Large-Scale SVM Optimization: Taking a Machine Learning Perspective

Shai Shalev-Shwartz

Toyota Technological Institute at Chicago

Joint work with Nati Srebro

Talk at NEC Labs, Princeton, August, 2008

10k training examples

1 hour

2.3% error

10k training examples

1 hour

2.3% error

 $1M\ {\rm training}\ {\rm examples}$

 $1 \operatorname{week}$

2.29% error

-

10k training examples

 $1 \ {\sf hour}$

2.3% error

• Can always sub-sample and get error of 2.3% using 1 hour

10k training examples

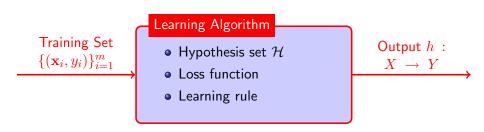
 $1 \ \mathrm{hour}$

2.3% error

- Can always sub-sample and get error of 2.3% using 1 hour
- Can we leverage excess data to reduce runtime ? Say, achieve error of 2.3% using 10 minutes ?

- Background: Machine Learning, Support Vector Machine (SVM)
- SVM as an optimization problem
- A Machine Learning Perspective on SVM Optimization
 - Approximated optimization
 - Re-define quality of optimization using generalization error
 - Error decomposition
 - Data-Laden Analysis
- Stochastic Methods
 - Why Stochastic ?
 - PEGASOS (Stochastic Gradient Descent)
 - Stochastic Coordinate Dual Ascent

Background: Machine Learning and SVM



- Support Vector Machine
 - Linear hypotheses: $h_{\mathbf{w}}(\mathbf{x}) = \langle \mathbf{w}, \mathbf{x} \rangle$
 - Prefer hypotheses with large margin, i.e., low Euclidean norm
 - Resulting learning rule:

$$\underset{\mathbf{w}}{\operatorname{argmin}} \frac{\lambda}{2} \|\mathbf{w}\|^2 + \frac{1}{m} \sum_{i=1}^m \underbrace{\max\{0, 1 - y_i \langle \mathbf{w}, \mathbf{x}_i \rangle\}}_{\operatorname{Hinge-loss}}$$

Support Vector Machines and Optimization

• SVM learning rule:

$$\underset{\mathbf{w}}{\operatorname{argmin}} \frac{\lambda}{2} \|\mathbf{w}\|^2 + \frac{1}{m} \sum_{i=1}^m \max\{0, 1 - y_i \langle \mathbf{w}, \mathbf{x}_i \rangle\}$$

 SVM optimization problem can be written as a Quadratic Programming problem

$$\begin{aligned} \underset{\mathbf{w},\boldsymbol{\xi}}{\operatorname{argmin}} & \frac{\lambda}{2} \|\mathbf{w}\|^2 + \frac{1}{m} \sum_{i=1}^m \xi_i \\ \text{s.t.} & \forall i, \ 1 - y_i \left< \mathbf{w}, \mathbf{x}_i \right> \leq \xi_i \quad \land \quad \xi_i \geq 0 \end{aligned}$$

• Standard solvers exist. End of story ?

Approximated Optimization

- If we don't have infinite computation power, we can only approximately solve the SVM optimization problem
- Traditional analysis
 - SVM objective:

$$P(\mathbf{w}) = \frac{\lambda}{2} \|\mathbf{w}\|^2 + \frac{1}{m} \sum_{i=1}^m \ell(\langle \mathbf{w}, \mathbf{x}_i \rangle, y_i)$$

• $\tilde{\mathbf{w}}$ is $\rho\text{-accurate solution if}$

$$P(\tilde{\mathbf{w}}) \le \min_{\mathbf{w}} P(\mathbf{w}) + \rho$$

- Main focus: How optimization runtime depends on ρ ? E.g. IP methods converge in time $O(m^{3.5} \log(\log(\frac{1}{\rho})))$
- Large-scale problems: How optimization runtime depends on m? E.g. SMO converges in time $O(m^2 \log(\frac{1}{\rho}))$ SVM-Perf runtime is $O(\frac{m}{\lambda \rho})$

- Our real goal is *not* to solve the SVM problem $P(\mathbf{w})$
- Our goal is to find w with low generalization error:

$$L(\mathbf{w}) = \mathbb{E}_{(\mathbf{x},y) \sim \mathbb{P}}[\ell(\langle \mathbf{w}, \mathbf{x} \rangle, y)]$$

• Redefine approximated accuracy:

• $\tilde{\mathbf{w}}$ is ϵ -accurate solution w.r.t. margin parameter B if

$$L(\tilde{\mathbf{w}}) \le \min_{\mathbf{w}: \|\mathbf{w}\| \le B} L(\mathbf{w}) + \epsilon$$

 $\bullet\,$ Study runtime as a function of ϵ and B

Error Decomposition

Theorem (S, Srebro '08)

If $\tilde{\mathbf{w}}$ satisfies

$$P(\tilde{\mathbf{w}}) \le \min_{\mathbf{w}} P(\mathbf{w}) + \rho$$

then, w.p. at least $1 - \delta$ over choice of training set, $\tilde{\mathbf{w}}$ satisfies

$$L(\tilde{\mathbf{w}}) \leq \min_{\mathbf{w}:\|\mathbf{w}\|\leq B} L(\mathbf{w}) + \epsilon$$

with

$$\epsilon = \frac{\lambda B^2}{2} + \frac{c \log(1/\delta)}{\lambda m} + 2\rho$$

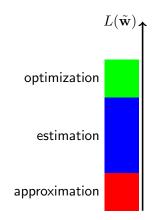
(Following:

Bottou and Bousquet, "The Tradeoffs of Large Scale Learning", NIPS '08)

Shai Shalev-Shwartz (TTI-C)

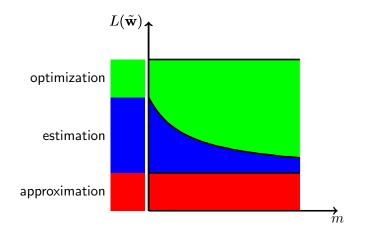
Image: A matrix of the second seco

More Data \Rightarrow Less Work ?

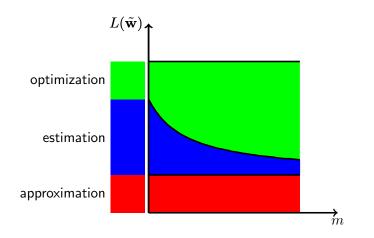


- 신문 → - 신문

More Data \Rightarrow Less Work ?



More Data \Rightarrow Less Work ?



• When data set size increases:

- Can increase $\rho \Rightarrow$ can optimize less accurately \Rightarrow runtime decreases
- But handling more data may be expensive \Rightarrow runtime increases

Machine Learning Analysis of Optimization Algorithms

- Given solver with opt. accuracy $\rho(T,m,\lambda)$
- To ensure excess generalization error $\leq \epsilon$ we need that

$$\min_{\lambda} \ \frac{\lambda B^2}{2} + \frac{c \log(1/\delta)}{\lambda m} + 2 \rho(T, m, \lambda) \le \epsilon$$

• From the above we get runtime T as a function of m,B,ϵ

Machine Learning Analysis of Optimization Algorithms

- Given solver with opt. accuracy $\rho(T,m,\lambda)$
- To ensure excess generalization error $\leq \epsilon$ we need that

$$\min_{\lambda} \ \frac{\lambda B^2}{2} + \frac{c \log(1/\delta)}{\lambda m} + 2 \rho(T, m, \lambda) \le \epsilon$$

- $\bullet\,$ From the above we get runtime T as a function of $m,B,\epsilon\,$
- Examples (ignoring logarithmic terms and constants, and assuming linear kernels):

	$ ho(T,m,\lambda)$	$T(m, B, \epsilon)$
SMO (Platt '98)	$\exp(-T/m^2)$	$\left(\frac{B}{\epsilon}\right)^4$
SVM-Perf (Joachims '06)	$\frac{m}{\lambda T}$	$\left(\frac{B}{\epsilon}\right)^4$
SGD (S, Srbero, Singer '07)	$\frac{1}{\lambda T}$	$\left(\frac{B}{\epsilon}\right)^2$

Stochastic Gradient Descent (Pegasos)

- Initialize $\mathbf{w}_1 = \mathbf{0}$
- For $t = 1, 2, \ldots, T$
 - Choose $i \in [m]$ uniformly at random
 - Define

$$\nabla_t = \lambda \, \mathbf{w}_t - I_{[y_t \langle \mathbf{w}_t, \mathbf{x}_t \rangle > 0]} \, y_t \, \mathbf{x}_t$$

Note: $\mathbb{E}[\nabla_t]$ is a sub-gradient of $P(\mathbf{w})$ at \mathbf{w}_t

- Set $\eta_t = \frac{1}{\lambda t}$
- Update:

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \eta_t \, \nabla_t = (1 - \frac{1}{t}) \mathbf{w}_t + \frac{1}{\lambda t} \, I_{[y_t \langle \mathbf{w}_t, \mathbf{x}_t \rangle > 0]} \, y_t \, \mathbf{x}_t$$

Theorem (Pegasos Convergence)

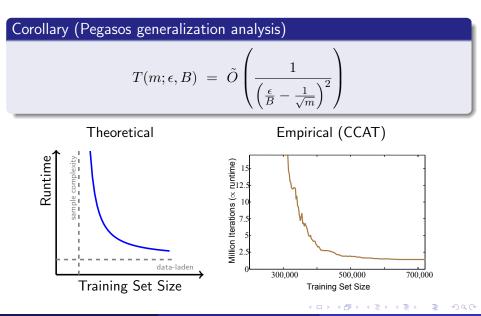
$$\mathbb{E}[\rho] \leq O\left(\frac{\log(T)}{\lambda T}\right)$$

Shai Shalev-Shwartz (TTI-C)

3

Image: Image:

Dependence on Data Set Size



Aug'08 12 / 25

- Analyze runtime (T) as a function of
 - excess generalization error (ϵ)
 - size of competing class (B)
- Up to constants and logarithmic terms, stochastic gradient descent (Pegasos) is optimal its runtime is order of sample complexity $\Omega\left(\left(\frac{B}{\epsilon}\right)^2\right)$
- For Pegasos, running time decreases as training set size increases
- Coming next
 - Limitations of Pegasos
 - Dual Coordinate Ascent methods

Pegasos is simple and efficient optimization method. However, it has some limitations:

- log(sample complexity) factor in convergence rate
- No clear stopping criterion
- Tricky to obtain a good single solution with high confidence
- Too aggressive at the beginning (especially when λ very small)
- When working with kernels, too much support vectors

Hsieh et al recently argued that empirically dual coordinate ascent outperforms Pegasos

The dual SVM problem:

$$\min_{\boldsymbol{\alpha} \in [0,1]^m} \mathcal{D}(\boldsymbol{\alpha}) \quad \text{where} \quad \mathcal{D}(\boldsymbol{\alpha}) = \frac{1}{m} \sum_{i=1}^m \alpha_i - \frac{1}{2\lambda m^2} \|\sum_i \alpha_i y_i \mathbf{x}_i\|^2$$

Decomposition Methods

- Dual problem has a different variable for each example
- ullet \Rightarrow can optimize over subset of variables at each iteration
- Extreme case
 - Dual Coordinate Ascent (DCA) optimize ${\cal D}$ w.r.t. a single variable at each iteration
 - SMO optimize over 2 variables (necessary when having a bias term)

Linear convergence for decomposition methods

- General convergence theory of (Luo and Tseng '92) implies linear convergence
- But, dependence on m is quadratic. Therefore

$$T = O(m^2 \log(1/\rho))$$

• This implies the Machine Learning analysis

$$T = O(B^4/\epsilon^4)$$

- Why SGD is much better than decomposition methods ?
 - Primal vs. dual ?
 - Stochastic ?

The stochastic DCA algorithm

- Initialize $\boldsymbol{\alpha} = (0, \dots, 0)$ and $\mathbf{w} = \mathbf{0}$
- For $t = 1, 2, \ldots, T$
 - $\bullet~\mbox{Choose}~i\in[m]$ uniformly at random

• Update:
$$\alpha_i = \alpha_i + \tau_i$$
 where
 $\tau_i = \max\left\{-\alpha_i, \min\left\{1 - \alpha_i, \frac{\lambda m \left(1 - y_i \langle \mathbf{w}, \mathbf{x}_i \rangle\right)}{\|\mathbf{x}_i\|^2}\right\}\right\}$

• Update:
$$\mathbf{w} = \mathbf{w} + \frac{\tau_i}{\lambda m} y_i \mathbf{x}_i$$

- Hsieh et al showed encouraging empirical results
- No satisfactory theoretical guarantee

Analysis of stochastic DCA

Theorem (S '08)

With probability at least $1 - \delta$, the accuracy of stochastic DCA satisfies

$$\rho \leq \frac{8 \ln(1/\delta)}{T} \left(\frac{1}{\lambda} + m\right)$$

Theorem (S '08)

With probability at least $1 - \delta$, the accuracy of stochastic DCA satisfies

$$\rho \leq \frac{8 \ln(1/\delta)}{T} \left(\frac{1}{\lambda} + m\right)$$

Proof idea:

- Let α^{\star} be optimal dual solution
- Upper bound dual sub-optimality at round t by the double potential

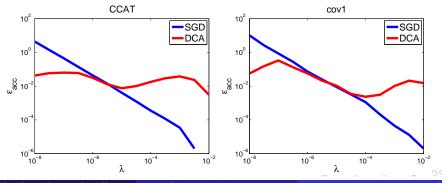
$$\frac{1}{2 \lambda m} \mathbb{E}_i \left[\| \boldsymbol{\alpha}^t - \boldsymbol{\alpha}^\star \|^2 - \| \boldsymbol{\alpha}^{t+1} - \boldsymbol{\alpha}^\star \|^2 \right] + \mathbb{E}_i \left[\mathcal{D}(\boldsymbol{\alpha}^{t+1}) - \mathcal{D}(\boldsymbol{\alpha}^t) \right]$$

- Sum over t, use telescoping, and bound the result using weak-duality
- Use approximated duality theory (Scovel, Hush, Steinwart '08)
- Finally, use measure concentration techniques

Comparing SGD and DCA

$$\begin{array}{lll} \mathrm{SGD}: & \rho(m,T,\lambda) \; \leq \; \frac{1}{T} \, \frac{\log(T)}{\lambda} \\ \mathrm{DCA}: & \rho(m,T,\lambda) \; \leq \; \frac{1}{T} \, \left(\frac{1}{\lambda} + m \right) \end{array}$$

Conclusion: Relative performance depends on $\lambda m \stackrel{?}{<} \log(T)$



Shai Shalev-Shwartz (TTI-C)

Aug'08 19 / 25

- The above graphs raise the natural question: Can we somehow combine SGD and DCA ?
- Seemingly, this is impossible as SGD is a **primal** algorithm while DCA is a **dual** algorithm
- Interestingly, SGD can be viewed also as a dual algorithm, but with a dual function that changes along the optimization process
- This is an ongoing direction ...

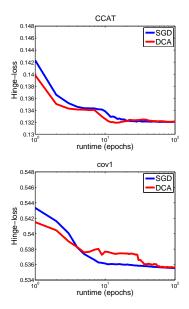
- So far, we compared SGD and DCA using the old way (
 ho)
- But, what about runtime as a function of ϵ and B ?
- Similarly to previous derivation (and ignoring log terms)

SGD:
$$T \leq \frac{B^2}{\epsilon^2}$$

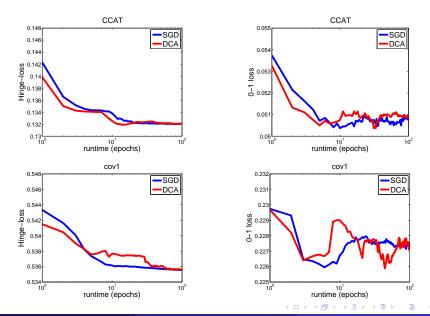
DCA: $T \leq \frac{B^2}{\epsilon^3}$

• Is this really the case ?

SGD vs. DCA - Machine Learning Perspective



SGD vs. DCA - Machine Learning Perspective



Shai Shalev-Shwartz (TTI-C)

SVM from ML Perspective

Aug'08 22 / 25

Analysis of DCA revisited

- DCA analysis $T \leq \frac{1}{\lambda \rho} + \frac{m}{\rho}$
- First term is like in SGD while second term involves training set size. This is necessary since each dual variable has only 1/m effect on w.
- However, a more delicate analysis is possible:

Theorem (DCA refined analysis)

If $T \ge m$ then with high probability at least one of the following holds true:

• After a single epoch DCA satisfies $L(\tilde{\mathbf{w}}) \leq \min_{\mathbf{w}: \|\mathbf{w}\| \leq B} L(\mathbf{w})$

• DCA converges in time
$$ho \leq rac{c}{T-m} \left(rac{1}{\lambda} + \lambda\,m\,B^2 + B\,\sqrt{m}
ight)$$

The above theorem implies $T \leq O(B^2/\epsilon^2)$.

- Bottou and Bousquet initiated a study of approximated optimization from the perspective of generalization error
- We further develop this idea
 - Regularized loss (like SVM)
 - Comparing algorithms based on runtime for achieving certain generalization error
 - Comparing algorithms in the data-laden regime
 - $\bullet \ \ {\rm More} \ \ {\rm data} \Rightarrow {\rm less} \ {\rm work}$
- Two stochastic approaches are close to optimal
- Best methods are extremely simple :-)

- Analysis is based on upper bounds of estimation and optimization error
- The online-to-batch analysis gives the same bounds for one epoch over the data (No theoretical explanation when we need more than one pass)
- We assume constant runtime for each inner product evaluation (holds for linear kernels). How to deal with non-linear kernels ?
 - Sampling ?
 - Smart selection (online learning on a budget ? Clustering ?)
- We assume λ is optimally chosen. Incorporating the runtime of tuning λ in the analysis ?
- Assumptions on distribution (e.g. Noise conditions) $\stackrel{?}{\Rightarrow}$ Better analysis
- A more general theory of optimization from a machine learning perspective