האוניברסיטה העברית בירושלים THE HEBREW UNIVERSITY OF JERUSALEM

Accurate age prediction from blood using a small set of DNA methylation sites

Miri Varshavsky¹, Gil Harari^{1,2}, Bracha Lea Ohana², Benjamin Glaser³, Yuval Dor², Ruth Shemer², and Tommy Kaplan^{1,2}

- ¹ School of Computer Science and Engineering, The Hebrew University of Jerusalem, Israel
- ² Faculty of Medicine, The Hebrew University of Jerusalem, Israel
- ³ Dept. of Endocrinology and Metabolism, Hadassah Medical Center, Jerusalem, Israel

Introduction

- Age prediction from methylation sheds light on the aging process, with indications of poor health and predicted lifespan
- We present GP-age, a non-linear epigenetic clock which uses only 30 CpG sites, applicable to simple blood tests
- Large cohort of 11,910 blood-derived methylomes
- Median error (MedAE) of ~2 years on held-out data

2 Selection of 30 CpG sites

Correlation of Illumina 450K CpG sites with age

Methylation range of Illumina 450K CpG sites

Spectral clustering (k=30), and selection of most correlative CpG site from each cluster

Gaussian Process Regression

Per sample, the prediction of age is a normal distribution centered around a weighted average* of similar train-set methylomes.

RMSE=3.78

GP-age outperforms state-of-the art epigenetic clocks with only 30 CpG sites

RMSE=3.96

RMSE=3.61

Consistent errors across independent GPR models suggest biological variance

7 — From array to sequencing data

Estimation of methylation levels with Laplace kernel over methylation levels of neighboring CpG sites.

Dataset	Error (years)	GP-age (30 CpGs)	GP-age w/ neigh. (30 CpGs)	Multi- tissue clock ¹	Skin& Blood clock ²	Hannum et al. clock ³
Jensen et al.	MedAE	3.00	1.75	10.73	14.56	9.43
(Buffy coat, n=7)	(RMSE)	(6.10)	(3.06)	(11.37)	(12.16)	(11.40)
Fox-Fisher et al.	MedAE	3.55	2.29	7.07	14.41	4.65
(WBC, n=23)	(RMSE)	(4.92)	(4.16)	(10.44)	(14.46)	(6.67)

Single-molecule views of methylation

Meth. patterns at the ELOVL2 locus change with age

Molecular/cellular views of aging

- Aging as a stochastic (continuous) process of single CpG changes
- Aging as a binary switch between "young" and "old" states, at the cellular level

Block-wise changes							
Ī	TTTTTTTTT	"young"					
	TTTTTTTTT	"young"					
D E	TTTTTTTTT	"young"					
=	CCCCCCCC	"old"					
	CCCCCCCC	"old"					
Į.	CCCCCCCC	"old"					

Single-CpG hits

TTTCTTTTTCCTTTCT

TTTCTTCTTCCTCTCT

Summary

9

- Using only 30 CpG sites, GP-age provides an accessible and accurate alternative for epigenetic clocks
- Coordinated prediction errors from independent models suggest a biological signal
- GP-age is applicable on mid-coverage sequencing data, by incorporating neighborhood information
- Paves the way for cheap, targeted PCR-based, age estimation from blood

Horvath, DNA methylation age of human tissues and cell types. Genome Biology, 2013

² Horvath et al., Epigenetic clock for skin and blood cells applied to Hutchinson Gilford Progeria Syndrome and ex vivo studies. *Aging*, 2018

6

³ Hannum et al., Genome-wide methylation profiles reveal quantitative views of human aging rates. *Molecular Cell*, 2013