Trading regret rate for computational efficiency in online learning with limited feedback

Shai Shalev-Shwartz

On-line Learning with Limited Feedback Workshop, 2009
June 2009

Online Learning with restricted computational power

Main Question

Given a runtime constraint τ, horizon T, reference class \mathcal{H} :
What is the achievable regret of an algorithm whose (amortized) runtime is $O(\tau)$?

Online Learning with restricted computational power

Main Question

Given a runtime constraint τ, horizon T, reference class \mathcal{H} :
What is the achievable regret of an algorithm whose (amortized) runtime is $O(\tau)$?

Online Learning with restricted computational power

Main Question

Given a runtime constraint τ, horizon T, reference class \mathcal{H} :
What is the achievable regret of an algorithm whose (amortized) runtime is $O(\tau)$?

Non-stochastic Multi-armed bandit with side information

The prediction problem
Arms: $A=\{1, \ldots, k\}$
For $t=1,2, \ldots, T$

- Learner receives side information $\mathbf{x}_{t} \in \mathcal{X}$
- Environment chooses cost vector $c_{t}: A \rightarrow[0,1]$ (unknown to learner)
- Learner chooses action $a_{t} \in A$
- Learner pay cost $c_{t}\left(a_{t}\right)$

Non-stochastic Multi-armed bandit with side information

The prediction problem

Arms: $A=\{1, \ldots, k\}$
For $t=1,2, \ldots, T$

- Learner receives side information $\mathbf{x}_{t} \in \mathcal{X}$
- Environment chooses cost vector $c_{t}: A \rightarrow[0,1]$ (unknown to learner)
- Learner chooses action $a_{t} \in A$
- Learner pay cost $c_{t}\left(a_{t}\right)$

Goal

Low regret w.r.t. a reference hypothesis class \mathcal{H} :

$$
\text { Regret } \stackrel{\text { def }}{=} \sum_{t=1}^{T} c_{t}\left(a_{t}\right)-\min _{h \in \mathcal{H}} \sum_{t=1}^{T} c_{t}\left(h\left(\mathbf{x}_{t}\right)\right)
$$

Outline

\mathcal{H} is the class of linear hypotheses

2 arms, non-separable

First example: Bandit Multi-class Categorization

For $t=1,2, \ldots, T$

- Learner receives side information $\mathbf{x}_{t} \in \mathcal{X}$
- Environment chooses 'correct' arm $y_{t} \in A$ (unknown to learner)
- Learner chooses action $a_{t} \in A$
- Learner pay cost $c_{t}\left(a_{t}\right)=\mathbf{1}\left[a_{t} \neq y_{t}\right]$

Linear Hypotheses

$$
\mathcal{H}=\left\{\mathbf{x} \mapsto \underset{r}{\operatorname{argmax}}(W \mathbf{x})_{r}: W \in \mathbb{R}^{k, d},\|W\|_{F} \leq 1\right\}
$$

Large margin assumption

Assumption: Data is separable with margin μ :

$$
\forall t, \forall r \neq y_{t}, \quad\left(W \mathbf{x}_{t}\right)_{y_{t}}-\left(W \mathbf{x}_{t}\right)_{r} \geq \mu
$$

First approach - Halving

Halving for Bandit Multiclass categorization

Initialize: $V_{1}=\mathcal{H}$
For $t=1,2, \ldots$

- Receive \mathbf{x}_{t}
- For all $r \in[k]$ let $V_{t}(r)=\left\{h \in V_{t}: h\left(\mathbf{x}_{t}\right)=r\right\}$
- Predict $\hat{y}_{t} \in \arg \max _{r}\left|V_{t}(r)\right|$
- If $\mathbf{1}\left[\hat{y}_{t} \neq y_{t}\right]$ set $V_{t+1}=V_{t} \backslash V_{t}\left(\hat{y}_{t}\right)$

First approach - Halving

Halving for Bandit Multiclass categorization

Initialize: $V_{1}=\mathcal{H}$
For $t=1,2, \ldots$

- Receive \mathbf{x}_{t}
- For all $r \in[k]$ let $V_{t}(r)=\left\{h \in V_{t}: h\left(\mathbf{x}_{t}\right)=r\right\}$
- Predict $\hat{y}_{t} \in \arg \max _{r}\left|V_{t}(r)\right|$
- If $\mathbf{1}\left[\hat{y}_{t} \neq y_{t}\right]$ set $V_{t+1}=V_{t} \backslash V_{t}\left(\hat{y}_{t}\right)$

Analysis:

- Whenever we err $\left|V_{t+1}\right| \leq\left(1-\frac{1}{k}\right)\left|V_{t}\right| \leq \exp (-1 / k)\left|V_{t}\right|$
- Therefore: $M \leq k \log (|\mathcal{H}|)$

Using Halving

- Step 1: Dimensionality reduction to $d^{\prime}=\tilde{O}\left(\frac{1}{\mu^{2}}\right)$
- Step 2: Discretize \mathcal{H} to $(1 / \mu)^{d^{\prime}}$ hypotheses
- Apply Halving on the resulting finite set of hypotheses

Using Halving

- Step 1: Dimensionality reduction to $d^{\prime}=\tilde{O}\left(\frac{1}{\mu^{2}}\right)$
- Step 2: Discretize \mathcal{H} to $(1 / \mu)^{d^{\prime}}$ hypotheses
- Apply Halving on the resulting finite set of hypotheses

Analysis:

- Mistake bound is $\tilde{O}\left(\frac{k}{\mu^{2}}\right)$
- But runtime grows like $(1 / \mu)^{1 / \mu^{2}}$

How can we improve runtime?

- Halving is not efficient because it does not utilize the structure of \mathcal{H}
- In the full information case: Halving can be made efficient because each version space V_{t} can be made convex !
- The Perceptron is a related approach which utilizes convexity and works in the full information case
- Next approach: Lets try to rely on the Perceptron

The Mutliclass Perceptron

For $t=1,2, \ldots, T$

- Receive $\mathbf{x}_{t} \in \mathbb{R}^{d}$
- Predict $\hat{y}_{t}=\arg \max _{r}\left(W^{t} \mathbf{x}_{t}\right)_{r}$
- Receive y_{t}
- If $\hat{y}_{t} \neq y_{t}$ update: $W^{t+1}=W^{t}+U^{t}$

The Mutliclass Perceptron

For $t=1,2, \ldots, T$

- Receive $\mathbf{x}_{t} \in \mathbb{R}^{d}$
- Predict $\hat{y}_{t}=\arg \max _{r}\left(W^{t} \mathbf{x}_{t}\right)_{r}$
- Receive y_{t}
- If $\hat{y}_{t} \neq y_{t}$ update: $W^{t+1}=W^{t}+U^{t}$

$$
+U^{t}\left[\begin{array}{ccc}
0 & \cdots & 0 \\
& \vdots & \\
0 & \ldots & 0 \\
\ldots & \mathrm{x}_{t} & \ldots \\
0 & \ldots & 0 \\
& \vdots & \\
0 & \cdots & 0 \\
\ldots & -\mathrm{x}_{t} & \ldots \\
0 & \cdots & 0 \\
& \vdots & \\
0 & \cdots & 0
\end{array}\right] / \begin{aligned}
& \text { Row } y_{t} \\
& \text { Row } \hat{y}_{t}
\end{aligned}
$$

Problem: In the bandit case, we're blind to value of y_{t}

The Banditron (Kakade, S, Tewari 08)

- Explore: From time to time, instead of predicting \hat{y}_{t} guess some \tilde{y}_{t}
- Suppose we get the feedback 'correct', i.e. $\tilde{y}_{t}=y_{t}$
- Then, we have full information for Perceptron's update: $\left(\mathbf{x}_{t}, \hat{y}_{t}, \tilde{y}_{t}=y_{t}\right)$

The Banditron (Kakade, S, Tewari 08)

- Explore: From time to time, instead of predicting \hat{y}_{t} guess some \tilde{y}_{t}
- Suppose we get the feedback 'correct', i.e. $\tilde{y}_{t}=y_{t}$
- Then, we have full information for Perceptron's update: $\left(\mathbf{x}_{t}, \hat{y}_{t}, \tilde{y}_{t}=y_{t}\right)$
- Exploration-Exploitation Tradeoff:
- When exploring we may have $\tilde{y}_{t}=y_{t} \neq \hat{y}_{t}$ and can learn from this
- When exploring we may have $\tilde{y}_{t} \neq y_{t}=\hat{y}_{t}$ and then we had the right answer in our hands but didn't exploit it

The Banditron (Kakade, S, Tewari 08)

For $t=1,2, \ldots, T$

- Receive $\mathbf{x}_{t} \in \mathbb{R}^{d}$
- Set $\hat{y}_{t}=\arg \max _{r}\left(W^{t} \mathbf{x}_{t}\right)_{r}$
- Define: $P(r)=(1-\gamma) \mathbf{1}\left[r=\hat{y}_{t}\right]+\frac{\gamma}{k}$
- Randomly sample \tilde{y}_{t} according to P
- Predict \tilde{y}_{t}
- Receive feedback $\mathbf{1}\left[\tilde{y}_{t}=y_{t}\right]$
- Update: $W^{t+1}=W^{t}+\tilde{U}^{t}$

The Banditron (Kakade, S, Tewari 08)

For $t=1,2, \ldots, T$

- Receive $\mathbf{x}_{t} \in \mathbb{R}^{d}$
- Set $\hat{y}_{t}=\arg \max _{r}\left(W^{t} \mathbf{x}_{t}\right)_{r}$
- Define: $P(r)=(1-\gamma) \mathbf{1}\left[r=\hat{y}_{t}\right]+\frac{\gamma}{k}$
- Randomly sample \tilde{y}_{t} according to P
- Predict \tilde{y}_{t}
- Receive feedback $\mathbf{1}\left[\tilde{y}_{t}=y_{t}\right]$
- Update: $W^{t+1}=W^{t}+\tilde{U}^{t}$ where

The Banditron (Kakade, S, Tewari 08)

Theorem

- Banditron's regret is $O\left(\sqrt{k T / \mu^{2}}\right)$
- Banditron's runtime is $O\left(k / \mu^{2}\right)$

The Banditron (Kakade, S, Tewari 08)

Theorem

- Banditron's regret is $O\left(\sqrt{k T / \mu^{2}}\right)$
- Banditron's runtime is $O\left(k / \mu^{2}\right)$

The crux of difference between Halving and Banditron:

- Without having the full information, the version space is non-convex and therefore it is hard to utilize the structure of \mathcal{H}
- Because we relied on the Perceptron we did utilize the structure of \mathcal{H} and got an efficient algorithm
- We managed to obtain 'full-information examples' by using exploration
- The price of exploration is a higher regret

Intermediate Summary - Trading Regret for Efficiency

Algorithm	Regret	runtime
Halving	$\frac{k}{\mu^{2}}$	$\left(\frac{1}{\mu}\right)^{1 / \mu^{2}}$
Banditron	$\frac{\sqrt{k T}}{\mu}$	$\frac{k}{\mu^{2}}$

Second example: general costs, non-separable, 2 arms

Action set $A=\{0,1\}$
For $t=1,2, \ldots$

- Learner receives \mathbf{x}_{t}
- Environment chooses cost vector $c_{t}: A \rightarrow[0,1]$ (unknown to Learner)
- Learner chooses $\tilde{p}_{t} \in[0,1]$
- Learner chooses action $a_{t} \in A$ according to $\operatorname{Pr}\left[a_{t}=1\right]=\tilde{p}_{t}$
- Learner pays cost $c_{t}\left(a_{t}\right)$

Second example: general costs, non-separable, 2 arms

Action set $A=\{0,1\}$
For $t=1,2, \ldots$

- Learner receives \mathbf{x}_{t}
- Environment chooses cost vector $c_{t}: A \rightarrow[0,1]$ (unknown to Learner)
- Learner chooses $\tilde{p}_{t} \in[0,1]$
- Learner chooses action $a_{t} \in A$ according to $\operatorname{Pr}\left[a_{t}=1\right]=\tilde{p}_{t}$
- Learner pays cost $c_{t}\left(a_{t}\right)$

Remark: Can be extended to k arms using e.g. the offset tree (Beygelzimer and Langford '09)

Hypothesis class and regret goal

$$
\mathcal{H}=\left\{\mathbf{x} \mapsto \phi(\langle\mathbf{w}, \mathbf{x}\rangle):\|\mathbf{w}\|_{2} \leq 1\right\}, \quad \phi(z)=\frac{1}{1+\exp (-z / \mu)}
$$

Goal: bounded regret

$$
\sum_{t=1}^{T} \mathbb{E}_{a \sim \tilde{p}_{t}}\left[c_{t}(a)\right]-\min _{h \in \mathcal{H}} \sum_{t=1}^{T} \mathbb{E}_{a \sim h\left(\mathbf{x}_{t}\right)}\left[c_{t}(a)\right]
$$

Hypothesis class and regret goal

$$
\mathcal{H}=\left\{\mathbf{x} \mapsto \phi(\langle\mathbf{w}, \mathbf{x}\rangle):\|\mathbf{w}\|_{2} \leq 1\right\}, \quad \phi(z)=\frac{1}{1+\exp (-z / \mu)}
$$

Goal: bounded regret

$$
\sum_{t=1}^{T} \mathbb{E}_{a \sim \tilde{p}_{t}}\left[c_{t}(a)\right]-\min _{h \in \mathcal{H}} \sum_{t=1}^{T} \mathbb{E}_{a \sim h\left(\mathbf{x}_{t}\right)}\left[c_{t}(a)\right]
$$

Challenging: even with full information no known efficient algorithms

First approach - EXP4

- Step 1: Dimensionality reduction to $d^{\prime}=\tilde{O}\left(\frac{1}{\mu^{2}}\right)$
- Step 2: Discretize \mathcal{H} to $(1 / \mu)^{d^{\prime}}$ hypotheses
- Apply EXP4 on the resulting finite set of hypotheses (Auer, Cesa-Bianchi, Freund, Schapire 2002)

First approach - EXP4

- Step 1: Dimensionality reduction to $d^{\prime}=\tilde{O}\left(\frac{1}{\mu^{2}}\right)$
- Step 2: Discretize \mathcal{H} to $(1 / \mu)^{d^{\prime}}$ hypotheses
- Apply EXP4 on the resulting finite set of hypotheses (Auer, Cesa-Bianchi, Freund, Schapire 2002)

Analysis:

- Regret bound is $\tilde{O}\left(\sqrt{\frac{k T}{\mu^{2}}}\right)$
- Runtime grows like $(1 / \mu)^{1 / \mu^{2}}$

Second Approach - IDPK

(1) Reduction to weighted binary classification

Similar to Bianca Zadrozny 2003, Alina Beygelzimer and John Langford 2009
(2) Learning fuzzy halfspaces using the Infinite-Dimensional-Polynomial-Kernel (S, Shamir, Sridharan 2009)

Reduction to weighted binary classification

- The expected cost of a strategy p is:

$$
\mathbb{E}_{a \sim p}[c(a)]=p c(1)+(1-p) c(0)
$$

Reduction to weighted binary classification

- The expected cost of a strategy p is: $\mathbb{E}_{a \sim p}[c(a)]=p c(1)+(1-p) c(0)$
- Limited feedback: We don't observe c_{t} but only $c_{t}\left(a_{t}\right)$

Reduction to weighted binary classification

- The expected cost of a strategy p is:

$$
\mathbb{E}_{a \sim p}[c(a)]=p c(1)+(1-p) c(0)
$$

- Limited feedback: We don't observe c_{t} but only $c_{t}\left(a_{t}\right)$
- Define the following loss function:

$$
\ell_{t}(p)=\nu_{t}\left|p-y_{t}\right|= \begin{cases}\frac{c_{t}(1)}{\tilde{p}_{t}}|p-0| & \text { if } a_{t}=1 \\ \frac{c_{t}(0)}{1-\tilde{p}_{t}}|p-1| & \text { if } a_{t}=0\end{cases}
$$

Reduction to weighted binary classification

- The expected cost of a strategy p is:

$$
\mathbb{E}_{a \sim p}[c(a)]=p c(1)+(1-p) c(0)
$$

- Limited feedback: We don't observe c_{t} but only $c_{t}\left(a_{t}\right)$
- Define the following loss function:

$$
\ell_{t}(p)=\nu_{t}\left|p-y_{t}\right|= \begin{cases}\frac{c_{t}(1)}{\tilde{p}_{t}}|p-0| & \text { if } a_{t}=1 \\ \frac{c_{t}(0)}{1-\tilde{p}_{t}}|p-1| & \text { if } a_{t}=0\end{cases}
$$

- Note that ℓ_{t} only depends on available information and that:

$$
\mathbb{E}_{a_{t} \sim \tilde{p}_{t}}\left[\ell_{t}(p)\right]=\mathbb{E}_{a \sim p}\left[c_{t}(a)\right]
$$

Reduction to weighted binary classification

- The expected cost of a strategy p is:

$$
\mathbb{E}_{a \sim p}[c(a)]=p c(1)+(1-p) c(0)
$$

- Limited feedback: We don't observe c_{t} but only $c_{t}\left(a_{t}\right)$
- Define the following loss function:

$$
\ell_{t}(p)=\nu_{t}\left|p-y_{t}\right|= \begin{cases}\frac{c_{t}(1)}{\tilde{p}_{t}}|p-0| & \text { if } a_{t}=1 \\ \frac{c_{t}(0)}{1-\tilde{p}_{t}}|p-1| & \text { if } a_{t}=0\end{cases}
$$

- Note that ℓ_{t} only depends on available information and that:

$$
\mathbb{E}_{a_{t} \sim \tilde{p}_{t}}\left[\ell_{t}(p)\right]=\mathbb{E}_{a \sim p}\left[c_{t}(a)\right]
$$

- The above almost works - we should slightly change the probabilities so that ν_{t} will not explode.
Bottom line: regret bound w.r.t. $\ell_{t} \Rightarrow$ regret bound w.r.t. c_{t}

Step 2 - Learning fuzzy halfspaces with IDPK

- Goal: regret bound w.r.t. class $\mathcal{H}=\{\mathbf{x} \mapsto \phi(\langle\mathbf{w}, \mathbf{x}\rangle)\}$ Working with expected $0-1$ loss: $|\phi(\langle\mathbf{w}, \mathbf{x}\rangle)-y|$

Step 2 - Learning fuzzy halfspaces with IDPK

- Goal: regret bound w.r.t. class $\mathcal{H}=\{\mathbf{x} \mapsto \phi(\langle\mathbf{w}, \mathbf{x}\rangle)\}$ Working with expected $0-1$ loss: $|\phi(\langle\mathbf{w}, \mathbf{x}\rangle)-y|$
- Problem: The above is non-convex w.r.t. \mathbf{w}

Step 2 - Learning fuzzy halfspaces with IDPK

- Goal: regret bound w.r.t. class $\mathcal{H}=\{\mathbf{x} \mapsto \phi(\langle\mathbf{w}, \mathbf{x}\rangle)\}$ Working with expected $0-1$ loss: $|\phi(\langle\mathbf{w}, \mathbf{x}\rangle)-y|$
- Problem: The above is non-convex w.r.t. w
- Main idea: Work with a larger hypothesis class for which the loss becomes convex

Step 2 - Learning fuzzy halfspaces with IDPK

- Original class: $\mathcal{H}=\left\{h_{\mathbf{w}}(\mathbf{x})=\phi(\langle\mathbf{w}, \mathbf{x}\rangle):\|\mathbf{w}\| \leq 1\right\}$
- New class: $\mathcal{H}^{\prime}=\left\{h_{\mathbf{v}}(\mathbf{x})=\langle\mathbf{v}, \psi(\mathbf{x})\rangle:\|\mathbf{v}\| \leq B\right\}$ where $\psi: \mathcal{X} \rightarrow \mathbb{R}^{\mathbb{N}}$ s.t. $\forall j, \forall\left(i_{1}, \ldots, i_{j}\right), \psi(\mathbf{x})_{\left(i_{1}, \ldots, i_{j}\right)}=2^{j / 2} x_{i_{1}} \cdots x_{i_{j}}$

Step 2 - Learning fuzzy halfspaces with IDPK

- Original class: $\mathcal{H}=\left\{h_{\mathbf{w}}(\mathbf{x})=\phi(\langle\mathbf{w}, \mathbf{x}\rangle):\|\mathbf{w}\| \leq 1\right\}$
- New class: $\mathcal{H}^{\prime}=\left\{h_{\mathbf{v}}(\mathbf{x})=\langle\mathbf{v}, \psi(\mathbf{x})\rangle:\|\mathbf{v}\| \leq B\right\}$ where $\psi: \mathcal{X} \rightarrow \mathbb{R}^{\mathbb{N}}$ s.t. $\forall j, \forall\left(i_{1}, \ldots, i_{j}\right), \psi(\mathbf{x})_{\left(i_{1}, \ldots, i_{j}\right)}=2^{j / 2} x_{i_{1}} \cdots x_{i_{j}}$

Lemma (S, Shamir, Sridharan 2009)

If $B=\exp (\tilde{O}(1 / \mu))$ then for all $h \in \mathcal{H}$ exists $h^{\prime} \in \mathcal{H}^{\prime}$ s.t. for all \mathbf{x}, $h(\mathbf{x}) \approx h^{\prime}(\mathbf{x})$.

Step 2 - Learning fuzzy halfspaces with IDPK

- Original class: $\mathcal{H}=\left\{h_{\mathbf{w}}(\mathbf{x})=\phi(\langle\mathbf{w}, \mathbf{x}\rangle):\|\mathbf{w}\| \leq 1\right\}$
- New class: $\mathcal{H}^{\prime}=\left\{h_{\mathbf{v}}(\mathbf{x})=\langle\mathbf{v}, \psi(\mathbf{x})\rangle:\|\mathbf{v}\| \leq B\right\}$ where $\psi: \mathcal{X} \rightarrow \mathbb{R}^{\mathbb{N}}$ s.t. $\forall j, \forall\left(i_{1}, \ldots, i_{j}\right), \psi(\mathbf{x})_{\left(i_{1}, \ldots, i_{j}\right)}=2^{j / 2} x_{i_{1}} \cdots x_{i_{j}}$

Lemma (S, Shamir, Sridharan 2009)

If $B=\exp (\tilde{O}(1 / \mu))$ then for all $h \in \mathcal{H}$ exists $h^{\prime} \in \mathcal{H}^{\prime}$ s.t. for all \mathbf{x}, $h(\mathbf{x}) \approx h^{\prime}(\mathbf{x})$.

Remark: The above is a pessimistic choice of B. In practice, smaller B suffices. Is it tight? Even if it is, are there natural assumptions under which a better bound holds ?
(e.g. Kalai, Klivans, Mansour, Servedio 2005)

Proof idea

- Polynomial approximation: $\phi(z) \approx \sum_{j=0}^{\infty} \beta_{j} z^{j}$

Proof idea

- Polynomial approximation: $\phi(z) \approx \sum_{j=0}^{\infty} \beta_{j} z^{j}$
- Therefore:

$$
\begin{aligned}
\phi(\langle\mathbf{w}, \mathbf{x}\rangle) & \approx \sum_{j=0}^{\infty} \beta_{j}(\langle\mathbf{w}, \mathbf{x}\rangle)^{j} \\
& =\sum_{j=0}^{\infty} \sum_{k_{1}, \ldots, k_{j}} 2^{-j / 2} \beta_{j} 2^{j / 2} w_{k_{1}} \cdots w_{k_{j}} x_{k_{1}} \cdots x_{k_{j}} \\
& =\left\langle\mathbf{v}_{\mathbf{w}}, \psi(\mathbf{x})\right\rangle
\end{aligned}
$$

Proof idea

- Polynomial approximation: $\phi(z) \approx \sum_{j=0}^{\infty} \beta_{j} z^{j}$
- Therefore:

$$
\begin{aligned}
\phi(\langle\mathbf{w}, \mathbf{x}\rangle) & \approx \sum_{j=0}^{\infty} \beta_{j}(\langle\mathbf{w}, \mathbf{x}\rangle)^{j} \\
& =\sum_{j=0}^{\infty} \sum_{k_{1}, \ldots, k_{j}} 2^{-j / 2} \beta_{j} 2^{j / 2} w_{k_{1}} \cdots w_{k_{j}} x_{k_{1}} \cdots x_{k_{j}} \\
& =\left\langle\mathbf{v}_{\mathbf{w}}, \psi(\mathbf{x})\right\rangle
\end{aligned}
$$

- To obtain a concrete bound we use Chebyshev approximation technique: Family of orthogonal polynomials w.r.t. inner product:

$$
\langle f, g\rangle=\int_{x=-1}^{1} \frac{f(x) g(x)}{\sqrt{1-x^{2}}} d x
$$

Infinite-Dimensional-Polynomial-Kernel

- Although the dimension is infinite, can be solved using the kernel trick
- The corresponding kernel (a.k.a. Vovk's infinite polynomial):

$$
\left\langle\psi(\mathbf{x}), \psi\left(\mathbf{x}^{\prime}\right)\right\rangle=K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\frac{1}{1-\frac{1}{2}\left\langle\mathbf{x}, \mathbf{x}^{\prime}\right\rangle}
$$

- Algorithm boils down to online regression with the above kernel
- Convex! Can be solved e.g. using Zinkevich's OCP
- Regret bound is $B \sqrt{T}$

Trading Regret for Efficiency

Algorithm	Regret	runtime
EXP4	$\sqrt{T / \mu^{2}}$	$\exp \left(\tilde{O}\left(1 / \mu^{2}\right)\right)$
IDPK	\wedge	\vee
	$T^{3 / 4} \exp (\tilde{O}(1 / \mu))$	T

Summary

- Trading regret rate for efficiency:

2 arms, non-separable

Open questions:

- More points on the curve (new algorithms)
- Lower bounds ???

