- Filter trees
- \bullet Use linear predictors in \mathbb{R}^d as the binary classifiers

• Multiclass-to-binary reductions:

- 1-vs-rest
- Linear multiclass construction: $\arg \max_i (Wx)_i$
- Filter trees
- \bullet Use linear predictors in \mathbb{R}^d as the binary classifiers

Theorem

The Natarajan dimension of all the above classes is $\tilde{\Theta}(d | \mathcal{Y}|)$.

• All these reductions have the same estimation error. To compare them, one should analyze approximation error.

- Equivalence between uniform convergence and learnability breaks even in multiclass problems
- What characterizes multiclass learnability ?
- What is the corresponding learning rule ?
- What characterizes learnability in the general learning setting ?
- What is the corresponding learning rule ?

- Equivalence between uniform convergence and learnability breaks even in multiclass problems
- What characterizes multiclass learnability ?
- What is the corresponding learning rule ?
- What characterizes learnability in the general learning setting ?
- What is the corresponding learning rule ?

THANKS