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The Fundamental Theorem of Learning Theory
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The Fundamental Theorem of Learning Theory

For Regression
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For general learning problems?

Uniform
Convergence

Learnable
with ERM

Learnable
trivialtrivial

?

Not true even in multiclass classification !

What is learnable ? How to learn ?
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The General Learning Setting

Vapnik’s General Learning Setting

Hypothesis class H
Instance space Z with unknown distribution D
Loss function ` : H×Z → R

Given: Training set S ∼ Dm
Goal: Probably approximately solve

min
h∈H

L(h) where L(h) = E
z∼D

[`(h, z)]
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Examples

Binary classification:

Z = X × {0, 1}
h ∈ H is a predictor h : X → {0, 1}
`(h, (x, y)) = 1[h(x) 6= y]

Multiclass categorization:

Z = X × Y
h ∈ H is a predictor h : X → Y
`(h, (x, y)) = 1[h(x) 6= y]

k-means clustering:

Z = Rd

H ⊂ (Rd)k specifies k cluster centers
`((µ1, . . . , µk), z) = minj ‖µj − z‖

Density Estimation:

h is a parameter of a density ph(z)
`(h, z) = − log ph(z)
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Learnability, ERM, Uniform convergence

Uniform Convergence:
For m ≥ mUC(ε, δ),

P
S∼Dm

[∀h ∈ H, |LS(h)− L(h)| ≤ ε] ≥ 1− δ

Learnable:
∃A s.t. for m ≥ mPAC(ε, δ),

P
S∼Dm

[
L(A(S)) ≤ min

h∈H
L(h) + ε

]
≥ 1− δ

ERM:
An algorithm that returns A(S) ∈ argminh∈H LS(h)

Learnable by arbitrary ERM:
Like “Learnable” but A should be an ERM.
Denote sample complexity by mERM(ε, δ)
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For Binary Classification

Uniform
Convergence

Learnable
with ERM

Learnable

Finite VC

trivialtrivial

NFL (W’96)
VC’71

mUC(ε, δ) ≈ mERM(ε, δ) ≈ mPAC(ε, δ) ≈ VC(H) log(1/δ)
ε2
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First (trivial) Counter Example

Minorizing function:

Let H′ be a class of binary classifiers with infinite VC dimension

Let H = H′ ∪ {h0}

Let `(h, (x, y)) =


1 if h 6= h0 ∧ h(x) 6= y

1/2 if h 6= h0 ∧ h(x) = y

0 if h = h0

No uniform convergence (mUC =∞)

Learnable by ERM (mERM = 0)
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From Vapnik’s book ...
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Second Counter Example — Multiclass

X – a set, Y = 2X ∪ {∗}.
H = {hT : T ⊂ X} where

hT (x) =

{
∗ x /∈ T
T x ∈ T
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Second Counter Example — Multiclass

X – a set, Y = 2X ∪ {∗}.
H = {hT : T ⊂ X} where

hT (x) =

{
∗ x /∈ T
T x ∈ T

Claim: No uniform convergence: mUC ≥ |X |/ε
Target function is h∅
For any training set S, take T = X \ S
LS(hT ) = 0 but L(hT ) = P[T ]
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Second Counter Example — Multiclass

X – a set, Y = 2X ∪ {∗}.
H = {hT : T ⊂ X} where

hT (x) =

{
∗ x /∈ T
T x ∈ T

Claim: H is Learnable: mPAC ≤ 1
ε

Let T be the target
A(S) = hT if (x, T ) ∈ S
A(S) = h∅ if S = {(x1, ∗), . . . , (xm, ∗)}
In the 1st case, L(A(S)) = 0.
In the 2nd case, L(A(S)) = P[T ]
With high probability, if P[T ] > ε then we’ll be in the 1st case
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Second Counter Example — Multiclass

Corollary
mUC
mPAC

≈ |X |.
If |X | → ∞ then the problem is learnable but there is no uniform
convergence!
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Third Counter Example — Stochastic Convex Optimization

Consider the family of problems:

H is a convex set with maxh∈H ‖h‖ ≤ 1

For all z, `(h, z) is convex and Lipschitz w.r.t. h

Claim:

Problem is learnable by the rule:

argmin
h∈H

λm
2 ‖h‖

2 + 1
m

m∑
i=1

`(h, zi)

No uniform convergence

Not learnable by ERM
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Third Counter Example — Stochastic Convex Optimization

Proof (of “not learnable by arbitrary ERM”)

1-Mean + missing features

z = (α, x), α ∈ {0, 1}d, x ∈ Rd, ‖x‖ ≤ 1

`(h, (α, x)) =
√∑

i αi(hi − xi)2

Take P[αi = 1] = 1/2, P[x = µ] = 1

Let h(i) be s.t.

h
(i)
j =

{
1− µj if j = i

µj o.w.

If d is large enough, exists i such that h(i) is an ERM

But L(h(i)) ≥ 1/
√

2
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Third Counter Example — Stochastic Convex Optimization

Proof (of “not even learnable by a unique ERM”)

Perturb the loss a little bit:

`(h, (α, x)) =

√∑
i

αi(hi − xi)2 + ε
∑
i

2−i(hi − 1)2

Now loss is strictly convex — unique ERM

But the unique ERM does not generalize (as before)
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Characterizing Learnability using Stability

Theorem

A sufficient and necessary condition for learnability is the existence of
Asymptotic ERM (AERM) which is stable.

Uniform
Convergence

ERM is stable ∃ stable AERM

Learnable

RMP’05,MNPR’06, trivial
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More formally

Definition (Stability)

We say that A is εstable(m)-uniform-replace-one stable if for all D,

E
S,z′,i
|`(A(S(i)); z′)− `(A(S); z′)| ≤ εstable(m).

Definition (AERM)

We say that A is an AERM (Asymptotic Empirical Risk Minimizer) with
rate εerm(m) if for all D:

E
S∼Dm

[LS(A(S))−min
h∈H

LS(h)] ≤ εerm(m)
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Proof sketch: (Stable AERM is sufficient and necessary for
Learnability)

Sufficient:

For AERM: stability ⇒ generalization

AERM+generalization ⇒ consistency

Necessary:

∃ consistent A ⇒
∃ consistent and generalizing A′ (using subsampling)

Consistent+generalizing ⇒ AERM

AERM+generalizing ⇒ stable
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Intermediate Summary

Learnability ⇐⇒ ∃ stable AERM

But, how do we find one?

And, is there a combinatorial notion of learnability (like VC
dimension) ?
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Why multiclass learning

Practical relevance

A simple twist of binary classification

In a sense, captures the essence of difficulty of the General Learning
Setting
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The Graph Dimension

S is G-shattered by H if ∃f ∈ H s.t. for every T ⊆ S exists h ∈ H with

h(x) = f(x) if x ∈ T
h(x) 6= f(x) if x ∈ S \ T

Graph dimension: Maximal size of G-shattered set
Remark: When |Y| = 2, Graph dimension equals to VC dimension
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Example

Consider again our counter example: Y = 2X ∪ {∗} and
H = {hT : T ⊂ X} with

hT (x) =

{
∗ x /∈ T
T x ∈ T

Claim: Graph dimension of H is |X |
Proof: Take f = h∅ and S = X . For each T ⊂ S take hT c . So, for
x ∈ T , hT c(x) = ∗ = f(x) and for x /∈ T , hT c(x) = T 6= ∗.
Conclusion: Graph dimension does not characterize multiclass
learnability (in fact, Graph dimension characterizes uniform
convergence)
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The Natarajan Dimension

S is N-shattered by H if ∃f1, f2 ∈ H s.t. ∀x ∈ S, f1(x) 6= f2(x), and for
every T ⊆ S exists h ∈ H with

h(x) =

{
f1(x) if x ∈ T
f2(x) if x ∈ S \ T

Natarajan dimension: Maximal size of N-shattered set

Remarks:

When |Y| = 2, Natarajan dimension also equals to VC dimension

Natarajan ≤ Graph
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Example

Consider again our counter example: Y = 2X ∪ {∗} and
H = {hT : T ⊂ X} with

hT (x) =

{
∗ x /∈ T
T x ∈ T

Claim: Natarajan dimension of H is 1

Proof:
Take S = {x1, x2}. The only possible labelings of S by H are

h1 h2 h3 h4
x1 1,2 1 * *
x2 1,2 * 2 *

Constraints on f1, f2 are that f1(x) 6= f2(x) for all x, and exists h with
h(x1) = f1(x) and h2(x) = f2(x).
No (f1, f2) satisfies these two constraints.

Does Natarajan dimension characterize multiclass learnability ?
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Multiclass Learnability of Symmetric Classes

Theorem

If H is a class of symmetric functions with Natarajan dimension d then

d+ ln(1/δ)

ε
≤ mPAC(ε, δ) ≤ d ln(d/ε) + ln(1/δ)

ε
.

Is the above also true for non-symmetric hypotheses classes?

Open Question
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Proof: The Learning Algorithm

A good ERM is an ERM that, for every target hypothesis,
considers a small number of hypotheses

A Principle for Designing Good ERMs

Given a target hypothesis h?, let S(h?) = {S : errS(h?) = 0}
Let A(S(h?)) = {A(S) : S ∈ S(h?)}
Claim: If |A(S(h?))| is small then A is consistent.

Obviously, |A(S(h?))| ≤ |H| but can be much smaller

Example: Recall our counter example, then |Abad(S(∅))| = 2|X | while
for all h?, |Agood(S(h?))| ≤ 2
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Proof: Natarajan+Symmetric ⇒ small |A(S(h?))|

Lemma: |A(S(h?))| ≤ md · (Max Range)2d

Lemma: If H is symmetric and has Natarajan dimension d, then the
Max Range of each h ∈ H is at most 2d+ 1.
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Sample Complexity of Specific classes

We show how to calculate sample complexity of popular hypothesis
classes — particularly, multiclass-to-binary reductions

Enables a rigorous comparison of known multiclass algorithms

Previous analysis (e.g. SS’01,BL’07): how the binary error translates to
multiclass error
Our analysis: Direct calculation of the sample complexity of the
multiclass classifier
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Specific classes

Multiclass-to-binary reductions:

1-vs-rest
Linear multiclass construction: arg maxi(Wx)i
Filter trees

Use linear predictors in Rd as the binary classifiers

Theorem

The Natarajan dimension of all the above classes is Θ̃(d |Y|).

All these reductions have the same estimation error. To compare
them, one should analyze approximation error.
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Summary and Open Questions

Equivalence between uniform convergence and learnability breaks even
in multiclass problems

What characterizes multiclass learnability ?

What is the corresponding learning rule ?

What characterizes learnability in the general learning setting ?

What is the corresponding learning rule ?

THANKS
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