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10 Years Ago ...

ALLWEIN, SCHAPIRE & SINGER, 2000 (received Best 10-year paper
at ICML 2010)

ALLWEIN, SCHAPIRE & SINGER

#Examples
Problem Train Test #Attributes #Classes
dermatology 366 - 34 6
satimage 4435 2000 36 6
glass 214 - 9 7
segmentation 2310 - 19 7
ecoli 336 - 8 8
pendigits 7494 3498 16 10
yeast 1484 - 8 10
vowel 528 462 10 11
soybean 307 376 35 19
thyroid 9172 - 29 20
audiology 226 - 69 24
isolet 6238 1559 617 26
letter 16000 4000 16 26

Table 1: Description of the datasets used in the experiments.

tradeoff between the redundancy and correcting properties of the output codes and the difficulty of
the binary learning problems it induces. The complete code has good error correcting properties;
the distance between each pair of rows is . However, many of the binary
problems that the complete code induces are difficult to learn. The distance between each pair of
rows in the one-against-all code is small: . Hence, its empirical error bound according to
Theorem 1 seems inferior. However, the binary problems it induces are simpler and thus its average
binary loss is lower than the average binary loss of the complete code and the overall result is
comparable performance.

Next, we describe experiments we performed with multiclass data from the UCI repository (Merz
& Murphy, 1998). We used two different popular binary learners, AdaBoost and SVM. We chose
the following datasets (ordered according to the number of classes): Dermatology, Satimage, Glass,
Segmentation, E-coli, Pendigits, Yeast, Vowel, Soybean-large, Thyroid, Audiology, Isolet, Letter-
recognition. The properties of the datasets are summarized in Table 1. In the SVM experiments, we
skipped Audiology, Isolet, Letter-recognition, Segmentation, and Thyroid, because these datasets
were either too big to be handled by our current implementation of SVM or contained many nominal
features with missing values which are problematic for SVM. All datasets have at least six classes.
When available, we used the original partition of the datasets into training and test sets. For the
other datasets, we used -fold cross validation. For SVM, we used polynomial kernels of degree
with the multi-call variant. For AdaBoost, we used decision stumps for base hypotheses. By

modifying an existing package of AdaBoost.MH (Schapire & Singer, 1999) we were able to devise
a simple implementation of the single-call variant that was described in Section 5. Summaries of
the results using the different output codes described below are given in Tables 2 and 3.

We tested five different types of output codes: one-against-all, complete (in which there is one
column for every possible (non-trivial) split of the classes), all-pairs, and two types of random
codes. The first type of random code has columns for a problem with classes. Each
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Data Revolution

In 2009, more data has been generated by individuals than in the entire
history of mankind through 2008 ...
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Discriminative Learning

If only Tiger Woods could
bond with fans as well as he
did with his caddie on the Old
Course practice range on Mon-
day he might find the road to
redemption all the more sim-
ple...

Document

About Sport?
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Discriminative Learning

Hypothesis set H
Learning rule

Learning Algorithm
Training Set
{(xi, yi)}mi=1

Output
h : X → Y

E.g.

X - instance domain (e.g documents)

Y - label set (e.g. document category – is about sport?)

Goal: learn a predictor h : X → Y
H - Set of possible predictors

Learning rule - (e.g. “find h ∈ H with minimal error on training set”)
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Large Scale Learning

10k training examples 1 hour 2.3% error

1M training examples 1 week 2.29% error

Can always sub-sample and get error of 2.3% using 1 hour

Say we’re happy with 2.3% error
What else can we gain from the larger data set?
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How can more data help?

More Data

reduce
runtime

compensate
for missing
information

reduce error

Traditional

This talk
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Outline

How can more data reduce runtime?

Learning using Stochastic Optimization (S. & Srebro 2008)

Injecting Structure (S, Shamir, Sirdharan 2010)

How can more data compensate for missing information?

Attribute Efficient Learning (Cesa-Bianchi, S., Shamir 2010)
Technique: Rely on Stochastic Optimization

Ads Placement (Kakade, S., Tewari 2008)
Technique: Inject Structure by Exploration
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Background on ML: Vapnik’s General Learning Setting

Probably Approximately Solve:

min
h∈H

E
z∼D

[f(h, z)]

where:

D is an unknown distribution

Can only get samples z1, . . . , zm
i.i.d.∼ D

H is a known hypothesis class

f(h, z) is the loss of using hypothesis h on example z

Main question studied by Vapnik:
How many examples are required to find ĥ = A(z1, . . . , zm) s.t.

E
z∼D

[
f(ĥ, z)

]
− min

h∈H
E

z∼D
[f(h, z)] ≤ ε w.p. ≥ 1− δ
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Examples

Document Categorization:

z = (x, y), x represents a document and y ∈ [k] is the topic
h ∈ H is a predictor h : X → [k]
f(h, z) = 1[h(x) 6= y]

k-means clustering:

z ∈ Rd

h ∈ Rk,d specifies k cluster centers
f(h, z) = minj ‖hj,→ − z‖

Density Estimation:

h is a parameter of a density ph(z)
f(h, z) = − log ph(z)

Ads Placement:

z = (x, c), x represents context and c ∈ [0, 1]k represents the gain of
placing each ad
h : X → Sk returns the probability to place each ad
f(h, z) = 〈h(x), c〉 is the expected gain of following policy h
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Vapnik’s Learning Rule

Empirical Risk Minimization:
Return a hypothesis with smallest risk on the training examples:

ĥ ∈ argmin
h∈H

1

m

m∑
i=1

f(h, zi)

Sample Complexity: If m ≥ Ω
(

C(H) log(1/δ)
ε2

)
, where C(H) is some

complexity measure, then ĥ is Probably Approximately Correct.
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Example: Support Vector Machines

SVM is a very popular Machine Learning algorithm
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Support Vector Machines

SVM learning rule:

Given samples (x1, y1), . . . , (xm, ym) solve:

min
w

λ

2
‖w‖2 +

1

m

m∑
i=1

max{0, 1− yi〈w,xi〉}

Casting in the General Learning Setting:

z = (x, y)

h = w

f(h, z) = max{0, 1− y〈w,x〉}+ λ
2‖w‖

2

SVM learning rule is exactly ERM for the above loss function
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Solving the SVM problem

SVM learning rule can be rewritten as a Quadratic Optimization
Problem.

Solvable in polynomial time by standard solvers. Dedicated solvers
also exist. End of story?

Not quite... Runtime of standard solvers increases with m

What if m is very large ?
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Machine Learning Perspective on Optimization

Our real goal is not to minimize the SVM optimization problem

SVM optimization problem is just a proxy for achieving the real goal
— find a hypothesis with small error on unseen data

Should study runtime required to solve the Learning Problem:

T (m, ε) – runtime required to find ε-accurate solution w.r.t. unseen
data when number of training examples available is m
T (∞, ε) – data laden analysis – data is plentiful and computational
complexity is the real bottleneck
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ERM vs. Stochastic Optimization

Goal: minh Ez∼D[f(h, z)]

minh
1
m

∑m
i=1 f(h, zi)

ERM
(traditional)

h← h− η∇f(h, zi)

SGD
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Data Laden Analysis of SVM Solvers

Method Optimization runtime T (∞, ε)

Interior Point m3.5 log log 1
ε

1
ε7

Dual decompositoin m2 log 1
ε

1
ε4

SVM-Perf (Joachims ’06)
m
λε

1
ε4

SGD (S, Srbero, Singer ’07)
1
λε

1
ε2

“Best” optimization method is the worst learning method . . .
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More Data Less Work

R
un

tim
e Dual Decomposition

R
un

tim
e

SVM−Perf

PEGASOS

Training Set Size

R
un

tim
e

SGD
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More Data Less Work

Theoretical Empirical (CCAT)
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Training Set Size

Intuition: Better to do simple operations on more examples than
complicated operations on fewer examples
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Outline

How can more data reduce runtime?

Learning using Stochastic Optimization (S. & Srebro 2008) X
Injecting Structure (S, Shamir, Sirdharan 2010)

How can more data compensate for missing information?

Attribute Efficient Learning (Cesa-Bianchi, S., Shamir 2010)
Technique: rely on Stochastic Optimization

Ads Placement (Kakade, S., Tewari 2008)
Technique: Inject Structure by Exploration
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Injecting Structure – Main Idea

Replace original hypothesis class with a larger hypothesis class

On one hand: Larger class has more structure ⇒ easier to optimize

On the other hand: Larger class ⇒ larger estimation error ⇒ need
more examples

Original
Hypothesis

Class

New Hypothes
is Class
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Example — Learning 3-DNF

Goal: learn a Boolean function h : {0, 1}d → {0, 1}

Hypothesis class: 3-term DNF formulae:

E.g. h(x) = (x1 ∧ ¬x3 ∧ x7) ∨ (x4 ∧ x2) ∨ (x5 ∧ ¬x9)

Sample complexity is order d/ε

Kearns & Vazirani: If RP6=NP, it is not possible to efficiently find an
ε-accurate 3-DNF formula

Claim: if m ≥ d3/ε it is possible to find a predictor with error ≤ ε in
polynomial time

Runtime

m

Shai Shalev-Shwartz (Hebrew U) Learning in the Data Revolution Era Google-UW, July’10 22 / 40



Example — Learning 3-DNF

Goal: learn a Boolean function h : {0, 1}d → {0, 1}
Hypothesis class: 3-term DNF formulae:

E.g. h(x) = (x1 ∧ ¬x3 ∧ x7) ∨ (x4 ∧ x2) ∨ (x5 ∧ ¬x9)

Sample complexity is order d/ε

Kearns & Vazirani: If RP6=NP, it is not possible to efficiently find an
ε-accurate 3-DNF formula

Claim: if m ≥ d3/ε it is possible to find a predictor with error ≤ ε in
polynomial time

Runtime

m

Shai Shalev-Shwartz (Hebrew U) Learning in the Data Revolution Era Google-UW, July’10 22 / 40



Example — Learning 3-DNF

Goal: learn a Boolean function h : {0, 1}d → {0, 1}
Hypothesis class: 3-term DNF formulae:

E.g. h(x) = (x1 ∧ ¬x3 ∧ x7) ∨ (x4 ∧ x2) ∨ (x5 ∧ ¬x9)

Sample complexity is order d/ε

Kearns & Vazirani: If RP6=NP, it is not possible to efficiently find an
ε-accurate 3-DNF formula

Claim: if m ≥ d3/ε it is possible to find a predictor with error ≤ ε in
polynomial time

Runtime

m

Shai Shalev-Shwartz (Hebrew U) Learning in the Data Revolution Era Google-UW, July’10 22 / 40



Example — Learning 3-DNF

Goal: learn a Boolean function h : {0, 1}d → {0, 1}
Hypothesis class: 3-term DNF formulae:

E.g. h(x) = (x1 ∧ ¬x3 ∧ x7) ∨ (x4 ∧ x2) ∨ (x5 ∧ ¬x9)

Sample complexity is order d/ε

Kearns & Vazirani: If RP6=NP, it is not possible to efficiently find an
ε-accurate 3-DNF formula

Claim: if m ≥ d3/ε it is possible to find a predictor with error ≤ ε in
polynomial time

Runtime

m

Shai Shalev-Shwartz (Hebrew U) Learning in the Data Revolution Era Google-UW, July’10 22 / 40



Example — Learning 3-DNF

Goal: learn a Boolean function h : {0, 1}d → {0, 1}
Hypothesis class: 3-term DNF formulae:

E.g. h(x) = (x1 ∧ ¬x3 ∧ x7) ∨ (x4 ∧ x2) ∨ (x5 ∧ ¬x9)

Sample complexity is order d/ε

Kearns & Vazirani: If RP6=NP, it is not possible to efficiently find an
ε-accurate 3-DNF formula

Claim: if m ≥ d3/ε it is possible to find a predictor with error ≤ ε in
polynomial time

Runtime

m

Shai Shalev-Shwartz (Hebrew U) Learning in the Data Revolution Era Google-UW, July’10 22 / 40



Example — Learning 3-DNF

Goal: learn a Boolean function h : {0, 1}d → {0, 1}
Hypothesis class: 3-term DNF formulae:

E.g. h(x) = (x1 ∧ ¬x3 ∧ x7) ∨ (x4 ∧ x2) ∨ (x5 ∧ ¬x9)

Sample complexity is order d/ε

Kearns & Vazirani: If RP6=NP, it is not possible to efficiently find an
ε-accurate 3-DNF formula

Claim: if m ≥ d3/ε it is possible to find a predictor with error ≤ ε in
polynomial time

Runtime

m

Shai Shalev-Shwartz (Hebrew U) Learning in the Data Revolution Era Google-UW, July’10 22 / 40



Proof

Observation: 3-DNF formula can be rewritten as
∧u∈T1,v∈T2,w∈T3(u ∨ v ∨ w) for three sets of literals T1, T2, T3

Define: ψ : {0, 1}d → {0, 1}2(2d)3 s.t. for each triplet of literals
u, v, w there are two variables indicating if u ∨ v ∨ w is true or false

Observation: Each 3-DNF can be represented as a single conjunction
over ψ(x)

Easy to learn single conjunction (greedy or LP)

3-DNF over x

conju
nctio

n over
ψ(x)
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Trading samples for runtime

Algorithm samples runtime

3-DNF over x d
ε 2d

Conjunction over ψ(x) d3

ε poly(d)

Runtime

m

3-DNF

Conjunction
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More complicated example: Agnostic learning of
Halfspaces with 0− 1 loss

Runtime

m

Ben-David & Simon (2000)

S., Shamir, Sridharan (2010)
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Outline

How can more data reduce runtime?

Learning using Stochastic Optimization (S. & Srebro 2008) X
Injecting Structure (S, Shamir, Sirdharan 2010) X

How can more data compensate for missing information?

Attribute Efficient Learning (Cesa-Bianchi, S., Shamir 2010)
Technique: rely on Stochastic Optimization

Ads Placement (Kakade, S., Tewari 2008)
Technique: Inject Structure by Exploration
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Attribute efficient regression

Each training example is a pair (x, y) ∈ Rd × R
Partial information: can only view O(1) attributes of each individual
example
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Sponsored Advertisement (contextual multi-armed bandit)

Each training example is a pair (x, c) ∈ Rd × [0, 1]k

Partial information: Don’t know c. Can only guess some y and know
the value of cy
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How more data helps?

Three main techniques:

1 Missing information as noise

2 Active Exploration — try to “fish” the relevant information

3 Inject structure — problem hard in the original representation but
becomes simple in another representation (different hypothesis class)

More data helps because:

1 It reduces variance — compensates for the noise

2 It allows more exploration

3 It compensates for larger sample complexity due to using larger
hypotheses classes
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Attribute efficient regression

Formal problem statement:

Unknown distribution D over Rd × R
Goal: learn a linear predictor x 7→ 〈w,x〉 with low risk:

Risk: LD(w) = ED[(〈w,x〉 − y)2]
Training set: (x1, y1), . . . , (xm, ym)

Partial information: For each (xi, yi), learner can view only k
attributes of xi

Active selection: learner can choose which k attributes to see

Similar to “Learning with restricted focus of attention” (Ben-David &

Dichterman 98)
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Dealing with missing information

Usually difficult — exponential ways to complete the missing
information

Popular approach — Expectation Maximization (EM)

Previous methods usually do not come with guarantees
(neither sample complexity nor computational complexity)
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Ostrich approach

Simply set the missing attributes to a default value

Use your favorite regression algorithm for full information, e.g.,

min
w

m∑
i=1

(〈w, x̃i〉 − yi)
2 + λ‖w‖pp

Ridge Regression: p = 2
Lasso: p = 1

Efficient

Correct? Sample complexity? How to choose attributes ?
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Partial information as noise

Observation:

x =


x1

x2
...
xd

 =
1

d


dx1

0
...
0

 + . . .+
1

d


0
...
0
dxd


Therefore, choosing i uniformly at random gives

E
i
[dxiei] = x .

If ‖x‖ ≤ 1 then ‖dxiei‖ ≤ d (i.e. variance increased)

Reduced missing information to unbiased noise

Many examples can compensate for the added noise
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Many examples compensates for noise

True goal: minimize over w the true risk
LD(w) = E(x,y)[(〈w,x〉 − y)2]
Loss on one example, (〈w,x〉 − y)2, gives an unbiased estimate for
LD(w)

Averaging loss on many examples reduces variance

In our case, we construct an unbiased estimate of the loss of each
single example

Variance increases but many examples still reduces it back
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Loss-Based Attribute Efficient Regression (LaBAER)

Theorem (Cesa-Bianchi, S, Shamir)

Let ŵ be the output of LaBAER. Then, with overwhelming probability

LD(ŵ) ≤ min
w:‖w‖1≤B

LD(w) + Õ

(
d2B2

√
m

)
,

where d is dimension and m is number of examples.

Factor of d4 more examples compensates for the missing information !

Can we do better?
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(
d2B2

√
m

)
,

where d is dimension and m is number of examples.

Factor of d4 more examples compensates for the missing information !

Can we do better?

Shai Shalev-Shwartz (Hebrew U) Learning in the Data Revolution Era Google-UW, July’10 35 / 40



Loss-Based Attribute Efficient Regression (LaBAER)

Theorem (Cesa-Bianchi, S, Shamir)
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LD(ŵ) ≤ min
w:‖w‖1≤B

LD(w) + Õ
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Pegasos Attribute Efficient Regression (PAER)

The factor d2 in the bound — because we estimate a matrix xxT

Can we avoid estimating the matrix ?

Yes ! Estimate the gradient of the loss instead of the loss

Follow the Stochastic Gradient Descent approach

Leads to a much better bound
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Demonstration

Full information classifiers (top line) ⇒ error of ∼ 1.5%

Our algorithms (bottom line) ⇒ error of ∼ 4%
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Demonstration
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Ads Placement: More data improves runtime

Partial supervision

Technique: Active Exploration

Larger regret can be compensated by having more examples

runtime

m

Halving

Banditron
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Summary

Learning theory: Many examples ⇒ smaller error

This work: Many examples ⇒
higher efficiency
compensating for missing information

Techniques:
1 Stochastic optimization
2 Inject structure
3 Missing information as noise
4 Active Exploration
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