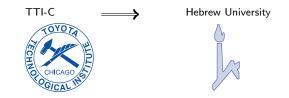
Trading regret rate for computational efficiency in online learning with limited feedback

Shai Shalev-Shwartz



On-line Learning with Limited Feedback Workshop, 2009

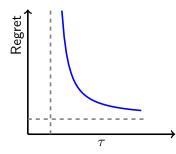
June 2009

Main Question

Given a runtime constraint τ , horizon T, reference class \mathcal{H} : What is the achievable regret of an algorithm whose (amortized) runtime is $O(\tau)$?

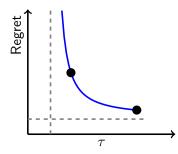
Main Question

Given a runtime constraint τ , horizon T, reference class \mathcal{H} : What is the achievable regret of an algorithm whose (amortized) runtime is $O(\tau)$?



Main Question

Given a runtime constraint τ , horizon T, reference class \mathcal{H} : What is the achievable regret of an algorithm whose (amortized) runtime is $O(\tau)$?



Non-stochastic Multi-armed bandit with side information

The prediction problem

Arms: $A = \{1, ..., k\}$ For t = 1, 2, ..., T

- Learner receives side information $\mathbf{x}_t \in \mathcal{X}$
- Environment chooses cost vector $c_t : A \rightarrow [0,1]$ (unknown to learner)
- Learner chooses action $a_t \in A$
- Learner pay cost $c_t(a_t)$

Non-stochastic Multi-armed bandit with side information

The prediction problem

Arms: $A = \{1, ..., k\}$ For t = 1, 2, ..., T

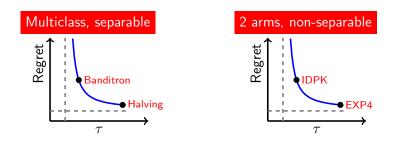
- Learner receives side information $\mathbf{x}_t \in \mathcal{X}$
- Environment chooses cost vector $c_t : A \rightarrow [0,1]$ (unknown to learner)
- Learner chooses action $a_t \in A$
- Learner pay cost $c_t(a_t)$

Goal

Low regret w.r.t. a reference hypothesis class \mathcal{H} :

Regret
$$\stackrel{\text{def}}{=} \sum_{t=1}^{T} c_t(a_t) - \min_{h \in \mathcal{H}} \sum_{t=1}^{T} c_t(h(\mathbf{x}_t))$$

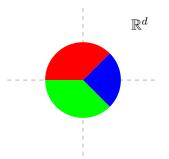
${\mathcal H}$ is the class of linear hypotheses



For $t = 1, 2, \ldots, T$

- Learner receives side information $\mathbf{x}_t \in \mathcal{X}$
- Environment chooses 'correct' arm $y_t \in A$ (unknown to learner)
- Learner chooses action $a_t \in A$
- Learner pay cost $c_t(a_t) = \mathbf{1}[a_t \neq y_t]$

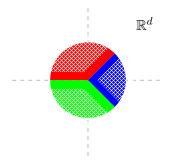
$$\mathcal{H} = \{ \mathbf{x} \mapsto \operatorname*{argmax}_{r} (W \mathbf{x})_{r} : W \in \mathbb{R}^{k, d}, \|W\|_{F} \le 1 \}$$



< A

Assumption: Data is separable with margin μ :

$$\forall t, \ \forall r \neq y_t, \ (W\mathbf{x}_t)_{y_t} - (W\mathbf{x}_t)_r \geq \mu$$



Halving for Bandit Multiclass categorization

Initialize: $V_1 = \mathcal{H}$

For t = 1, 2, ...

- Receive \mathbf{x}_t
- For all $r \in [k]$ let $V_t(r) = \{h \in V_t : h(\mathbf{x}_t) = r\}$
- Predict $\hat{y}_t \in \arg \max_r |V_t(r)|$
- If $\mathbf{1}[\hat{y}_t \neq y_t]$ set $V_{t+1} = V_t \setminus V_t(\hat{y}_t)$

Halving for Bandit Multiclass categorization

Initialize: $V_1 = \mathcal{H}$

For t = 1, 2, ...

- Receive \mathbf{x}_t
- For all $r \in [k]$ let $V_t(r) = \{h \in V_t : h(\mathbf{x}_t) = r\}$

• Predict $\hat{y}_t \in \arg \max_r |V_t(r)|$

• If
$$\mathbf{1}[\hat{y}_t \neq y_t]$$
 set $V_{t+1} = V_t \setminus V_t(\hat{y}_t)$

Analysis:

- Whenever we err $|V_{t+1}| \le \left(1 \frac{1}{k}\right) |V_t| \le \exp(-1/k) |V_t|$
- Therefore: $M \leq k \log(|\mathcal{H}|)$

- Step 1: Dimensionality reduction to $d' = \tilde{O}(\frac{1}{\mu^2})$
- Step 2: Discretize ${\mathcal H}$ to $(1/\mu)^{d'}$ hypotheses
- Apply Halving on the resulting finite set of hypotheses

- Step 1: Dimensionality reduction to $d' = \tilde{O}(\frac{1}{\mu^2})$
- \bullet Step 2: Discretize ${\cal H}$ to $(1/\mu)^{d'}$ hypotheses
- Apply Halving on the resulting finite set of hypotheses

Analysis:

- Mistake bound is $\tilde{O}\left(\frac{k}{\mu^2}\right)$
- But runtime grows like $(1/\mu)^{1/\mu^2}$

- $\bullet\,$ Halving is not efficient because it does not utilize the structure of ${\cal H}$
- In the full information case: Halving can be made efficient because each version space V_t can be made convex !
- The Perceptron is a related approach which utilizes convexity and works in the full information case
- Next approach: Lets try to rely on the Perceptron

The Mutliclass Perceptron

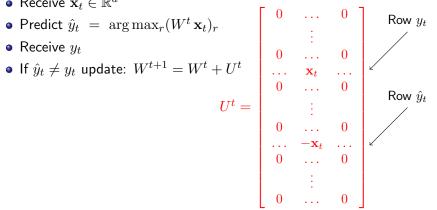
For $t = 1, 2, \ldots, T$

- Receive $\mathbf{x}_t \in \mathbb{R}^d$
- Predict $\hat{y}_t = \arg \max_r (W^t \mathbf{x}_t)_r$
- Receive y_t
- If $\hat{y}_t \neq y_t$ update: $W^{t+1} = W^t + U^t$

For t = 1, 2, ..., T

• Receive $\mathbf{x}_t \in \mathbb{R}^d$

• Predict
$$\hat{y}_t = \arg \max_r (W^t \mathbf{x}_t)_r$$



Problem: In the bandit case, we're blind to value of y_t

- Explore: From time to time, instead of predicting \hat{y}_t guess some \tilde{y}_t
- Suppose we get the feedback 'correct', i.e. $\tilde{y}_t = y_t$
- Then, we have full information for Perceptron's update: $(\mathbf{x}_t, \hat{y}_t, \tilde{y}_t = y_t)$

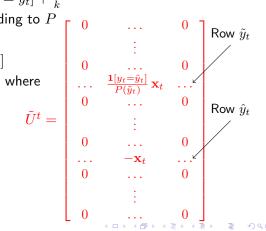
- Explore: From time to time, instead of predicting \hat{y}_t guess some \tilde{y}_t
- Suppose we get the feedback 'correct', i.e. $\tilde{y}_t = y_t$
- Then, we have full information for Perceptron's update: $(\mathbf{x}_t, \hat{y}_t, \tilde{y}_t = y_t)$
- Exploration-Exploitation Tradeoff:
 - When exploring we may have $\tilde{y}_t = y_t \neq \hat{y}_t$ and can learn from this
 - When exploring we may have $\tilde{y}_t \neq y_t = \hat{y}_t$ and then we had the right answer in our hands but didn't exploit it

For $t = 1, 2, \ldots, T$

- Receive $\mathbf{x}_t \in \mathbb{R}^d$
- Set $\hat{y}_t = \arg \max_r (W^t \mathbf{x}_t)_r$
- Define: $P(r) = (1 \gamma)\mathbf{1}[r = \hat{y}_t] + \frac{\gamma}{k}$
- Randomly sample \tilde{y}_t according to P
- Predict \tilde{y}_t
- Receive feedback $\mathbf{1}[\tilde{y}_t = y_t]$
- Update: $W^{t+1} = W^t + \tilde{U}^t$

For t = 1, 2, ..., T

- Receive $\mathbf{x}_t \in \mathbb{R}^d$
- Set $\hat{y}_t = \arg \max_r (W^t \mathbf{x}_t)_r$
- Define: $P(r) = (1 \gamma)\mathbf{1}[r = \hat{y}_t] + \frac{\gamma}{k}$
- Randomly sample \tilde{y}_t according to P
- Predict \tilde{y}_t
- Receive feedback $\mathbf{1}[\tilde{y}_t = y_t]$
- Update: $W^{t+1} = W^t + \tilde{U}^t$ where



Theorem

- Banditron's regret is $O(\sqrt{kT/\mu^2})$
- Banditron's runtime is $O(k/\mu^2)$

Theorem

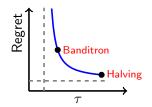
- Banditron's regret is $O(\sqrt{k T/\mu^2})$
- Banditron's runtime is $O(k/\mu^2)$

The crux of difference between Halving and Banditron:

- Without having the full information, the version space is non-convex and therefore it is hard to utilize the structure of ${\cal H}$
- Because we relied on the Perceptron we did utilize the structure of ${\cal H}$ and got an efficient algorithm
- We managed to obtain 'full-information examples' by using exploration
- The price of exploration is a higher regret

Intermediate Summary – Trading Regret for Efficiency

Algorithm	Regret	runtime
Halving Banditron	$\frac{\frac{k}{\mu^2}}{\frac{\sqrt{kT}}{\mu}}$	$\left(\frac{1}{\mu}\right)^{1/\mu^2}$ $\frac{k}{\mu^2}$



Action set $A = \{0, 1\}$ For $t = 1, 2, \dots$

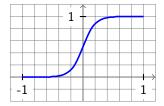
- Learner receives \mathbf{x}_t
- Environment chooses cost vector $c_t : A \rightarrow [0,1]$ (unknown to Learner)
- Learner chooses $\tilde{p}_t \in [0, 1]$
- Learner chooses action $a_t \in A$ according to $\Pr[a_t = 1] = \tilde{p}_t$
- Learner pays cost $c_t(a_t)$

Action set $A = \{0, 1\}$ For $t = 1, 2, \dots$

- Learner receives \mathbf{x}_t
- Environment chooses cost vector $c_t : A \rightarrow [0,1]$ (unknown to Learner)
- Learner chooses $\tilde{p}_t \in [0, 1]$
- Learner chooses action $a_t \in A$ according to $\Pr[a_t = 1] = \tilde{p}_t$
- Learner pays cost $c_t(a_t)$

Remark: Can be extended to k arms using e.g. the offset tree (Beygelzimer and Langford '09)

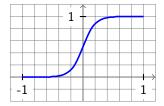
$$\mathcal{H} = \{ \mathbf{x} \mapsto \phi(\langle \mathbf{w}, \mathbf{x} \rangle) : \| \mathbf{w} \|_2 \le 1 \}, \quad \phi(z) = \frac{1}{1 + \exp(-z/\mu)}$$



Goal: bounded regret

$$\sum_{t=1}^{T} \mathbb{E}_{a \sim \tilde{p}_t}[c_t(a)] - \min_{h \in \mathcal{H}} \sum_{t=1}^{T} \mathbb{E}_{a \sim h(\mathbf{x}_t)}[c_t(a)]$$

$$\mathcal{H} = \{ \mathbf{x} \mapsto \phi(\langle \mathbf{w}, \mathbf{x} \rangle) : \| \mathbf{w} \|_2 \le 1 \}, \quad \phi(z) = \frac{1}{1 + \exp(-z/\mu)}$$



Goal: bounded regret

$$\sum_{t=1}^{T} \mathbb{E}_{a \sim \tilde{p}_t}[c_t(a)] - \min_{h \in \mathcal{H}} \sum_{t=1}^{T} \mathbb{E}_{a \sim h(\mathbf{x}_t)}[c_t(a)]$$

Challenging: even with full information no known efficient algorithms

Image: Image:

- Step 1: Dimensionality reduction to $d' = \tilde{O}(\frac{1}{\mu^2})$
- \bullet Step 2: Discretize ${\cal H}$ to $(1/\mu)^{d'}$ hypotheses
- Apply EXP4 on the resulting finite set of hypotheses (Auer, Cesa-Bianchi, Freund, Schapire 2002)

- Step 1: Dimensionality reduction to $d' = \tilde{O}(\frac{1}{\mu^2})$
- \bullet Step 2: Discretize ${\cal H}$ to $(1/\mu)^{d'}$ hypotheses
- Apply EXP4 on the resulting finite set of hypotheses (Auer, Cesa-Bianchi, Freund, Schapire 2002)

Analysis:

- Regret bound is $\tilde{O}\left(\sqrt{\frac{k\,T}{\mu^2}}\;\right)$
- Runtime grows like $(1/\mu)^{1/\mu^2}$

Jun'09

- Reduction to weighted binary classification Similar to Bianca Zadrozny 2003, Alina Beygelzimer and John Langford 2009
- Learning fuzzy halfspaces using the Infinite-Dimensional-Polynomial-Kernel (S, Shamir, Sridharan 2009)

• The expected cost of a strategy p is: $\mathbb{E}_{a \sim p}[c(a)] = p c(1) + (1 - p) c(0)$

- The expected cost of a strategy p is: $\mathbb{E}_{a \sim p}[c(a)] = p c(1) + (1-p) c(0)$
- Limited feedback: We don't observe c_t but only $c_t(a_t)$

- The expected cost of a strategy p is: $\mathbb{E}_{a \sim p}[c(a)] = p c(1) + (1-p) c(0)$
- Limited feedback: We don't observe c_t but only $c_t(a_t)$
- Define the following loss function:

$$\ell_t(p) = \nu_t |p - y_t| = \begin{cases} \frac{c_t(1)}{\tilde{p}_t} |p - 0| & \text{if } a_t = 1\\ \frac{c_t(0)}{1 - \tilde{p}_t} |p - 1| & \text{if } a_t = 0 \end{cases}$$

- The expected cost of a strategy p is: $\mathbb{E}_{a \sim p}[c(a)] = p c(1) + (1-p) c(0)$
- Limited feedback: We don't observe c_t but only $c_t(a_t)$
- Define the following loss function:

$$\ell_t(p) = \nu_t |p - y_t| = \begin{cases} \frac{c_t(1)}{\tilde{p}_t} |p - 0| & \text{if } a_t = 1\\ \frac{c_t(0)}{1 - \tilde{p}_t} |p - 1| & \text{if } a_t = 0 \end{cases}$$

• Note that ℓ_t only depends on available information and that:

$$\mathbb{E}_{a_t \sim \tilde{p}_t}[\ell_t(p)] = \mathbb{E}_{a \sim p}[c_t(a)]$$

- The expected cost of a strategy p is: $\mathbb{E}_{a \sim p}[c(a)] = p c(1) + (1-p) c(0)$
- Limited feedback: We don't observe c_t but only $c_t(a_t)$
- Define the following loss function:

$$\ell_t(p) = \nu_t |p - y_t| = \begin{cases} \frac{c_t(1)}{\tilde{p}_t} |p - 0| & \text{if } a_t = 1\\ \frac{c_t(0)}{1 - \tilde{p}_t} |p - 1| & \text{if } a_t = 0 \end{cases}$$

• Note that ℓ_t only depends on available information and that:

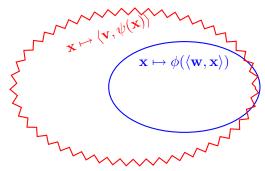
$$\mathbb{E}_{a_t \sim \tilde{p}_t}[\ell_t(p)] = \mathbb{E}_{a \sim p}[c_t(a)]$$

 The above almost works – we should slightly change the probabilities so that ν_t will not explode.
Bottom line: regret bound w.r.t. ℓ_t ⇒ regret bound w.r.t. c_t

• Goal: regret bound w.r.t. class $\mathcal{H} = \{\mathbf{x} \mapsto \phi(\langle \mathbf{w}, \mathbf{x} \rangle)\}$ Working with expected 0 - 1 loss: $|\phi(\langle \mathbf{w}, \mathbf{x} \rangle) - y|$

- Goal: regret bound w.r.t. class $\mathcal{H} = \{\mathbf{x} \mapsto \phi(\langle \mathbf{w}, \mathbf{x} \rangle)\}$ Working with expected 0 - 1 loss: $|\phi(\langle \mathbf{w}, \mathbf{x} \rangle) - y|$
- Problem: The above is non-convex w.r.t. w

- Goal: regret bound w.r.t. class $\mathcal{H} = \{\mathbf{x} \mapsto \phi(\langle \mathbf{w}, \mathbf{x} \rangle)\}$ Working with expected 0 - 1 loss: $|\phi(\langle \mathbf{w}, \mathbf{x} \rangle) - y|$
- Problem: The above is non-convex w.r.t. w
- Main idea: Work with a larger hypothesis class for which the loss becomes convex



- Original class: $\mathcal{H} = \{h_{\mathbf{w}}(\mathbf{x}) = \phi(\langle \mathbf{w}, \mathbf{x} \rangle) : \|\mathbf{w}\| \le 1\}$
- New class: $\mathcal{H}' = \{h_{\mathbf{v}}(\mathbf{x}) = \langle \mathbf{v}, \psi(\mathbf{x}) \rangle : \|\mathbf{v}\| \le B\}$ where $\psi : \mathcal{X} \to \mathbb{R}^{\mathbb{N}}$ s.t. $\forall j, \ \forall (i_1, \dots, i_j), \ \psi(\mathbf{x})_{(i_1, \dots, i_j)} = 2^{j/2} x_{i_1} \cdots x_{i_j}$

- Original class: $\mathcal{H} = \{h_{\mathbf{w}}(\mathbf{x}) = \phi(\langle \mathbf{w}, \mathbf{x} \rangle) : \|\mathbf{w}\| \le 1\}$
- New class: $\mathcal{H}' = \{h_{\mathbf{v}}(\mathbf{x}) = \langle \mathbf{v}, \psi(\mathbf{x}) \rangle : \|\mathbf{v}\| \leq B\}$ where $\psi : \mathcal{X} \to \mathbb{R}^{\mathbb{N}}$ s.t. $\forall j, \ \forall (i_1, \dots, i_j), \ \psi(\mathbf{x})_{(i_1, \dots, i_j)} = 2^{j/2} x_{i_1} \cdots x_{i_j}$

Lemma (S, Shamir, Sridharan 2009)

If $B = \exp(\tilde{O}(1/\mu))$ then for all $h \in \mathcal{H}$ exists $h' \in \mathcal{H}'$ s.t. for all \mathbf{x} , $h(\mathbf{x}) \approx h'(\mathbf{x})$.

- Original class: $\mathcal{H} = \{h_{\mathbf{w}}(\mathbf{x}) = \phi(\langle \mathbf{w}, \mathbf{x} \rangle) : \|\mathbf{w}\| \le 1\}$
- New class: $\mathcal{H}' = \{h_{\mathbf{v}}(\mathbf{x}) = \langle \mathbf{v}, \psi(\mathbf{x}) \rangle : \|\mathbf{v}\| \leq B\}$ where $\psi : \mathcal{X} \to \mathbb{R}^{\mathbb{N}}$ s.t. $\forall j, \ \forall (i_1, \dots, i_j), \ \psi(\mathbf{x})_{(i_1, \dots, i_j)} = 2^{j/2} x_{i_1} \cdots x_{i_j}$

Lemma (S, Shamir, Sridharan 2009)

If $B = \exp(\tilde{O}(1/\mu))$ then for all $h \in \mathcal{H}$ exists $h' \in \mathcal{H}'$ s.t. for all \mathbf{x} , $h(\mathbf{x}) \approx h'(\mathbf{x})$.

Remark: The above is a pessimistic choice of B. In practice, smaller B suffices. Is it tight? Even if it is, are there natural assumptions under which a better bound holds ? (e.g. Kalai, Klivans, Mansour, Servedio 2005)

Proof idea

• Polynomial approximation: $\phi(z) \approx \sum_{j=0}^{\infty} \beta_j z^j$

(日) (同) (三) (三)

3

Proof idea

• Polynomial approximation: $\phi(z) \approx \sum_{j=0}^{\infty} \beta_j z^j$

• Therefore:

$$\phi(\langle \mathbf{w}, \mathbf{x} \rangle) \approx \sum_{j=0}^{\infty} \beta_j (\langle \mathbf{w}, \mathbf{x} \rangle)^j$$
$$= \sum_{j=0}^{\infty} \sum_{k_1, \dots, k_j} 2^{-j/2} \beta_j 2^{j/2} w_{k_1} \cdots w_{k_j} x_{k_1} \cdots x_{k_j}$$
$$= \langle \mathbf{v}_{\mathbf{w}}, \psi(\mathbf{x}) \rangle$$

(日) (同) (三) (三)

Proof idea

- Polynomial approximation: $\phi(z) \approx \sum_{j=0}^{\infty} \beta_j z^j$
- Therefore:

$$\phi(\langle \mathbf{w}, \mathbf{x} \rangle) \approx \sum_{j=0}^{\infty} \beta_j (\langle \mathbf{w}, \mathbf{x} \rangle)^j$$
$$= \sum_{j=0}^{\infty} \sum_{k_1, \dots, k_j} 2^{-j/2} \beta_j 2^{j/2} w_{k_1} \cdots w_{k_j} x_{k_1} \cdots x_{k_j}$$
$$= \langle \mathbf{v}_{\mathbf{w}}, \psi(\mathbf{x}) \rangle$$

• To obtain a concrete bound we use Chebyshev approximation technique: Family of orthogonal polynomials w.r.t. inner product:

$$\langle f,g \rangle = \int_{x=-1}^{1} \frac{f(x)g(x)}{\sqrt{1-x^2}} dx$$

- Although the dimension is infinite, can be solved using the kernel trick
- The corresponding kernel (a.k.a. Vovk's infinite polynomial):

$$\langle \psi(\mathbf{x}), \psi(\mathbf{x}') \rangle = K(\mathbf{x}, \mathbf{x}') = \frac{1}{1 - \frac{1}{2} \langle \mathbf{x}, \mathbf{x}' \rangle}$$

- Algorithm boils down to online regression with the above kernel
- Convex! Can be solved e.g. using Zinkevich's OCP
- Regret bound is $B\sqrt{T}$

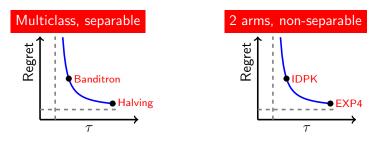
Algorithm	Regret	runtime
EXP4	$\sqrt{T/\mu^2}$	$\exp(\tilde{O}(1/\mu^2))$
	^	\vee
IDPK	$T^{3/4} \exp(\tilde{O}(1/\mu))$	T

э Jun'09 25 / 26

-

• • • • • • • • • • • •

• Trading regret rate for efficiency:



Open questions:

- More points on the curve (new algorithms)
- Lower bounds ???